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Abstract

We study a novel multi-strain SIR epidemic model with selective immunity by

vaccination. A newer strain is made to emerge in the population when a preexisting

strain has reached equilbrium. We assume that this newer strain does not exhibit

cross-immunity with the original strain, hence those who are vaccinated and recovered

from the original strain become susceptible to the newer strain. Recent events involving

the COVID-19 virus demonstrates that it is possible for a viral strain to emerge from a

population at a time when the influenza virus, a well-known virus with a vaccine readily

available for some of its strains, is active in a population. We solved for four different

equilibrium points and investigated the conditions for existence and local stability. The

reproduction number was also determined for the epidemiological model and found to

be consistent with the local stability condition for the disease-free equilibrium.

Introduction 1

More recently, the anti-vaccination movement has been gaining traction in different 2

parts of the world. Individuals who do not advocate vaccination commonly cite reasons 3

such as fear of adverse side-effects, perceived low efficacy of vaccines, and perceived low 4

susceptibility to diseases amongst others [1–3]. The drop in numbers in vaccination has 5

led to outbreaks of diseases such as mumps [4–6] that could have been prevented by 6
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vaccination. Another example would be measles, which was declared eliminated in the 7

United States back in 2000, has had outbreaks reported in the country since 2008 [10]. 8

According to the Centers for Disease Control and Prevention (CDC), the reemergence is 9

due to the presence of unvaccinated individuals and their interaction with other people 10

who got the disease from other countries such as Israel, Philippines, and 11

Micronesia [8–10]. According to the CDC, 1,282 individual cases of measles have been 12

confirmed in 31 states in 2019, the highest since 1994. [10] 13

Another way for a disease to reemerge is through change in its antigenic properties, 14

which is the case for the influenza virus. The influenza virus can mutate in two ways: 15

through antigenic shift or antigenic drift [11–13]. Antigenic drift is defined as the result 16

of frequent mutations of the virus, which happens every 2-8 years. On the other hand, 17

the antigenic shift occurs around thrice every one hundred years and only happens with 18

influenza A viruses [13]. Although more unlikely to happen than the antigenic drift, the 19

antigenic shift involves genetic reassortment which can make it feasible to create a more 20

virulent strain than the original strain [13–15]. 21

One way to model the dynamics of an infectious disease is through compartmental 22

systems. This approach involves separating the population into multiple components 23

and describing infection and recovery as transitions between the set components. The 24

simplest compartmental model to describe a viral infection is called the standard 25

Susceptible-Infected-Removed (SIR) model, the dynamics of which has been studied in 26

different references [16–19]. The SIR model separates the population into three 27

compartments: the susceptible (S), infected (I), and removed (R) compartments. The 28

susceptible compartment is comprised of individuals that are healthy but can contract 29

the disease. The infected compartment is comprised of individuals who have already 30

contracted the disease. Lastly, the removed compartment is comprised of individuals 31

who have recovered from the disease. Individuals who have recovered from a certain 32

strain of a viral infection are likely to be immune to infection of the same strain [20, 21], 33

which is why the SIR model is used to model viral infections. SIR models can provide 34

insight on the dynamics of the system and has been used to model different influenza 35

virus strains such as the swine and avian flu focusing on the spatio-temporal evolution 36

and equilibrium dynamics of the system for both disease free and endemic equilibrium 37

cases [22–27]. 38
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One important parameter resulting from the SIR models is the reproduction number. 39

The reproduction number of an infectious disease is defined as the expected number of 40

secondary infections caused by a single infected individual for the whole duration that 41

they are infectious [28,29]. The reproduction number R0 describes how infectious a 42

disease can be, and can also be used as a threshold parameter to determine whether a 43

disease would survive in a healthy population [29]. 44

Modifications of the SIR model have been used to model mutations and changes in 45

an infectious virus such as influenza (flu). Yaari et al. [30] used a discrete time 46

stochastic susceptible-infected-removed-susceptible (SIRS) model to describe 47

influenza-like illness in Israel accounting for weather and antigenic drift by adding terms 48

that account for weather signals and lost of immunity. Finkenstadt et al. [31] created a 49

predictive stochastic SIRS model for weekly flu incidence accounting for antigenic drift. 50

Roche et al. [32] used an agent-based SIR model to describe the spread of a multi-strain 51

epidemic, while Shi et al. [33] used the same approach and empirical data from Georgia, 52

USA to model an influenza pandemic that incorporates viral mutation and seasonality. 53

However, these approaches have been stochastic in nature, which does not provide 54

information regarding the stability and existence of equilibrium points in an infected 55

population. The abovementioned articles also do not take vaccination and the presence 56

of other strains into account in their models. Consequently, one can model the presence 57

of a mutated virus spreading into a population using a multi-strain model, which was 58

used in the following studies for avian flu [23,24]. These models study the birds and the 59

humans as one population in an SI-SIR model, where the first SI corresponds to the 60

compartments for the avian species. However, the two infected compartments in this 61

model do not cross since they are separated by species. Casagrandi et al. [25] 62

introduced a non-linear deterministic SIRC epidemic model to model the influenza A 63

virus undergoing an antigenic drift. The SIRC model is a modified SIR model with an 64

additional compartment, C, for individuals that receive partial immunity from being 65

infected by one of the present strains. Although able to account for cross-immunity 66

between strains, the model does not include the effect of vaccination into the system. 67

