
COVIDX-Net: A Framework of Deep Learning Classifiers to Diagnose 

COVID-19 in X-Ray Images 

 

Ezz El-Din Hemdan1  , Marwa A. Shouman1  , and Mohamed Esmail Karar 2,3  , IEEE, Member  

1Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Egypt. 
2Department of Industrial Electronics and Control Engineering, Faculty of Electronic Engineering, Menoufia University, Egypt. 
3Department of Computer Engineering, College of Computing and Information Technology, Shaqra University, Saudi Arabia. 

 
EzzElDinHemdan@el-eng.menofia.edu.eg; marwa.shouman@el-eng.menofia.edu.eg; mekarar@ieee.org  

 

 

Abstract 

Background and Purpose: Coronaviruses (CoV) are perilous viruses that may cause Severe Acute Respiratory 

Syndrome (SARS-CoV), Middle East Respiratory Syndrome (MERS-CoV). The novel 2019 Coronavirus disease 

(COVID-19) was discovered as a novel disease pneumonia in the city of Wuhan, China at the end of 2019. Now, 

it becomes a Coronavirus outbreak around the world, the number of infected people and deaths are increasing 

rapidly every day according to the updated reports of the World Health Organization (WHO). Therefore, the aim 

of this article is to introduce a new deep learning framework; namely COVIDX-Net to assist radiologists to 

automatically diagnose COVID-19 in X-ray images.   

 

Materials and Methods: Due to the lack of public COVID-19 datasets, the study is validated on 50 Chest X-ray 

images with 25 confirmed positive COVID-19 cases. The COVIDX-Net includes seven different architectures of 

deep convolutional neural network models, such as modified Visual Geometry Group Network (VGG19) and the 

second version of Google MobileNet. Each deep neural network model is able to analyze the normalized 

intensities of the X-ray image to classify the patient status either negative or positive COVID-19 case.  

 

Results: Experiments and evaluation of the COVIDX-Net have been successfully done based on 80-20% of X-

ray images for the model training and testing phases, respectively. The VGG19 and Dense Convolutional Network 

(DenseNet) models showed a good and similar performance of automated COVID-19 classification with f1-scores 

of 0.89 and 0.91 for normal and COVID-19, respectively. The worst classification performance is obtained for 

the InceptionV3 model with f1-scores of 0.67 for normal cases and 0.00 for COVID-19 cases. 

 

Conclusions: This study demonstrated the useful application of deep learning models to classify COVID-19 in 

X-ray images based on the proposed COVIDX-Net framework. Clinical studies are the next milestone of this 

research work. 
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1. Introduction 

Coronaviruses (CoV) are a large family of perilous viruses [1]. The CoV is so named because of their characteristic 

solar corona (crown-like) appearance when observed under an electron microscope [2]. They may cause severe 

and infectious diseases such as Severe Acute Respiratory Syndrome (SARS-CoV) and Middle East Respiratory 

Syndrome (MERS-CoV). The outbreak of the 2019 novel coronavirus in Wuhan, China has been rapidly spread 

to other countries since December 2019 [3-6]. The World Health Organization (WHO) named the infectious 

disease caused by this kind of viruses as COVID-19 on Feb 11, 2020 [7]. There have been 80,894 confirmed cases 

to China to date (Mar 18, 2020), and 204,037 confirmed cases worldwide [8].  

Although the real-time polymerase chain reaction (RT-PCR) assay of the sputum is the gold standard for 

Coronaviruses diagnosis, it is time-consuming to confirm COVID-19 patients because of resulted in high false-

negative levels [9]. Therefore, medical imaging modalities such as Chest X-ray (CXR) and Computed 

Tomography (CT) can play a major role in confirming positive COVID-19 patients, especially in cases of infected 

pregnant women and children [10, 11]. Volumetric CT thorax images for lung and soft tissue have been 

investigated in the recent studies for identifying COVID-19 [10, 12]. However, the main disadvantage of using 

CT imaging is the high patient dose and costs scan [13]. In contrast, conventional radiograph or CXR machines 

are available in all hospitals and clinics to produce 2-dimensional (2D) projection images of the patient’s thorax. 

Generally, the CXR modality is the first choice for radiologists to detect the chest pathology and has been applied 

to identify or confirm COVID-19 in a small number of patients [10, 14]. Therefore, the focus of this study is only 

on the use of X-ray imaging modality for potential COVID-19 patients. 

