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We analyze the spread of COVID-19 by considering the transmission of the disease among individ-
uals both within and between communities. A set of communities can be defined as any partition of
a population such that travel/social contact within each community far exceeds that between them
(e.g. the U.S. could be partitioned by state or commuting zone boundaries). COVID-19 can be
eliminated if the community-to-community reproductive number—i.e. the expected/average number
of other communities to which a single infected community will transmit the virus—is reduced to less
than one. We find that this community-to-community reproductive number is proportional to the
travel rate between communities and exponential in the length of the time-delay before community-
level action is taken. Thus, reductions in travel and the speed at which communities take action
can play decisive roles in stopping the outbreak. The analysis suggests that for the coronavirus to
be eliminated, it is not necessary to impose aggressive social distancing measures all over the world
at once, but rather only in communities in which active spreading is detected. The sooner such
measures are imposed, the shorter the duration they must remain in place. If infected communi-
ties (including those that become re-infected in the future) are quick enough to act, the number
of actively infected communities (and thus the number of communities in which such measures are
required) will exponentially decrease over time.

I. INTRODUCTION

Many studies of disease spread consider individuals
as the primary unit of analysis, with the reproductive
number—i.e. the number of people to whom an infected
individual will on average transmit the disease—playing
a central role. It is well known that an outbreak can be
stopped if interventions reduce this reproductive number
to less than 1.

Here, we consider the spread of disease among commu-
nities, mediated by its spread among individuals. Central
to our analysis is the analogous community-to-community
reproductive number R∗ [1, 2], i.e. the expected/average
number of other communities (including those that have
been previously infected) to which a single infected com-
munity will transmit the infection. Achieving R∗ < 1
will stop the outbreak.

Our analysis applies to any partition of a population
into a set of communities in which travel/social contact
within each community far exceeds that between them.
For the purposes of interventions, treating larger areas
as single communities means that social distancing mea-
sures will be homogeneously applied to larger areas at
once but also means that it is easier to achieve lower
travel rates between such areas.

Section II describes the model, section III estimates
parameters for COVID-19, including its doubling time
and basic reproductive number R0, and section IV con-
cludes by evaluating the effects of various interventions.
Key results include that (1) it is possible for a region
to eliminate COVID-19 if fast enough action is taken
in the communities therein, (2) the probability of one
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community infecting or re-infecting others exponentially
increases with the time-delay before the community im-
plements aggressive social distancing measures, and (3)
reductions in travel could play a decisive role in whether
or not COVID-19 is eliminated.

II. MODEL

The disease is modeled as being transmitted among
individuals within a community, with travel allowing the
disease to spread between communities. We define a com-
munity as infected if someone with the infection enters
the community. Let ic0 be a stochastic factor that roughly
corresponds to the initial foothold that the virus gains in
community c conditioning on an infected individual en-
tering the community, with ic0 = 0 corresponding to the
case in which no one was infected or a few people were in-
fected but the outbreak was contained (perhaps through
contact tracing and quarantine). If ic0 = 0, the outbreak
spreads no further within or between communities, and
so we can write ic(t) = 0, where ic(t) is the number of
active infections in community c as a function of time.

If the infection is not contained (i.e. ic0 6= 0), the num-
ber of active infections is modeled as growing with time t
at an exponential rate erct. After some time Tc (the de-
lay in response), the community implements aggressive
social distancing measures that cause the number of ac-
tive infections to decay as e−t/τc , where τc is the amount
of time that it takes for the number of active infections to
drop by a factor of e. Such exponential decrease will oc-
cur if the aggressive social distancing measures, together
with testing, contact tracing, and quarantine, can reduce
the reproductive number (R) of the virus below 1. The
basic reproductive number R0 (without intervention) is
estimated at approximately 2.5 (see section III); if the
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FIG. 1. The number of active infections in a community as a
function of time. After time Tc, aggressive social distancing
measures are implemented. They must remain in place for a
duration greater than τc(rcTc + ln ic0) (see eq. (2)). Thus, the
longer the community waits to enact the measures, the longer
the total amount of time they must remain in place.

spread of the virus is reduced by a factor greater than
R0, the number of infections will exponentially decay.1

Decreases in case counts in South Korea and China (see
section III) indicate that such a reduction is achievable.
The greater the reduction in R, the smaller the value of
τc and thus the faster the decrease in infections.2

The number of active infections ic(t) (see fig. 1) can
therefore be written as:

ic(t) =

{
ic0e

rct t ≤ Tc
ic0e

rcTce−(t−Tc)/τc t ≥ Tc
(1)