Papers which have considered vaccination only consider one strain propagating within 68

the population [34–37]. There has been very few studies that investigate the effect of 69

vaccination in the presence of multiple strains like Wilson et al. did for Hepatitis B [38], 70
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which did not investigate the equilibrium model in detail. 71

In the case of the influenza virus, it is possible to have multiple strains exist in a 72

population, but only have vaccine for a certain strain that will not be effective for 73

others. The fact that viruses undergo changes regularly indicates that people who have 74

recovered from the virus, as well as individuals who have been vaccinated for a specific 75

strain of the virus, can be susceptible again to a newly-emerged strain. It is important 76

to determine the conditions in which a newly emerged strain and a common strain that 77

has a means of immunity will coexist in a population. 78

Another apt example for emerging diseases is the emergence of the COVID-19 virus 79

in 2019 [39,40]. As of March 17, 2020, there have been 167,545 confirmed cases of 80

COVID-19 in 150 different countries that has led to 6,606 deaths since it was declared 81

as an outbreak in January 2020 according to the WHO situation report [41]. At the 82

time that this paper is being written, there are papers that have modeled the dynamics 83

of the virus using different modifications of the SIR model. Zhou et. al. [42] included 84

compartments corresponding to suspected cases, which consists of the individuals that 85

show similar symptoms but are not confirmed cases, and indirectly infected individuals. 86

Pan et. al. [43] used a modified SEIR model which included asymptomatic and 87

treatment compartments for occurrences in Wuhan, China, the city where the outbreak 88

started, and outside of Wuhan. Maier and Brockmann [44] included a separate 89

compartment for quarantined individuals in the SIR model to account for the 90

containment measures applied by the public for the virus. They then estimated the 91

reproduction number of COVID-19 in different locations in China. It is notable that 92

this virus emerged during the flu season [45] and had managed to infect a lot of 93

individuals around the world in such a short time even when the threat of the influenza 94

virus still exists. This paper will give researchers insight about the conditions in which 95

one strain can dominate another or if two different strains can coexist in a population, 96

given that one of these strains has a vaccine available. This paper introduces a model 97

that approaches the lack of cross-immunity across different viral strains by introducing 98

new compartments to the SIR with vaccination model. This enables us to introduce 99

acquired immunity through vaccination and cross-immunity between strains in a simple 100

compartmental model and investigate the existence and stability of the resulting 101

equilibrium points. 102
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We aim to model the dynamics of an epidemic where a new emergent strain of an 103

existing virus affects a closed population. The existing virus will be modeled using a 104

modified SIR model with vaccination, however we assume that the vaccine does not 105

provide immunity to the newer strain. The equilibrium points were determined for the 106

system based on the transition equations and local stability was investigated for each 107

point. Once the stability conditions have been established, the epidemic model was 108

simulated using R [46] to check the steady-state behavior of the surveillance data for 109

each compartment of the population. The values for the transmission and removal 110

coefficients were dictated by the existence and stability conditions for each equilibrium 111

point during the simulation. The reproduction number for the epidemic was also 112

determined for this modified SIR epidemic model and compared to existing SIR models. 113

Modelling the emergence of the new strain 114

This section describes how the emergence of the new strain of the virus will be 115

incorporated into the model. This emergence can either be due to mutation, antigenic 116

drift/shift, or an introduction of a different strain from an external source. Assume that 117

initially, there is only one strain of the virus that exists in the population. Immunity 118

can be achieved either by recovering from the infection or getting vaccinated. After 119

equilibrium has been established with the original strain, the new strain is introduced to 120

the population. The new strain can affect individuals previously infected by the original 121

strain and those who are vaccinated against the original strain; the only way to be 122

immune to the mutated strain is to recover from the infection of the new strain. The 123

next two subsections will explain the dynamics before and after the emergence of the 124

mutated strain. 125

Before emergence 126

The system starts off as a population exposed to the original strain of the virus. The 127

spread of the virus is described by a modified SIR model that accounts for 128

vaccination [34]. The vaccinated members of the population can be treated as members 129

of an additional compartment that do not interact with the infected individuals. This 130

means that the modified SIR model will have four compartments instead of three, which 131
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are given by: 132

� Susceptible S: Individuals in this compartment are healthy, but are susceptible to 133

be infected by the disease since they are not vaccinated. 134

� Vaccinated V: Individuals that were given a vaccine, making them immune to the 135

disease. This also includes individuals with natural immunity to the disease. 136

� Infected I1: Individuals that are infected by the disease. 137

� Removed R: Individuals that were infected but are now immune to the disease 138

upon recovery. Because of their immunity, the members of this compartment do 139

not interact with the remaining compartments. 140

Let S, V , I1, and R be the respective number of individuals in the susceptible, 141

vaccinated, infected, and removed compartments. The transition between the 142

compartments is summarized by the compartmental diagram shown in Fig 1. 143

Fig 1. Compartment diagram with transitions for the SIR with vaccination
model. The arrows show the transitions between the compartments, as
well as the exits due to natural death. The transition rates are shown next
to the arrows.