Nevertheless, X-ray images cannot easily distinguish soft tissue with a poor contrast to limit the exposure dose to 

the patients [13, 15]. To overcome these limitations, Computer-Aided Diagnosis (CAD) systems have been 

developed to assist physicians to automatically detect and quantify suspected diseases of vital organs in X-ray 

images [16, 17]. The CAD systems are mainly relying on the rapid development of computer technology such as 

graphical processing units (GPUs) to run the medical image processing algorithms, including image enhancement, 

organ and/or tumor segmentation, and interventional navigation tasks [18-20]. Now, artificial intelligence 

techniques such as machine learning and deep learning become the core of advanced CAD systems in many 

medical applications; for example, pulmonary diseases [21, 22], cardiology [23, 24], and brain surgery [25, 26]. 

Deep learning techniques showed in the last years promising results to accomplish radiological tasks by automatic 

analyzing multimodal medical images [27-29]. Deep convolutional neural networks (DCNNs) are one of the 

powerful deep learning architectures and have been widely applied in many practical applications such as pattern 

recognition and image classification in an intuitive way [30]. DCNNs are able to handle four manners as follow 

[31]: 1) training the neural network weights on very large available datasets; 2) fine-tuning the network weights 

of a pre-trained DCNN based on small datasets; 3) Applying unsupervised pre-training to initialize the network 

weights before putting DCNN models in an application; and 4) using pre-trained DCNN is also called an off-the-

shelf CNN being used as a feature extractor. In previous studies, DCNNs have been exploited in X-ray image 

classification to successfully diagnose common chest diseases such as Tuberculosis screening [32] and 

mediastinal lymph nodes in CT images [33]. However, the application of deep learning techniques to identify and 

detect novel COVID-19 in X-ray is still very limited so far. Therefore, the aim of this study to propose a new 

framework of pre-trained deep learning classifiers; namely COVIDX-Net as an advanced tool to assist radiologists 



to automatically diagnose COVID-19 in X-ray images. In the following, the contributions of this paper are 

summarized.   

• Building altogether deep learning models in a new framework (COVIDX-Net) to automatically assist the 

early diagnosis of patients with COVID-19 in an efficient manner. 

• Achieving an empirical analysis of the proposed deep learning image classifiers in the task of classifying 

COVID-19 disease using conventional chest X-ray with lower cost than other imaging modalities like CT. 

• Reporting comparative performances of different deep learning models with remarks to show the most 

accurate classification results of COVID-19 using a small X-ray image dataset. 

• The proposed COVIDX-Net framework supports interdisciplinary researchers to continue developing 

advanced artificial intelligence techniques for CAD systems to fight the COVID-19 outbreak. 

The rest of this paper is structured as follows. Section 2 gives a review on the state-of-the-art deep convolutional 

neural network models as image classifiers.  Also, a detailed description of the COVIDX-Net framework is 

presented. Experimental results and comparative performance of the proposed deep learning classifiers are 

investigated and discussed in section 3. Finally, this study is concluded with the main prospects in section 4. 

 

2. Methods 

 

2.1 Deep learning image classifiers 

In this section, we describe some of the existing state-of-the-art deep learning image classifiers that are required 

to accomplish the clinical purpose of the COVIDX-Net framework as follows. 

 

A) VGG19: Visual Geometry Group Network (VGG) was developed based on the convolutional neural network 

architecture by Oxford Robotics Institute's Karen Simonyan and Andrew Zisserman [34]. It was addressed at 

the 2014 Large Scale Visual Recognition Challenge (ILSVRC2014). The VGGNet performed very well on 

the imageNet dataset. In order to have improved image extraction functionality, the VGGNet used smaller 

filters of 3×3, compared to AlexNet 11×11 filter. There are two versions of this deep network architecture; 

namely VGG16 and VGG19 have different depths and layers. VGG19 is deeper than VGG16.The number of 

parameters for VGG19, however, is larger and thus more expensive than VGG16 to train the network. 

 

B) DenseNet121: The Dense Convolutional Network (DenseNet) have several compelling benefits: they lighten 

the vanishing-gradient problem, reinforce feature propagation, encourage feature reuse, and the number of 

parameters reduced substantially [35]. DenseNet121 is a Dense Net model which generated with 121 layers, 

the model was loaded with pre-trained weights from ImageNet database. 

