
ar
X

iv
:2

00
3.

11
37

1v
2 

 [
q-

bi
o.

PE
] 

 1
0 

A
pr

 2
02

0
DRAFT VERSION, SUBJECT TO MODIFICATION. FOLLOW THE UPDATES FROM: https://arxiv.org/abs/2003.11371 1

Mathematical Modeling of Epidemic Diseases; A

Case Study of the COVID-19 Coronavirus

Reza Sameni*

Grenoble, France

Revision: 10 April 2020

Abstract—The outbreak of the Coronavirus COVID-19 has
taken the lives of several thousands worldwide and locked-
out many countries and regions, with yet unpredictable global
consequences. In this research we study the epidemic patterns of
this virus, from a mathematical modeling perspective. The study
is based on an extensions of the well-known susceptible-infected-
recovered (SIR) family of compartmental models. It is shown
how social measures such as distancing, regional lockdowns,
quarantine and global public health vigilance, influence the model
parameters, which can eventually change the mortality rates and
active contaminated cases over time, in the real world. As with all
mathematical models, the predictive ability of the model is limited
by the accuracy of the available data and to the so-called level of
abstraction used for modeling the problem. In order to provide
the broader audience of researchers a better understanding of
spreading patterns of epidemic diseases, a short introduction on
biological systems modeling is also presented and the Matlab
source codes for the simulations are provided online.

I. INTRODUCTION

Since the outbreak of the Coronavirus COVID-19 in January

2020, the virus has affected most countries and taken the lives

of several thousands of people worldwide. By March 2020,

the World Health Organization (WHO) declared the situation a

pandemic, the first of its kind in our generation. To date, many

countries and regions have been locked-down and applied

strict social distancing measures to stop the virus propagation.

From a strategic and healthcare management perspective, the

propagation pattern of the disease and the prediction of its

spread over time is of great importance, to save lives and to

minimize the social and economic consequences of the disease.

Within the scientific community, the problem of interest has

been studied in various communities including mathematical

epidemiology [1], biological systems modeling [2], [3], signal

processing [4] and control engineering [5].

In this study, epidemic outbreaks are studied from

an interdisciplinary perspective, by using an extension of

the susceptible-exposed-infected-recovered (SEIR) model [1],

which is a mathematical compartmental model based on the

average behavior of a population under study. The objective

is to provide researchers a better understanding of the signif-

icance of mathematical modeling for epidemic diseases. It is

shown by simulation, how social measures such as distancing,
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regional lockdowns and public health vigilance, can influence

the model parameters, which in turns change the mortality

rates and active contaminated cases over time.

It should be highlighted that mathematical models applied

to real-world systems (social, biological, economical, etc.) are

only valid under their assumptions and hypothesis. Therefore,

this research— and similar ones— that address epidemic pat-

terns, do not convey direct clinical information and dangers for

the public, but should rather be used by healthcare strategists

for better planning and decision making. Hence, the study of

this work is only recommended for researchers familiar with

the strength points and limitations of mathematical modeling

of biological systems. The Matlab codes required for repro-

ducing the results of this research are also online available in

the Git repository of the project [6].

In Section II, a brief introduction to mathematical modeling

of biological systems is presented, to highlight the scope of

the present study and to open perspectives for the interested

researchers, who may be less familiar with the context. The

proposed model for the outspread of the Coronavirus is

presented in Section III. The article is concluded with some

general remarks and future perspectives.

II. AN INTRODUCTION MATHEMATICAL EPIDEMIOLOGY

AND COMPARTMENTAL MODELING

A. Mathematical modeling

A model is an entity that resembles a system or object in

certain aspects, but is easier to work with as compared to the

original system. Models are used for the 1) identification and

better understanding of systems, 2) simulation of a system’s

behavior, 3) prediction of its future behavior, and ultimately

4) system control. Apparently, from item 1 to 4, the problem

becomes more difficult and although the ultimate objective is

to harness or control a system, this objective is not necessarily

achievable. While modeling is the first and most important step

in this path, it is highly challenging and nontrivial. The various

issues that one faces in this regard, include:

• Models are not unique and different models can co-exist for

a single system.

• A model is only a slice of reality and all models have a

scope, outside of which, they are invalid.

• Modeling can be done in different levels of abstraction,

which corresponds to the level of simplification and the

specific aspects of the system that are considered by the

model.
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Example 1. The response of global stock markets with numer-

ous economic, political, industrial, social and psychological

factors, to a high impact news can in cases be modeled with

a second-order differential equation, with a step-like over-

damped behavior that reaches its steady state after a while.

Or in medicine, the response of the human body— with more

that thirty-seven trillion cells— to medication can in many

cases be “resonably” modeled with a first order differential

equation.