For this model, µ be the natural birth rate of the population, and consequently the 144

natural death rate of the population to keep the population size constant. It is assumed 145

that the individuals are vaccinated at birth with a vaccination rate p. β is the standard 146

incidence transmission coefficient, which assumes that the infection occurs based on how 147

many susceptible individuals interact with the infected [47]. For standard incidence, the 148

contact rate between infected and susceptible individuals is constant over all infected 149

individuals regardless of the population size [48]. The removal rate coefficient for the 150

infected individuals is denoted by γ. 151

The dynamics of the system is described by ordinary differential equations that 152

describe the rate of change in individuals belonging to a specific compartment. For any 153

number of individuals in a general compartment C, the rate of change of membership in 154

the compartment can be expressed by the following equation: 155

dC

dt
= (rate of input)− (rate of output) (1)
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where the rates are denoted in the compartment diagram shown in Fig 1. For the 156

susceptible compartment S, the rate of increase comes from the birth of new members 157

of the population who are not vaccinated, which is given by (1− p)µN . Meanwhile, 158

susceptible individuals can either get infected at a rate of
βSI1
N

or die due to natural 159

causes at a rate µS. In equation form, this translates to 160

dS

dt
= (1− p)µN − βSI1

N
− µS (2)

For the infected compartment I1, the number of infected individuals increase when 161

susceptible individuals get infected at a rate
βSI1
N

. The infected individuals can either 162

die at a rate of µI1 or get removed and not interact with the system again at a rate γI1 163

when they recover. Translating this to an ordinary differential equation yields 164

dI

dt
= βSI1/N − γI1 − µI1 (3)

Unlike the members of the susceptible compartment, the individuals in the 165

vaccinated compartment will not get infected by the virus. This implies that the 166

changes in the number of vaccinated individuals can only be due to the rate of 167

vaccination in the population and death due to natural causes. Using a similar 168

approach, the rate equation for the vaccinated compartment V is given by 169

dV

dt
= pµN − µV (4)

Since the population is closed, the number of individuals in the removed 170

compartment can be expressed as R = N − S − I1 − V . This implies that solving Eqs 171

2–4 is enough to describe the system completely at any time t. Without loss of 172

generality, Eqs 2–4 can be normalized with respect to the total population, N , so that 173

the equations would be invariant to population scaling. This yields the following 174

equations 175
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ds

dt
= (1− p)µ− βsi1 − µs (5)

di1
dt

= βsi1 − (γ + µ)i1 (6)

dv

dt
= (p)µ− µv (7)

where (s, i1, v) = (S/N, I1/N, V/N) and r = R/N = N(1− s− i1 − v) are functions 176

of time t. Note that plausible solutions only exist when s(t), i(t), v(t), r(t) ≥ 0. 177

To achieve equilibrium, there should not be any changes in the proportion for each 178

compartment, which implies that Eqs 5-7 should be zero. If Eq 6 is zero, then two 179

conditions emerge: i1 = 0 or i1 6= 0. The first case corresponds to the disease-free 180

equilibrium (DFE) point (s(t), i1(t), v(t)) = (1− p, 0, p). The latter case corresponds to 181

the endemic equilibrium point (s∗, i∗1, v
∗). If i1 6= 0, then the following condition should 182

be satisfied 183

βs∗ − (γ + µ) = 0 (8)

Solving for s∗, we get 184

s∗ =
(γ + µ)

β
(9)

We can use this result to solve for i∗1 in Eq 6. The resulting endemic equilibrium 185

point (s∗, i∗1, v
∗) is given by, 186

(s∗, i∗1, v
∗) = (

γ + µ

β
,
µ[β(1− p)− γ − µ]

β(γ + µ)
, p) (10)

According to Chauhan et. al [34], the reproduction number of the disease for the 187

vaccinated SIR model is given by Rv = R0(1− p) = β(1− p)/(γ + µ). This means that 188

the endemic equilibrium point will be asymptotically stable if Rv > 1, while the DFE 189

will be asymptotically stable if Rv < 1. The reproduction number will be discussed in 190

the section “Reproduction Number”. 191
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Emergence of new strain 192

Suppose that at time T when equilibrium has been achieved in the SIR with vaccination 193

model, a new strain of the disease is introduced to the population. This new strain will 194

have a different transmission coefficient β′ and removal rate coefficient γ′. This results 195

to the existence of another compartment I2 for those who are infected with the new 196

strain, which we will refer to as Disease 2. 197

The existence of the newer strain will be constrained by the following assumptions: 198

� Since the vaccine is assumed to only work on the original strain, the vaccinated 199

and the previously removed individuals are susceptible to the newer strain. 200

� Once infected by the newer strain, the individual cannot be infected by the 201

original strain. The individuals infected by the newer strain will be removed from 202

the population or die. 203

� Individuals infected by the original disease have to be removed first before being 204

susceptible to the newer strain; meaning that there is no chance of super-infection 205

(I1 → I2) [28]. 206

This means that the number of compartments that need to be monitored will increase 207

from four to six, with the addition or modification of the following compartments: 208

� R1: Individuals who have recovered from the original strain but are now 209

susceptible to the newer strain. 210

� I2: Individuals who are infected by the newer strain. 211

� R2: Individuals who were previously infected by the newer strain but have now 212

been removed due to recovery or treatment. 213

The members of the vaccinated compartment, which was initially an isolated 214

compartment, can now be infected by the new strain. The same can be said for the 215

individuals who have recovered from the original strain. For mathematical simplicity, 216

the infection coefficients for the new strain are assumed to be the same for the 217

susceptible, vaccinated, and initially recovered compartments. 218

These assumptions and the increase in number of compartments also introduce the 219

possibility of new transitions between compartments as shown in Fig 2: 220
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Fig 2. Compartment diagram for the emerging disease model. The
transitions between compartments, together with the corresponding rates,
are described by the arrows directed in and out of each compartment.