 

C) InceptionV3: Inception network or GoogLeNet was 22-layer network and it won 2014 Image net challenge 

with 93.3% top-5 accuracy [36]. Later versions are referred as Inception VN where N is the version number 

so inceptionV1, inceptionV2and inceptionV3.  The Inception V3 network has several symmetrical and 

asymmetrical building blocks, where each block has several branches of convolutions, average pooling, max-

pooling, concatenated, dropouts, and fully-connected layers.  

 



D) ResNetV2: He et al. [37] developed the Residual Neural Network (ResNet) models by utilizing skip 

connections to jump over some network layers to achieve strong convergence behaviors. The improved 

version of ResNet is called ResNet-V2. Although the ResNet is similar to the VGGNet, it is approximately 

eight times deeper [38]. 

 

E) Inception-ResNet-V2: A convolutional neural network is 164 layers deep, combining the Inception 

architecture with residual connections. Inception-ResNet-V2 is a variation of InceptionV3 [39]. Inception-

ResNet-V2 is trained on more than a million images from the ImageNet database.  

 

F) Xception: The architecture of Xception model is a linear stack of depth wise separable convolution layers 

with residual connections to easily define and modify the deep network architecture [40]. The Xception is an 

enhancement of the Inception architecture that replaces regular inception modules with distinguishable depth 

convolutions. 

 

G) MobileNetV2: Sandler et al. [41] proposed the MobileNetV2 model as a convolutional neural network 

architecture for machines with limited computing power, like smartphones. The MobileNets achieve this key 

advantage by reducing the number of learning parameters, and introducing the inverted-residuals-with-linear-

bottleneck-blocks to greatly reduce the memory consumption. Moreover, the pre-trained implementation of 

Mobile NetV2 is widely available in many popular deep learning frameworks. 

 

2.2 Proposed COVIDX-Net Description  

We proposed a new deep learning framework for automatically identifying the status of COVID-19 in 2D 

conventional X-ray images. Fig. 1 depicts the overall workflow of our proposed COVIDX-Net based on seven 

different architectures of DCNNs; namely VGG19, DenseNet201, InceptionV3, ResNetV2, InceptionResNetV2, 

Xception, and MobileNetV2, as described above.  

 

Fig 1. Workflow of proposed COVIDX-Net framework for classifying the COVID-19 status in X-Ray images. 



The COVIDX-Net framework includes three main steps to accomplish the diagnostic procedure of novel 

Coronavirus, as follows. 

• Step#1: Preprocessing 

All X-ray images have been collected in one dataset and loaded for scaling at a fixed size of 224 X 224 

pixels to be suitable for further processing within the deep learning pipeline. One-hot encoding [42] is 

then applied on the labels of image data to indicate the case of positive COVID-19 or “not” for each 

image in the dataset.  

• Step#2: Training Model and Validation 

In order to start the training phase of selected and/or tuned one of seven deep learning models, the 

preprocessed dataset is 80-20 split according to the Pareto principle. That means 20% of image data will 

be used for testing phase. Again, splitting 80% data will be used for constructing equal training and 

validation sets. Subsample random selections of training image data for the deep learning classifier, and 

then apply evaluation metrics to show the recorded performance on the validation set.  

• Step#3: Classification 

In the final step of the proposed framework, the testing data is fed to the tuned deep learning classifier to 

categorize all the image patches into one of two cases: confirmed positive COVID-19 or normal case 

(negative COVID-19), as shown in Fig. 1. At the end of the workflow, the overall performance analysis 

for each deep learning classifier will be evaluated based on the metrics described in the following section. 

2.3 Classification Performance Analysis 

In order to evaluate the performance for each deep learning model in the COVIDX-Net, different metrics have 

been applied in this study to measure the true and/or misclassification of diagnosed COVID-19 in the tested X-

ray images as follow. First, the cross validation estimator [43] was used and resulted in a confusion matrix as 

illustrated in Table 1. The confusion matrix has four expected outcomes as follows. True Positive (TP) is a number 

of anomalies and has been identified with the right diagnosis. True Negative (TN) is an incorrectly measured 

number of regular instances. False Positive (FP) is a collection of regular instances that are classified as an 

anomaly diagnosis FP. False Negative (FN) is a list of anomalies observed as an ordinary diagnosis. 