The social distancing measures can be lifted once there
are no remaining active infections in the community or
once all active infections have been contained. Solving
for ic(t) = 1 (assuming ic0 6= 0) yields a duration of the
aggressive social distancing measures of

τc(rcTc + ln ic0) (2)

plus some additional time at the end to ensure that there
are no remaining hidden cases. As the number of cases
becomes increasingly small, contact tracing may become
increasingly effective and hasten the drop of ic(t) to 0.
The probability that the number of infections will re-
bound after the social distancing measures are lifted (in

1 For instance, simulations from the Institute for Disease Modeling
show that a 75% contact reduction will result in an exponential
decrease in the number of active infections after a time-delay due
to the incubation periods and durations of existing infections [3].

2 For R < 1, R is related to τc by 1 =
∫∞
0 Rg(t)et/τcdt where g(t)

is the distribution of generation intervals [4] (see section III and
its footnotes for a description of generation intervals).

which case an additional phase of such measures will be
needed), as in Imperial College Report [5], will depend on
the rate of importation from other communities, which in
turn will depend on the community-to-community repro-
ductive number R∗, as described below. Despite the pos-
sibility of the virus being re-imported, as long as R∗ < 1
the number of infected communities will exponentially
decrease over time, since re-importation events are in-
cluded in R∗.

Each infected community c infects a currently unin-
fected community with a probability rate proportional
to the number of active infections ic(t) times the prob-
ability rate pc that an infected individual will travel to
an uninfected community. The number of new infected
communities spawned by community c can thus be mod-
eled as a Poisson process with rate ic(t)pc. This mod-
eling assumption overestimates the spread of the disease
to new communities by counting a single new community
that has been infected multiple times as multiple new in-
fected communities. Note that a single new community
that is infected by more than one other community is also
counted as multiple new infected communities. If most
communities are uninfected and the virus is being con-
tained, an infected community will infect on average less
than one other community, and thus there is a negligi-
ble probability that the same one will be infected twice.
However, if many communities are infected and/or the
number of infected communities is exponentially grow-
ing, this analysis serves only as an upper bound, as it
neglects saturation effects. In order for the disease to
be eliminated, the former scenario must be attained, and
thus the Poisson assumption does not affect our conclu-
sions.

Let pc0 be the per capita probability rate before time Tc
of individuals in community c traveling to other commu-
nities and pc1 be the probability rate afterwards (pc1 will
be less than pc0 if travel is discouraged and/or restricted
at the time at which social distancing measures are im-
plemented). The number of new communities that are
infected by community c will then be a Poisson random
variable with a mean of

ic0p
c
0

∫ Tc

0

erctdt+ ic0p
c
1e
rcTc

∫ ∞
0

e−t/τcdt (3)

= ic0

(
pc0
ercTc − 1

rc
+ pc1τce

rcTc

)
(4)

Taking the expected value over ic0 yields

Rc∗ = E[ic0]

(
pc0
ercTc − 1

rc
+ pc1τce

rcTc

)
(5)

where Rc∗ is the community-to-community reproductive
number for community c, i.e. the expectation of the num-
ber of communities that community c will infect if it is
infected. As the parameters rc, τc, Tc, E[ic0], pc0, and pc1
may differ from community to community, so will Rc∗. If
the interventions are fast enough and strong enough such



3

that R∗, the average value of Rc∗ over a set of communi-
ties with each community weighted by its probability of
being infected, is less than 1, then the outbreak will not
be self-sustaining within that set of communities.

A set of communities can thus exist in one of two
phases or regimes: a regime in which over time the num-
ber of infected communities exponentially decreases to
zero and a regime in which over time the number of in-
fected communities exponentially increases until it satu-
rates as an endemic disease or reaches burnout. Thus,
small deviations from the assumptions that led to the
formula for Rc∗ will not matter so long as they do not
change which regime the system is in, i.e. whether or not
R∗ < 1. It is this universality [6] that allows us to under-
stand whether or not any disease will spread, even if it
is not possible to precisely describe the details of disease
transmission and social connectivity.

III. PARAMETER ESTIMATION

In order to better understand the extent of the mea-
sures required to achieve R∗ < 1, we estimate the values
of the parameters in eq. (5).