As in Chauhan et. al’s [34] work, the standard incidence was used to model infection 221

of the susceptible individuals for the newer strain. Based on Eq 1 and the compartment 222

diagram in Fig 2, the dynamics of the system can be expressed in terms of the following 223

ordinary differential equations: 224

ds

dt
= (1− p)µ− βsi1 − β′si2 − µs (11)

di1
dt

= βsi1 − (γ + µ)i1 (12)

dv

dt
= (p)µ− β′vi2 − µv (13)

dr1
dt

= γi1 − β′ri2 − µr (14)

di2
dt

= β′(s+ v + r)i2 − (γ′ + µ)i2 (15)

and r2 = 1− s− i1 − v − r1 − i2. Similar to the simple SIR with vaccination 225

scenario, the solution for the variables should follow the constraint 226

s(t), i1(t), v(t), i2(t), r1(t), r2(t) ≥ 0 for any time t. 227

To solve for the equilibrium points of the system, Eqs 11-15 should be equal to zero. 228

Wolfram Mathematica [49] was used to obtain solutions for the system of equations, 229

which are the following: 230

1. DFE: (s, i1, v, r1, i2) = (1− p, 0, p, 0, 0) 231

2. Original strain equilibrium: 232

(s, i1, v, r1, i2) =

(
γ + µ

β
,
µ[β(1− p)− γ − µ]

β(γ + µ)
, p,

γ[β(1− p)− γ − µ]

β(γ + µ)
, 0

)
233

3. New strain equilibrium: 234

(s, i1, v, r1, i2) =

(
(1− p)(γ′ + µ)

β′
, 0,

p(µ+ γ′)

β′
, 0,

µ[β′ − (γ′ + µ)]

β′(γ′ + µ)

)
235

4. Endemic equilibrium: (s, i1, v, r1, i2) = (s∗, i1
∗, v∗, r1

∗, i2
∗) 236

The second equilibrium point corresponds to the scenario where only the original 237

strain is present. Applying the constraint for the plausible solution, the original strain 238

equilibrium exists if 239
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β(1− p)− γ − µ > 0→ Rv > 1 (16)

where Rv = R0(1− p) = β(1− p)/(γ + µ) is the reproduction number of the original 240

strain for the SIR model with vaccination [34]. 241

The third equilibrium corresponds to the scenario where only the new strain survives. 242

For this equilibrium point to exist, the following condition should be satisfied: 243

β′ − γ′ − µ > 0→ R′0 > 1 (17)

where R′0 = β′/(γ′ + µ) is the corresponding reproduction number of the newer 244

strain if modeled using a standard SIR model. 245

Equilibrium point 4 is the endemic equilibrium where 246

s∗ =
γ + µ

β
(18)

i1
∗ =

µ[β(1− p)(γ′ + µ)− β′(γ + µ)]

(γ + µ)[β(γ′ + µ)− µβ′]
(19)

v∗ =
p(γ + µ)[β(γ′ + µ)− µβ′]

ββ′(γ + pµ)
(20)

r∗ =
γ[β(1− p)(γ′ + µ)− β′(γ + µ)]

ββ′(γ + pµ)
(21)

i2
∗ =

µ[(γ + µ)(µβ′ − β(γ′ + µ)) + ββ′(γ + pµ)]

(γ + µ)β′[β(γ′ + µ)− µβ′]
(22)

For the endemic equilibrium to exist, the following condition should be satisfied: 247

R0(1− p) > R′0 (23)

The next section will discuss the local stability of the four equilibrium points. 248

Stability analysis and simulations 249

After solving for the equilibrium points, we need to determine the conditions in which 250

these points are stable. These conditions dictate which equilibrium will describe the 251

steady state behavior of the system. The local stability of the equilibrium points will be 252
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determined based on the eigenvalues of its Jacobian evaluated at a specific equilibrium 253

point [17]. Let C0 = (C1, C2, ...)
T be the vector of the population number of each 254

compartment. For a general compartment Ci, the components of the Jacobian, Jij can 255

be obtained using the following equation: 256

(Jij)|C=C0 =
∂

∂Ci

(
dCj

dt

)∣∣∣∣
C=C0

(24)

For our system, the Jacobian of the system can be obtained by applying Eq 25 to 257

Eqs 11-15. For any equilibrium point, (s̄, ī1, v̄, r̄, ī2) yields 258

J =



−βī1 − β′ī2 − µ −βs̄ 0 0 −β′s̄

βī1 βs̄− (γ + µ) 0 0 0

0 0 −β′ī1 − µ 0 −β′v̄

0 γ 0 −βī2 − µ −β′r̄

β′ī2 0 β′ī2 β′ī2 β′(s̄+ v̄ + r̄)− (γ′ + µ)


Local stability is attained when the eigenvalues of the Jacobian, λ, are negative or 259

have negative real parts. In other words, the solutions for λ such that det(J − 1λ) = 0 260

should be negative or have negative real parts if the solution is complex [50]. 261

Simulations will then be used to check if the system approaches the equilibrium 262

point. As described in the previous sections, the system starts as a one-strain SIR 263

model with vaccination as discussed in the section “Modelling the emergence of the new 264

strain” with the following values for the parameters: µ = 0.2 (birth/death rate) and 265

p = 0.7 (vaccination rate). For this simulation, the time is discretized in terms of the 266

average time between compartment interactions, i.e. the average time it takes for 267

individuals to transition from one compartment to another. At time t = 0, we allow 1 % 268

of the population to be infected by the original strain and the system is made to evolve 269

in time using the values of infection coefficients β and removal rate γ that satisfies the 270

respective requirements for the Reproduction number for each equilibrium point to 271

exist.. The new (mutated) strain was made to emerge at time point t = 100, when we 272

expect the system to be in equilibrium. The new strain is introduced to the population 273

by infecting 1% of the susceptible population with the newer strain. The evolution will 274
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then be dictated by the modified multi-strain SIR model developed in Section 275