While various types of models are used for biological sys-

tems, we are commonly interested in mathematical models [7],

as they permit the prediction and possible control of biological

systems. In choosing among different available models, the

widely accepted principle is the model parsimony, which sim-

ply means that “a model should be as simple as possible and

as complex as necessary!”. The model parsimony, is also an

important factor for estimating the unknown model parameters

using real data. A more accurate model with fewer number

of parameters is evidently preferred over a less accurate and

more complex model. But how should one select between

a more accurate complex model and a less accurate simpler

one? Measures such as the Akaike information criterion (AIC),

the Bayesian information criterion (BIC) and the minimum

description length (MDL), address the balance between the

number of observations and the model unknown parameters

to select between competing models with variable number of

parameters and different levels of accuracy [8], [9]. Finally,

the physical interpretability of the model parameters and the

ability to estimate the parameters such that the model matches

real-world data, is what makes the whole modeling framework

meaningful.

B. From stochastic infection propagation models to ordinary

differential (difference) equation modeling

The outbreak of a contagious disease in a large population

is a stochastic event. Starting from a single infected individual,

the infection is transmitted to others in a stochastic manner,

either by direct contact, proximity, or environmental traces (in-

fected objects left over in the environment). The new infected

generation in turns transmit the infection (again probabilisti-

cally) to the healthy individuals that they meet or encounter.

During the primary stages of an epidemic outbreak, healthy-

infected individual encounters are statistically independent. As

a result, the chance of multiple infected people meeting a

single healthy individual is probabilistically low. Therefore,

assuming that each infected individual contaminates R0 peo-

ple on average (known as the reproduction number), if R0 > 1
the disease spreads exponentially from one time step to another

(for example on a daily basis). However, in a finite population,

the exponential growth can not continue for ever. Depending

on the population size and contact patterns, the probability

of infected people encountering independent healthy indi-

viduals decreases. In other words, after the initial outbreak

that exponentially spreads among the population, the infected

population tend to encounter each other and repeated healthy

ones (the healthy individuals already contacted by another

infected person). Hence, the stochastic model of infection

propagation, somehow saturates1. The probabilistic models

used for modeling such epidemic spread are commonly based

on the branching process and a Poisson distributions for the

probability of contact between infectious and healthy subjects.

The stochastic perspective to epidemic modeling has been

extensively studied in the literature [1], [10]–[12]. Herein, we

adopt a more heuristic approach for model formation, which

is less rigorous, but is equally accurate in large populations

(refer to the above references for the justification). The idea

is to form the model using our intuition about the infection

spread. Suppose that x(t) denotes the number of infected

individuals of a population at time t. Next, assuming that

the chance of infection increases with the number of infected

individuals, we assume that the variations in the population

of the number of infected between time t and t + ∆ (over

relatively small intervals ∆) is proportional to the number of

infected individuals, i.e.,

dx(t)

dt
≈

x(t+∆)− x(t)

∆
= x(t)φ(t) (1)

Let us name φ(t) the reproduction function, which models

how the infected population evolves over time. This function

accounts for the expectation of various probabilistic factors,

such as the rate of infection transmission, population density

and contact patterns. Note that although the x(t) on the right

hand side of (1) could have been unified in φ(t), the above

form has the advantages that φ(t) can be interpreted as the

exponential rate, with inverse time units.

Denoting the kth generation of the infection spread by xk
∆
=

x(k∆), (1) can be written as follows:

xk+1 = [1 + ∆φ(k∆)]xk

Now, defining the reproduction number rk
∆
= [1 + ∆φ(k∆)],

it is evident that the population at the discretized time index

k can be recursively found from the initial condition x0:

xk = (rk−1rk−2 · · · r0)x0 (2)

Apparently, if for all k, rk < 1 (or equivalently φ(t) < 0),

the infection would decay to zero; otherwise if rk > 1 (or

φ(t) > 0) it spreads. In the simplest case, for which the

reproduction function is a constant φ(t) = λ, we have a

constant reproduction number R0 = 1 + λ∆, resulting in an

exponential growth/decay:

xk = x0R
k
0 (3)

Or in the continuous case:

x(t) = x(0)eλt (4)

The equivalence of the discrete and continuous solutions is

evident up to the first order approximation of the derivative,

as assumed in (1).

More generally, the reproduction function φ(t) (or rk in

the discrete case) can be a time-varying function of factors

1Another interpretation is that after a while, it becomes more and more
difficult for the average infected person to meet R0 non-infected individuals,
and therefore the reproduction number drops and the number of new infections
decreases exponentially.

https://arxiv.org/abs/2003.11371
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such as the total susceptible population, the population of

the exposed individuals (carriers of the disease but without

symptoms), contact patterns, and counter measures such as

social distancing and lockdowns. As shown in the sequel, the

notion of reproduction function (number) and its impact on

epidemic outbreak, generalizes to eigen-analysis of vector-

valued dynamic epidemic models (when the population is

divided into multiple groups of individuals known compart-

ments), enabling the stability analysis of such models.