The doubling time can vary from location to location,
but using the number of confirmed cases in China by date
of symptom onset (rather than by date of diagnosis) [7]
gives a doubling time of 3.04 days in the period leading
up to the Jan. 23 lockdown, which corresponds to r =
0.228 day−1 (see fig. 2).3

From this growth rate before the Jan. 23 lockdown,
the basic reproductive number R0 can be calculated
from the distribution of generation intervals [4].4 Em-
pirical data from various sources support a distribution
of generation intervals with a mean of approximately
4.0 to 4.7 days [12–17], which yield upper bounds of
R0 < e4.0r = 2.5 to R0 < e4.7r = 2.9. These upper
bounds assume all transmission occurs at the mean gen-
eration interval; the spread of generation intervals given
a fixed mean results in lower values for R0 given a fixed

3 Some studies estimate the doubling time for COVID-19 at ap-
proximately 7 days [8, 9], but even a 5 day doubling period is
implausibly long, given that in various countries, even with some
preventative measures, the number of infections has increased by
far more than a factor of 64 over 30 days [10]. Part of the dif-
ficulty in estimating the doubling time from the initial period
of transmission is that ‘super-spreader’ events may play an im-
portant role in the transmission process. The presence of super-
spreader events indicates that the transmission process may be
fat-tailed and therefore standard statistical approaches may un-
derestimate the rate of spread when the total number of cases is
still small [11].

4 Empirically, we generally observe the distribution of serial inter-
vals (the times between the onsets of symptoms in two successive
cases in a transmission chain) rather than the distribution of gen-
eration intervals (the times between two successive infections in a
transmission chain). The means of the two distributions should,
however, be the same.

N
um

be
r o

f c
on

fir
m

ed
 c

as
es

 

Date of onset of symptoms 
Jan 12 Jan 15 Jan 18 Jan 21 Jan 24 Jan 27 Jan 30 Feb 2 Feb 5

200

500

1000

2000

FIG. 2. Log plot of the daily number of confirmed cases in
China by date that these patients self-reported as the onset of
their symptoms. The best OLS linear fits to the natural log
of the number of cases are shown: For Jan. 11-23 (up until
the lockdown), the slope is 0.228 (R2 = 0.991, 95% confidence
interval [0.214, 0.242]), which corresponds to a doubling time
of 3.04 days. For Feb. 2-5 the slope is −0.145 (R2 = 0.999,
95% confidence interval [−0.160, −0.131]), which corresponds
to a halving time of 4.78 days. An exponential decline is not
seen until Feb. 2, likely because cases with onsets of symp-
toms between Jan. 24 and Feb. 1 include infections that
occurred both before and after the lockdown due to the wide
range of incubation periods. Data are from [7], which includes
cases diagnosed through Feb. 11. Not pictured: There is a
drop in cases with onsets of symptoms after Feb. 5, likely
due to many of those cases being diagnosed after Feb. 11.
It should be noted that the number of cases by date of di-
agnosis (not pictured) continues to increase through Feb. 4,
indicating that in general the date of diagnosis substantially
lags the date of onset of symptoms, which itself lags the date
of infection. Thus, a considerable amount of time can pass
before even an immediate decrease in the infection rate can
be observed.

r (or higher values for r given a fixed R0). For instance,
the serial interval data with a mean of 4.7 days best fit a
lognormal distribution (S.D.=2.9 days) [12], which yields
R0 = 2.5.5 This short mean generation time of 4.0 to 4.7
days may explain the difficulty of containing the virus
through contact tracing alone.

The values of τc that can be achieved depend on the
effectiveness of the social distancing measures. The data
from China (see fig. 2) indicate a halving time of as little
as 4.78 days is achievable, which corresponds to τ = 6.9

5 This value was obtained by approximating the generation inter-
val distribution by the serial interval distribution. It is consis-
tent with some previously reported R0 values that were based
on a mean generation interval overestimated as similar to that
of SARS (8.4 days)/MERS (7.6 days) [18] because the doubling
time was also overestimated by a similar factor.
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days.
E[ic0] is the expected “effective” number of people an

infected traveler will infect while visiting community c,
taking into account containment efforts.6 We estimate
E[ic0] = R0; the degree to which E[i0c ] differs from R0

depends on how likely a typical traveler is to transmit
the virus relative to a typical resident, as well as on the
effectiveness of contact tracing and other containment
efforts.