”Modelling the emergence of the new strain” using values for β′ and γ′ that satisfy the 276

conditions for R′0 for each equilibrium point to exist. 277

Disease free equilibrium (DFE) 278

The Jacobian for the DFE can be obtained by substituting the respective values to 279

(s̄, ī1, v̄, r̄, ī2) in the expression for the Jacobian. This yields: 280

J =



−µ −β(1− p) 0 0 −β′(1− p)

0 β(1− p)− (γ + µ) 0 0 0

0 0 −µ 0 −β′p

0 γ 0 −µ 0

0 0 0 0 β′ − (γ′ + µ)


(25)

and the corresponding characteristic equation is 281

(λ− µ)3(λ− β(1− p) + γ + µ)(λ− β′ + γ′ + µ) = 0. This means that the eigenvalues are 282

λ = −µ,−µ,−µ, β(1− p)− γ − µ, β′ − γ′ − µ. Recall that for the DFE to be locally 283

asymptotically stable, all eigenvalues should have negative real parts. Hence, the 284

following conditions should hold: 285

β(1− p)
γ + µ

= R0(1− p) < 1 (26)

β′

γ′ + µ
= R′0 < 1 (27)

This is consistent with the local stability of the disease-free equilibrium for the 286

regular standard incidence SIR and the SIR with vaccination models [34]. The 287

conditions stated in Eqs 26 and 27 give us the threshold conditions of the transmission 288

and removal coefficients for this model, which is related to the basic reproduction 289

number of the model to be discussed in “Reproduction Number” section. 290

Eqs 26 and 27 also imply that if the system is in DFE before the emergence and the 291
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reproduction number of the emergent disease is less than that of the original disease, 292

then the system will remain in DFE in the long run. Fig 3 shows the simulation of the 293

DFE using parameters that satisfy Eqs 26 and 27. Note that the plot legends will be 294

the same for the succeeding surveillance plots for the other equilibrium plots. The plot 295

shows that the proportion of vaccinated individuals (v), denoted by the solid blue line, 296

and the proportion of susceptible individuals (s), denoted by the solid black line, 297

remained relatively constant at long times. Since the vaccination rate is set to be 0.7, 298

we expect more individuals to be vaccinated than susceptible. Due to the emergence of 299

the new strain at time point t=100, there appears to be a slight dip in s but it quickly 300

stabilized to the disease free equilibrium. 301

Fig 3. Surveillance data of the compartments for the disease free
equilibrium. The reproduction number of the original strain is R0 = 0.67,
while the reproduction number of the emergent strain is R′0 = 0.4. The
vaccination rate used is 0.7.

Disease 1 equilibrium (Original strain) 302

For this equilibrium scenario, i1 6= 0 and since Eq 12 is equal to zero then 303

βs1 − (γ + µ) = 0 (28)

where s1 is the equilibrium value corresponding to the susceptible compartment for the 304

Disease 1 equilibrium. We can calculate the resulting Jacobian for Equilibrium point 2 305

by substituting the corresponding values to the Jacobian equation given in Eq 25. The 306

Jacobian is then given by, 307



−µ[β(1− p)
(γ + µ)

−(γ + µ) 0 0 −β
′(γ + µ)

β
µ[β(1− p)− γ − µ]

(γ + µ)
0 0 0 0

0 0 −µ 0 −β′p

0 γ 0 −µ γ[β(1− p)− γ − µ]

(γ + µ)

0 0 0 0 β′(s1 + v1 + r1)− γ′ − µ


where s1, v1, r1 are the respective equilibrium values for the susceptible, vaccinated, and 308
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the initially recovered compartments for the Disease 1 equilibrium. The resulting 309

eigenvalues are (−µ,−µ, β′
[
µ

β
+
γ + µp

γ + µ

]
− (γ′ + µ), λ±), where 310

λ± = −
(

1

2

)µβ(1− p)
γ + µ

±

√(
µβ(1− p)
γ + µ

)2

− 4µ(β(1− p)− γ − µ)

 (29)

The discriminant of λ± can dictate whether the eigenvalues will have a negative real 311

part. If the discriminant is negative or zero, then the eigenvalues will be negative. If the 312

discriminant is positive, recall that for the system to not go to the DFE, R0(1− p) > 1. 313

This means that 314

[
µβ(1− p)
γ + µ

]2
>

[
µβ(1− p)
γ + µ

]2
− 4µ(β(1− p)− γ − µ) (30)

which ensures that λ± is negative when R0(1− p) > 1. When R0(1− p) < 1, λ± 315

would have a positive real part which makes the equilibrium point unstable. This 316

suggests that this equilibrium point will not be stable if the system was not already in 317

endemic equilibrium with Disease 1. 318

For the third eigenvalue to be negative, 319

R′0 < R0

[
γ + µ

µ+R0(γ + pµ)

]
< R0(1− p) (31)

When these conditions are satisfied, then the Disease 1 equilibrium point is locally 320

asymptotically stable. These conditions also imply that this equilibrium point can only 321

be achieved if the system before the emergence is already in endemic equilibrium with 322

Disease 1. Fig 4 shows the simulation of the system using parameters that satisfy Eq 31. 323

Unlike the DFE case, the proportion of individuals infected by the original strain, 324

denoted by the red dashed line, along with the recovered individuals, denoted by the 325

green dashed line, increase up to their respective equilibrium values. This is 326

accompanied by the decrease in susceptible individuals in the population. 327

Fig 4. Surveillance data of the compartments for Disease 1 equilibrium.
The reproduction number of the original strain is R0 = 10, while the
reproduction number of the emergent strain is R′0 = 1.11. The vaccination
rate used is 0.7.