    Table 1: Confusion Matrix 

 Predicted Positive Predicted Negative  

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP)  True Negative (TN) 

 

After calculating the values of possible outcomes in the confusion matrix, the following performance metrics 

can be calculated. 

A) Accuracy: Accuracy is the most important metric for the results of our deep learning classifiers, as given 

in (1). It is simply the summation of true positives and true negatives divided by the total values of 

confusion matrix components. The most reliable model is the best but it is important to ensure that there 

are symmetrical datasets with almost equal false positive values and false adverse values. Therefore, the 



above components of the confusion matrix must be calculated to assess the classification quality of our 

proposed COVIDX-Net framework. 

TP+TN
Accuracy(%)= 100%

TP+FP+FN+TN
 (1) 

 

B) Precision: Precision is represented in (2) to give relationship between the true positive predicted values 

and full positive predicted values.  

 

TP
Precision=

TP+FP
 (2) 

 

C) Recall: In (3), recall or sensitivity is the ratio between the true positive values of prediction and the 

summation of predicted true positive values and predicted false negative values.  

 

TP
Recall=

TP+FN
 (3) 

 

D) F1-score: F1-score is an overall measure of the model’s accuracy that combines precision and recall, as 

represented in (4). F1-score is the twice of the ratio between the multiplication to the summation of 

precision and recall metrics. 

 

Precision Recall
F1-score=2( )

Precision+Recall


 (4) 

3 Experiments  

3.1 Dataset and Experimental setup 

The public dataset of X-ray images used in this study for classifying negative and positive COVID-19 cases 

provided by Dr. Joseph Cohen1 and Dr. Adrian Rosebrock2. The dataset includes 50 X-ray images, divided 

into two classes as 25 normal cases and 25 positive COVID-19 images. Fig. 2 shows a sample of normal 

and COVID-19 images extracted from the dataset. The X-ray images for confirmed COVID-19 disease 

show a pattern of ground-glass opacification with occasional consolidation in the patchy, peripheral, and 

bilateral areas [10]. The original size of tested images is ranging from 1112 x 624 to 2170 x 1953 pixels. 

For the experimental setup, all images were scaled to the size of 224 × 224 pixels. The COVIDX-Net 

framework including deep learning classifiers have been implemented using Python and the Keras package 

with TensorFlow2 [44] on Intel(R) Core(TM) i7-2.2 GHz processor. In addition, the experiments were 

executed using the graphical processing unit (GPU) NVIDIA GTX 1050 Ti and RAM with 4 GB and 16 

GB, respectively. 

 
1 https://github.com/ieee8023/covid-chestxray-dataset  
2 https://www.pyimagesearch.com/category/medical/ 

https://github.com/ieee8023/covid-chestxray-dataset
https://www.pyimagesearch.com/category/medical/


 

Fig 2. A sample of X-ray images dataset for normal cases (first row) and COVID-19 patients (second row)  

3.2 Overall Performance Evaluation 

For evaluating the performance of proposed deep learning classifiers, 80% of X-ray images including normal 

and diseased cases are randomly chosen for training, i.e. 40 images of the dataset. The training parameters 

for all DCNNs architectures in this study are: The learning rate = e−3, the values of batch size and number of 

epochs are set to 7 and 50, respectively, to achieve the desired convergence with few iterations on this small 

X-ray image dataset, and also to avoid the degradation problem as possible. All deep network classifiers are 

trained using Stochastic Gradient Descent (SGD) because of its good converge and fast running time. Image 

data augmentation was not used in this study. 

 

Table 2 illustrates the comparative computational times and the accuracy of tested deep learning image 

classifiers. The running times of all deep learning models are relatively short ranging from 390.0 to 2645.0 

seconds because of using powerful capabilities of the GPU with a small X-ray image dataset. The resulted 

testing times of the COVIDX-Net models did not exceed 6 seconds on 10 tested images, as shown in Fig. 3. 