The value of pc0 depends on the frequency of travel
out of community c. There is some choice in how to
model the partition of a population into a set of com-
munities. In general, the larger the communities, the
lower the frequency of per capita travel out of them
but the more homogeneous the application of the ag-
gressive social distancing measures. Considering a set of
communities within the U.S. that are large enough such
that travel between the communities is predominantly by
flight yields a per capita travel rate of 0.004 flights out
of a community per person per day.7

The values above allow us to use eq. (5) to determine
Rc∗ as a function of the time-delay before aggressive social
distancing measures are enacted, as shown in fig. 3. Note
that the time-delay is measured from the time at which
exponential growth begins to occur—which could be as
early as the first infection transmitted within the com-
munity if containment is not successful—not the time at
which exponential growth is first measured.

IV. THE IMPACT OF INTERVENTIONS

Regardless of the values of the parameters, i.e. regard-
less of the current value of R∗, R∗ can be reduced by a
number of interventions:

• A reduction in travel from community c results in
a proportional (linear) reduction in Rc∗ through pc0
and pc1.

• Improvements in testing, contact tracing, and quar-
antine result in a proportional reduction in Rc∗
through E[ic0]. Such improvements also reduce rc
and τc.

• The preemptive reduction of large events such as
conferences (as well as general social distancing)

6 For instance, if the outbreak is contained such that exponential
growth never occurs, the effective number of people infected by
the traveler is zero, even if the traveler did infect some commu-
nity members.

7 This estimate is obtained by dividing the 1.01 billion total pas-
sengers traveling by plane to, from, or within the U.S. in 2018 [19]
by the 2018 U.S. population and the number of days in 2018, and
then also dividing by 2 so that only flights out of and not into a
community are counted. Using this estimate for pc0 assumes that
the probability that an infected individual will travel equals that
of the general public.

0 5 10 15 20 25 30
Tc (days)

1

R*
c

Unstable	regime:	
number	of	infected	
communities	increases	

Stable	regime:	
number	of	infected	
communities	decreases	

No	travel	reduction	

Responsive	travel	reduction		

Preemptive	travel	reduction		

FIG. 3. Dependence of Rc∗ (the average number of commu-
nities to which community c will transmit the disease) on Tc
(the time-delay before the social distancing measures are en-
acted). If R∗ (a weighted average of Rc∗) is less than 1, the
number of infected communities will exponentially decrease
and the disease will be eliminated (and the smaller R∗ is, the
faster it will be eliminated); otherwise, the number of infected
communities will increase until saturation.
Parameter values: All curves use E[ic0] = 2.5, τc = 6.9
days, and rc = .228 day−1. Solid curve: no travel reduc-
tion, pc0 = pc1 = 0.004 day−1. Dashed curve: 4-fold (respon-
sive) travel reduction after time Tc, p

c
0 = 0.004 day−1 and

pc1 = 0.001 day−1. Dotted curve: general (preemptive) 4-fold
travel reduction: pc0 = pc1 = 0.001 day−1.

reduces the probability of a super-spreader event
as well as general transmission, reducing both E[ic0]
and rc.

• Reductions in rcTc not only exponentially reduce
Rc∗ but also linearly reduce the amount of time for
which social distancing measures must remain in
place.

• Augmenting social distancing measures (after time
Tc) decreases τc, which results in a proportional
decrease in both Rc∗ and the time for which the
distancing measures must remain in place.

We conclude with a few comments. First, without
the timely implementation of aggressive social distanc-
ing measures, restricting travel from infected communi-
ties serves only to delay the spread of the outbreak. But
when a reduction in travel is coupled with the social dis-
tancing measures, the travel reduction will not only delay
the spread of the outbreak but will also in some cases be
the deciding factor in determining whether or not the
outbreak is eliminated. And if R∗ < 1 can be achieved
without reducing travel, travel reductions can, by fur-
ther reducing R∗, greatly decrease the duration of the
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outbreak (and therefore also decrease the total number
of illnesses and deaths).

Second, the most important and easiest parameter to
control is Tc: the amount of time delay between the
time the infection takes hold in the community and the
time that aggressive social distancing measures are im-
plemented. Since Rc∗ grows exponentially with Tc, it is
of paramount importance that communities and govern-
ments act as soon as possible. Once the infection has
taken hold in a community, exponential growth ensures
that it is only a matter of time before the infection be-
comes widespread. Thus government action is inevitable,
and delaying action not only linearly increases the ex-
pected total amount of time for which the distancing
measures will need to remain in place but also exponen-
tially increases the probability that another community
will become infected or re-infected.