At t = 100, the number of individuals infected by the newer strain, denoted by the 328
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pink dashed line, was shown to have a small spike, but quickly went to zero while the 329

number of individuals infected by the original strain remained relatively unchanged. 330

Note that the reproduction number of the emergent strain is 1.11 which is greater than 331

one, meaning the emergent strain will be able to survive on its own in this population. 332

This implies that the new strain is not strong enough to infect enough people to 333

dominate over the original strain. 334

Disease 2 equilibrium (Newer strain) 335

For this equilibrium scenario, i2 6= 0 and thus for Eq 15 to be zero, we have to have 336

β′(s̄2 + v̄2 + r̄2)− (γ′ + µ) = 0 (32)

where s̄2, v̄2, and r̄2 are the respective equilibrium values of the susceptible, 337

vaccinated, and initially recovered compartments corresponding to the Disease 2 338

equilibrium. The resulting Jacobian, J , for the equilibrium where only the mutated 339

disease exists is given by 340

− µβ′

γ + µ
−β(1− p)(γ′ + µ)

β′
0 0 (1− p)(γ′ + µ)

0
β(1− p)(γ′ + µ)

β′
− (γ + µ) 0 0 0

0 0 − µβ′

γ + µ
0 −p(µ+ γ′)

0 γ 0 − µβ′

γ + µ
0

µ[β′ − γ′ − µ]

γ′ + µ
0

µ[β′ − γ′ − µ]

γ′ + µ

µ[β′ − γ′ − µ]

γ′ + µ
0


341

The corresponding characteristic equation is given by, 342

(
λ+

µβ′

γ + µ

)2 [
λ− β(1− p)(γ′ + µ)

β′
+ (γ + µ)

]
×
[
λ2 +

µβ′

γ′ + µ
+ µ(β′ − γ′ − µ)

]
= 0 (33)

The eigenvalues are

(
− µβ′

γ + µ
,− µβ′

γ + µ
,
β(1− p)(γ′ + µ)

β′
− (γ + µ), λ±

)
343

where 344

2λ± = − µβ′

γ′ + µ
±

√(
µβ′

γ′ + µ

)2

− 4µ(β′ − γ′ − µ) (34)
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Similar to the λ± in the Disease 1 equilibrium, the real part will be negative if the 345

discriminant is negative. For the equilibrium point to exist, R′0 > 1, which means that 346

when the discriminant is positive, the following inequality holds 347

[
µβ′

γ + µ

]2
>

[
µβ′

γ + µ

]2
− 4µ(β′ − γ′ − µ) (35)

which means that both λ± will be negative as long as R′0 > 1. As for the remaining 348

eigenvalue, it will be negative if 349

R′0 > R0(1− p) (36)

This indicates that the second disease will be locally stable if the mutated disease 350

has a higher reproduction number compared to the original disease. Once this happens, 351

the endemic equilibrium can not be achieved. Note that there are no conditions for the 352

value of R0(1− p), which means that this equilibrium point can occur whether the 353

system was initially in DFE or endemic equilibrium with the original strain. Fig 5 354

shows the emergence from a system in DFE where i1 is zero before the emergence of the 355

strain, which happens when R′0 > 1 > R0(1− p). The proportion of vaccinated and the 356

susceptible individuals remained constant before the emergence. Upon the emergence of 357

the newer strain, the system behaves like a regular SIR model with a susceptible 358

compartment comprising of the S, V, and R compartments as shown in Fig 5. The 359

proportion of both susceptible and vaccinated individuals decreased drastically shortly 360

after the emergence at t = 100, while the proportion of individuals infected by the 361

emergent strain (i2), denoted by the pink dashed line, had an upward spike before 362

settling into its equilibrium value. The original strain showed no sign of reemergence 363

after it has settled into DFE, which is what is expected. 364

Fig 5. Surveillance data of the compartments for the new strain
equilibrium where the system is originally in DFE. The reproduction
number of the original strain is R0 = 0.83, while the reproduction number of
the emergent strain is R′0 = 6.67. The vaccination rate used is 0.7.

Another possible case is when the system is initially in endemic equilibrium but the 365

original strain dies because of the introduction of the new strain. Fig 6 shows that i1 is 366

nonzero before time t = 100, which occurs when R′0 > R0(1− p) > 1. Upon emergence 367
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of the second strain, the proportion of the population infected by the original strain, i1, 368

and the proportion of the individuals who recovered from the original strain, r1, 369

decrease and go to zero asymptotically. The behavior of the second strain is similar to 370

that in Fig 5. This implies that the new emergent strain is much more infectious than 371

the older strain that the new strain infects more susceptible individuals compared to the 372

original strain. This causes the original strain to die down at steady state. 373

Fig 6. Surveillance data of the compartments for the new strain
equilibrium where the system is originally in endemic equilibrium with
Disease 1. The reproduction number of the original strain is R0 = 5.71,
while the reproduction number of the emergent strain is R′0 = 6.67. The
vaccination rate used is 0.7.