Among all tested classifiers, the accuracy of InceptionV3 model was the worst of 50 %, while the VGG19 

and DenseNet201 models achieved the best values of accuracy (90%). Although the MobileNetV2 model 

showed a moderate value of accuracy (60%), it achieved the smallest computational times of 389.0 and 1.0 

seconds for training and testing phases, respectively, as listed in Table. 2. In addition, the values of 

performance metrics of each deep learning classifier are presented in Table 3. The highest precision of deep 

learning classifier to detect only positive COVID-19 was achieved by ResNetV2, InceptionResNetV2, 

Xception, and MobileNetV2, but their corresponding performances were worst to classify the normal cases 

correctly. Therefore, we recommend the VGG19 and DenseNet201 models to be applied for in the CAD 

systems to identify the health status of patients against the COVID-19 in X-ray images.  

Moreover, Fig. 3 depicts the graphical performance evaluation of all trained deep learning classifiers with 

accuracy and cross-entropy loss (loss) in the training and validation step. The best scores of training and 

validation accuracy were achieved for VGG19 and DenseNet201 models, and the worst case is resulted by 

the InceptionV3, as illustrated also in Table 3. The resulted confusion matrices of all tested deep learning 

classifiers are depicted in Fig. 4. Furthermore, our results added the Receiver Operating Characteristics (ROC) 

curves to verify the classification performances of each deep learning classifier by showing the true positive rate 

(TPR) against the false positive rate (FPR) to identify the positive COVID-19 cases in the tested X-ray images.  



Table 2: Computational times and classification accuracy of all tested deep learning models of the 

COVIDX-Net on a GPU.  

 

Classifier Training Time  

(seconds) 

Testing Time 

(seconds) 

Accuracy 

(%) 

VGG19 2641.00 4.00 90 

DenseNet201 2122.00 6.00 90 

ResNetV2 1086.00 2.00 70 

InceptionV3 1121.00 2.00 50 

InceptionResNetV2 1988.00 6.00 80 

Xception 2035.00 3.00 80 

MobileNetV2 389.00 1.00 60 

 

 

Table 3: Comparative classification performance of deep learning models used in the COVIDX-Net 

Classifier 
Patient 

Status 
Precision Recall F1-score 

VGG19 
COVID-19 0.83 1.00 0.91 

Normal 1.00 0.80 0.89   

DenseNet201 
COVID-19 0.83 1.00 0.91 

Normal 1.00 8.00 0.89 

ResNetV2 
COVID-19 1.00 0.40 0.57 

Normal 0.62 1.00 0.77 

InceptionV3 
COVID-19 0.00 0.00 0.00 

Normal 0.50 1.00 0.67 

InceptionResNetV2 
COVID-19 1.00 0.60 0.75 

Normal 0.71 1.00 0.83 

Xception  
COVID-19 1.00 0.60 0.75 

Normal 0.71 1.00 0.83 

MobileNetV2 
COVID-19 1.00 0.20 0.33 

Normal 0.56 1.00 0.71 



  

(a) VGG19 (b) DenseNet201 

  

(c) ResNetV2 (d) InceptionV3 

  

(e) InceptionResNetV2 (f) Xception 

 

(g) MobileNetV2 

Fig 3. Training loss and accuracy evaluation of all deep learning models in the COVIDX-Net 



  

(a) VGG19 (b) DenseNet201 

  

(c) ResNetV2 (d) InceptionV3 

  

(e) InceptionResNetV2 (f) Xception 

 

(g) MobileNetV2 

Fig 4. Confusion matrix of all deep learning models in the COVIDX-Net 



  

(a) VGG19 (b) DenseNet201 

  

(c) ResNetV2 (d) InceptionV3 

  

(e) InceptionResNetV2 (f) Xception 

 

(g) MobileNetV2 

Fig 5 ROC curves of all deep learning models in the COVIDX-Net 



 

4 Conclusions 

Infectious COVID-19 disease shocked the world and is still threating the lives of billions of people. In this study, 

a new CVOIDX-Net framework has been proposed to automatically identify or confirm COVID-19 in 2-D X-ray 

images based on seven deep learning classifiers; namely VGG19, DenseNet121, ResNetV2, InceptionV3, 

InceptionResNetV2, Xception, and MobileNetV2. The results of our proposed COVIDX-Net verified that the best 

performance scores of deep learning classifiers are for the VGG19 and DenseNet201models. Furthermore, the 

performance of the MobileNetV2 can be further improved to be used on smart devices because of its high 

computational speed in the healthcare sector to assist the accurate cost-effective of COVID-19 in X-ray images 

and maybe later used for CT imaging modality in our future work of this highly important research topic.   
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