Third, because Rc∗ depends exponentially on Tc, each
additional increase in Tc becomes increasingly costly. In
other words, the longer a community has already waited
to take aggressive social distancing measures, the more
important it becomes to avoid further delay. It is im-
portant to note, however, that there is no advantage
to delaying at all: immediately implementing aggressive
social distancing measures as soon as there is evidence
that the disease is actively spreading within the com-
munity will reduce the total amount of time for which
such measures will need to be implemented, exponen-

tially reduce the number of infections within the commu-
nity, and exponentially reduce the probability of infecting
or re-infecting another community. While the risk to in-
dividuals may be low in the early stages of a community
outbreak, the collective risk at the community and global
levels is extremely high.

Finally, just as transmission within a community is an
exponential process in which the need for immediate ac-
tion is not always apparent (due to a deceptively small
number of initial cases), the transmission between com-
munities is also such an exponential process. At first the
number of infected communities is deceptively small, but
without rapid action this number exponentially grows.
The sooner a set of communities decides to adopt a pro-
tocol that reduces R∗ below 1, the shorter the amount
of time between the adoption of the protocol and the
elimination of the disease.

ACKNOWLEDGMENTS

This material is based upon work supported by the
National Science Foundation Graduate Research Fellow-
ship Program under Grant No. 1122374 and the Hertz
Foundation. A.F.S. thanks Maxim Rabinovich for help-
ful early discussions about the model. We thank Edward
Kaplan and Philip Welkhoff for helpful comments.

[1] Ball, F., Mollison, D. & Scalia-Tomba, G. Epidemics with
two levels of mixing. The Annals of Applied Probability 46–89
(1997).

[2] Colizza, V. & Vespignani, A. Invasion threshold in heteroge-
neous metapopulation networks. Phys. Rev. Lett. 99, 148701
(2007).

[3] Klein, D., Hagedorn, B., Cliff Kerr, H. H., Bedford, T. & Fa-
mulare, M. Working paper - model-based estimates of COVID-
19 burden in King and Snohomish counties through April 7,
2020. Institute for Disease Modeling (2020).

[4] Wallinga, J. & Lipsitch, M. How generation intervals shape the
relationship between growth rates and reproductive numbers.
Proceedings of the Royal Society B: Biological Sciences 274,
599–604 (2007).

[5] Ferguson, N. M. et al. Impact of non-pharmaceutical inter-
ventions (NPIs) to reduce COVID-19 mortality and healthcare
demand. Imperial College COVID-19 Response Team (2020).

[6] Siegenfeld, A. F. & Bar-Yam, Y. An introduction to complex
systems science and its applications (2019). arXiv:1912.05088.

[7] Wu, Z. & McGoogan, J. M. Characteristics of and important
lessons from the coronavirus disease 2019 (COVID-19) out-
break in China: Summary of a report of 72314 cases from the
Chinese Center for Disease Control and Prevention. JAMA
(2020).

[8] Wu, J. T., Leung, K. & Leung, G. M. Nowcasting and fore-
casting the potential domestic and international spread of the
2019-nCoV outbreak originating in Wuhan, China: a mod-
elling study. The Lancet 395, 689–697 (2020).

[9] Li, Q. et al. Early transmission dynamics in Wuhan, China of
novel coronavirus–infected pneumonia. New England Journal
of Medicine (2020).

[10] Worldometer. COVID-19 coronavirus outbreak.

https://www.worldometers.info/coronavirus/. Accessed
2020-3-17.

[11] Taleb, N. N. How much data do you need? An operational,
pre-asymptotic metric for fat-tailedness. International Journal
of Forecasting 35, 677 – 686 (2019).

[12] Nishiura, H., Linton, N. M. & Akhmetzhanov, A. R. Serial
interval of novel coronavirus (COVID-19) infections. Interna-
tional Journal of Infectious Diseases (2020).

[13] Du, Z. et al. The serial interval of COVID-19 from publicly
reported confirmed cases. medRxiv (2020).

[14] Zhao, S. et al. Estimating the serial interval of the novel coro-
navirus disease (COVID-19): A statistical analysis using the
public data in Hong Kong from January 16 to February 15,
2020. medRxiv (2020).

[15] You, C. et al. Estimation of the time-varying reproduction
number of COVID-19 outbreak in China. Available at SSRN
3539694 (2020).

[16] Tindale, L. et al. Transmission interval estimates suggest pre-
symptomatic spread of COVID-19. medRxiv (2020).

[17] Ganyani, T. et al. Estimating the generation interval for
COVID-19 based on symptom onset data. medRxiv (2020).

[18] Liu, Y., Gayle, A. A., Wilder-Smith, A. & Rocklöv, J. The re-
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