Endemic equilibrium 374

For the endemic equilibrium case, both i1 and i2 are nonzero and thus both Eq 28 and 375

32 hold. Since Eq 11 is zero, 376

βi∗1 + β′i∗2 − µ = −(1− p)/s∗ (37)

The resulting Jacobian for the endemic equilibrium case is given by 377

J =



−(1− p)µ/s∗ −βs∗ 0 0 −β′s∗

βi∗1 0 0 0 0

0 0 −β′i∗2 − µ 0 −β′v∗

0 γ 0 −βi∗2 − µ −β′r∗1

β′i2 0 β′i2 β′i2 0


(38)

The characteristic equation is given by 378

(λ+ pµ/v∗)(λ4 + a1λ
3 + a2λ

2 + a3λ+ a4) = 0 (39)

where 379
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a1 =
ps∗µ+ v∗(1− p)µ

s∗v∗
(40)

a2 =
i1
∗s∗v∗β(γ + µ) + µ2p(1− p) + i2

∗s∗v∗β′2(s∗ + r∗ + v∗)

s∗v∗
(41)

a3 =
i∗1ps

∗βµ(γ + µ) + i2p(s
∗)2µβ′2 + (1− p)i∗2vβ′2µ(r∗ + v∗)

s∗v∗
(42)

a4 =
i∗2i
∗
1ββ

′2[(r∗s∗v∗ + s∗(v∗)2)(γ + µ) + (s∗)2v∗γ]

s∗v∗
(43)

Recall that for the endemic equilibrium to be locally stable, all eigenvalues should 380

have a negative real part. Eq 39 shows that one of the eigenvalues is λ = −pµ/v∗ which 381

is negative. For all the roots of the quartic term to have negative real parts, the 382

Routh-Hurwitz criteria for stability should be applied [16,17]. According to the 383

Routh-Hurwitz criterion, a polynomial with degree 4 will have roots (a1, a2, a3, a4) that 384

all have negative real parts when: 385

a1, a3, a4 > 0

a1a2a3 > a23 + a21a4

Since the values of the equilibrium points should be positive, all coefficients 386

(a1, a2, a3, a4) are positive. Based on the stability of the first three equilibrium points 387

and the existence criterion, the endemic equilibrium point is expected to be stable when 388

R0

[
γ + µ

µ+R0(γ + pµ)

]
< R′0 < R0(1− p) (44)

This implies that the endemic equilibrium for the two strains can only occur when 389

the system is initially in endemic equilibrium for the original strain, which can explain 390

why the condition is more restrictive than the one for the equilibrium with Disease 2. 391

This highly restrictive criterion for endemic equilibrium might be a challenge for 392

simulating stochastic data for strains that have a relatively low reproduction number 393

and a high vaccination rate. A fluctuating value for the incidence rate might lead to 394

either one of the single-strain equilibria. 395

Fig 7 shows that both i1 and i2 are asymptotically nonzero after the emergence of 396
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the new strain given that Eq 44 is satisfied. 397

Fig 7. Surveillance data of the compartments for the endemic equilibrium.
The reproduction number of the original strain is R0 = 6.67, while the
reproduction number of the emergent strain is R′0 = 1.67. The vaccination
rate used is 0.7.

As the endemic equilibrium between the two strains is reached, the proportion of the 398

vaccinated individuals that are healthy decreased considerably compared to the 399

proportion before the emergence while unvaccinated individuals return to the same 400

proportion after the system has stabilized after the emergence of the new strain. This 401

implies that the newer strain mostly survives on infecting the vaccinated and the 402

initially recovered individuals. The proportion of individuals infected by the original 403

strain is also observed to decrease upon reaching endemic equilibrium after emergence, 404

which implies that some of the susceptible population get infected by the newer strain. 405

Reproduction number [28] 406

One of the important parameters to be calculated for an epidemic model is the 407

reproduction number, which quantifies how infectious a certain disease is. Formally, the 408

reproduction number is defined as the expected number of secondary infections caused 409

by a single infected individual for the whole duration that they are infectious. A value 410

for the reproduction number that is greater than one indicates that the epidemic 411

persists in the population, while a value less than one means that the disease will die 412

out in the population [28,29]. 413

The reproduction number R0 of this epidemic model was calculated using the 414

approach formulated by van den Diessche and Watmough [28]. This approach does not 415

account for any measures taken to control the epidemic, but will give us an idea of the 416

conditions needed for the disease to spread on its own. 417

Next generation matrix 418

To obtain the reproduction number for this model, we need to solve for the next 419

generation matrix. The next generation matrix describes the expected number of new 420

infections that an infected individual produces from each susceptible compartment. Eqs 421
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11 to 15 can be written in vector form as 422

dX
dt

= F−V (45)

where X = (i1, i2, s, v, r1)T , Fi corresponds to the vector that describes the rate of 423

new infections in compartment i, and Vi is the vector that correspond to the transitions 424

from compartment i to the other non-infected compartments such as R1 and R2 [51]. 425

We define F and V such that for the disease free equilibrium X0, 426

(Fij) =

[
dFi

dXj
(X0)

]
(46)

(Vij) =

[
dVi

dXj
(X0)

]
(47)

where (i, j) corresponds to the index of the infected compartments. The resulting 427

matrices F and V have a dimension of m×m, where m is the number of infected 428

compartments. Fij describes the rate at which the infected individuals at compartment 429

j contribute to the infection of compartment i, while Vij corresponds to the rate at 430

which the infected individuals are removed from the infected compartments. This means 431

that FV −1 is related to the rate at which individuals are infected by the disease within 432

an average time span that an infected individual remains infected. For the system 433

discussed in this paper, there are two infected compartments after the emergence of the 434

new strain: I1 and I2. Therefore, m = 2 and 1 ≤ i, j ≤ m. 435

The DFE was calculated to be given by (1− p, 0, p, 0, 0). Based on the transition 436

equations (Eqs 11 to 15), F and V are given by 437

F = (βsi1, β(s+ v + r1)i2, 0, 0, 0)T (48)

V = (αi1, αi2, βsi1 + µs− (1− p)µN, βvi2 + µv − pµ, µr1 − γi1)T (49)

where α = γ + µ. Note that m = 2, so the corresponding F and V matrices are then 438
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F =

β(1− p) 0

0 β′

 (50)

439

V =

γ + µ 0

0 γ′ + µ

 (51)

The reproduction number is obtained by taking the maximum eigenvalue of the next 440

generation matrix FV −1. The next generation matrix is the product of the rate of 441

infection (F ) and the average time that an individual remains infected (V −1). The next 442

generation matrix is given by, 443

FV −1 =

β(1− p) 0

0 β′


γ + µ 0

0 γ′ + µ


−1

=

R0(1− p) 0

0 R′0

 (52)

where F is the matrix that describes the infection rates for the two infections at the 444

DFE, and V −1 describes the average time an infected individual stays infectious. It is 445

easy to see that the eigenvalues of the next generation matrix are R0(1− p) and R′0. 446

This means that the reproduction number R0 for this system is given by the larger of 447

the two. Formally, 448

R0 = max(R0(1− p), R′0) (53)

Note that the resulting threshold equation for the system is R0 less than one, which 449

means that the system will only approach the disease free equilibrium when Eq 53 is 450

less than one. For an outbreak to occur, at least one of these two strains should be able 451

to persist in the population on its own, that is, to have an individual reproduction 452

number greater than one. This is consistent with Eqs 26 and 27 which give us the 453

condition of the stability of the DFE. 454

Discussion and recommended next steps 455

We started modeling the emergence of a new strain by adding and modifying 456

compartments to the existing SIR model with vaccination. The emergent strain was 457

assumed to be unaffected by the existing vaccine designed for the original strain in the 458
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population. After establishing the possible transitions between compartments, the 459

system was found to have four equilibrium points: the disease free equilibrium, the 460

existing strain equilibrium, the emergent strain equilibrium, and the endemic 461

equilibrium. Upon examining the conditions for existence and local stability, the 462

disease-free equilibrium was determined to be locally stable when both Rv and R′0 are 463

less than one. This is consistent with the reproduction number for this multi-strain 464

model. The existing strain equilibrium surprisingly did not impose that R′0 < 1, which 465

is the condition for the DFE of a normal SIR model for a single-strain without 466

immunity. This implies that if the original strain is much more contagious than the 467

emergent strain, the emergent strain would still die out eventually regardless of the fact 468

that it would persist in the population if it was on its own. On a similar note, the local 469

stability condition for the emergent equilibrium condition also does not impose that 470

Rv < 1. This means that the state of the system prior to the emergence of the new 471

strain does not matter as long as the emergent strain is more contagious than the 472

existing strain. This leaves a highly restrictive condition for endemic equilibrium to 473

exist: the emergent strain must be able to survive by itself and the original strain must 474

be contagious enough to infect enough people, which is given by Eq 44. Eq 44 also 475

implies that the two-strain endemic equilibrium will only be locally asymptotically 476

stable if the original strain is endemic to the population upon the emergence of the 477

newer strain. These restrictions for the stability of endemic equilibrium would highly 478

affect simulation studies about emergent strains especially when stochasticity is added 479

to the model. Knowing the stability conditions for a multi-strain SIR model without 480

cross-immunity will also be able to give us insights about when a newer strain emerges 481

while the original strain still exists. This is common for the flu virus which changes 482

every season and the vaccines lose their efficacy after a new mutated strain emerges. 483

This result might also be relevant when a highly contagious strain like the COVID-19 484

virus, a viral strain that does not exhibit cross-immunity with the influenza virus, 485

emerges in a population. Our results show that COVID-19 will be able to co-exist with 486

the flu in an endemic equilibrium under certain circumstances, which might become a 487

problem in terms of prioritizing patients in health care centers especially since the two 488

diseases show similar symptoms [52]. Our research also suggests that if the spread of the 489

emergent virus is not contained, we can expect the COVID-19 virus to dominate over 490
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the existing influenza virus, which can highly influence the development of protocol in 491

receiving patients with flu-like symptoms and allocating resources in health care centers. 492

In summary, the modified multi-strain SIR model of an emerging disease that affects 493

both susceptible and previously immune individuals was studied. The local stability of 494

the equilibrium points as well as the reproduction number for the model were calculated. 495

Based on the results, we found that the original and the emergent strain can coexist in 496

an endemic equilibrium if the emergent strain has a lower reproduction number than 497

the original strain and that the system should already be in endemic equilibrium with 498

the original disease before the emergence. The requirement for the endemic equilibrium 499

to exist is quite strict especially for low values of R0 and high values of p, which 500

presents a challenge in simulating surveillance data with stochastic incidence rates. 501

This modified SIR model can be improved further by using time-dependent infection 502

rates to account for the seasonality of viruses. Exploring the effect of vaccination on 503

other epidemic models such as epidemics with animal vectors and epidemics with 504

latency and treatment compartments can also be studied in the future. 505
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