As a reminder for later use, when λ < 0, the exponential

law in (4) implies that the population of the infected cases

drops 63%, 86%, 95%, 98%, 99%, and 99.75% from its initial

value, after λ−1, 2λ−1, 3λ−1, 4λ−1, 5λ−1, and 6λ−1 time

units, respectively. The latter indicates for example that after

6λ−1 time units, only 25 cases out of 10,000 would still be

infected. This property is later used to estimate the model

parameters from clinical experimental results. It is good to note

that although the exponential law for infection spread is the

most common assumption, depending on the application, more

accurate non-exponential models have also been considered

[13].

C. Compartmental modeling

Differential (difference) equations arise in many modeling

problems. The major application of these equations is when

the rate of change of a variable is related to other variables,

as it is so in most physical and biological systems. Many

powerful mathematical tools exist for the analysis and (nu-

merical) solution of models based on differential equations.

Despite their vast applications, differential equations are dif-

ficult to conceive and interpret without visualization. In this

context, compartmental models are used as a visual means

of representing differential equations of dynamic systems. A

compartment is an abstract entity representing the quantity

of interest (volume, number, density, etc.). Depending on the

level of abstraction, each of the variables of interest (equivalent

to system states in dynamic systems) are represented by

a single compartment, conceptually represented by a box.

Each compartment is assumed to be internally homogeneous,

which implies that all entities assumed inside the compartment

are indistinguishable. For example, depending on the model

complexity selected for modeling a certain epidemic disease,

men and women at risk can be assumed to conform a single

compartment, or may alternatively be considered as different

compartments. A similar partitioning may be considered for

different age groups, ethnicities, countries, etc., at a cost of a

more complex (less parsimonious) model with additional states

and parameters to be identified. Apparently, the available real-

world data may be insufficient for the parameter identification

of a more detailed (complex) model.

The compartments interact with one another through a set

of rate equations, visually represented by arrows between

the compartments. Therefore, compartmental models can be

converted to a set of first order linear or nonlinear equations

(and vice versa), by writing the net flow into a compartment.

Compartmental modeling is also known as mass transport

[14], or mass action [15], in other contexts. More technically, a

compartmental model is a weighted directed graph represen-

tation of a dynamic system. Each compartment corresponds

to a node of the graph and the linking arrows are the graph

edges. From this perspective, for an n compartment system,

the compartment variables can be considered as state variables

denoted in vector form as x(t) = [x1(t), . . . , xn(t)]
T . The

compartmental model provides a graphical representation of

the state-space model:

ẋ(t) = f(x(t),w(t); θ(t), t)
y(t) = g(x(t); θ(t), t) + v(t)

(5)

where f(·) is the state dynamics function corresponding to

the compartmental model graph (which can be possibly time-

variant and nonlinear), w(t) = [w1(t), . . . , wl(t)]
T represents

deterministic or stochastic external system inputs, y(t) =
[y1(t), . . . , ym(t)]T is the vector of observable model vari-

ables considered as outputs (the measurements), g(·) if the

function that maps the state variables to the observations

(measurements), v(t) = [v1(t), . . . , vm(t)]T is the vector of

measurement inaccuracies, considered as additive noise and

θ(t) = [θ1(t), . . . , θp(t)]
T is a vector of model parameters

to be set or identified. Researchers familiar with estimation

theory, have already guessed that the state-space form of

(5), implies that one may eventually be able to estimate and

predict the compartment variables from noisy measurements,

using state-space estimation techniques, such as the Kalman

or extended Kalman filter [16].

With this background, the basic steps of compartmental

modeling are:

1) Identifying the quantities of interest as distinct compart-

ments and selecting a variable for each quantity as a

function of time. These variables are the state variables

of the resulting state-space equations.

2) Linking the compartments with arrows indicating the rate

of quantity flow from each compartment to another (visu-

ally denoted over the arrows connecting the compartments).

3) Writing the corresponding first-order (linear or nonlinear)

differential equations for each of the state variables of the

model. In writing the equations from the graph represen-

tation, the edge weights multiplied by the state variable

of their start node are added to (subtracted from) the rate

change equation of the end node (start node). External

inputs can be considered to be originated from an external

node with value 1.

4) Setting initial conditions and solving the system of equa-

tions (either analytically or numerically), which is in the

form of a first-order state-space model.

A compartmental model is linear (nonlinear), when its rate

flow factors are independent (dependent) of the state variables.

A compartmental model is time-invariant (time-variant), when

its rate flow factors are independent (dependent) of time. Com-

partmental models may be open or closed. In closed systems,

the quantities are only passed between the compartments,

while in open systems the quantities may flow into or out

of the whole system. In a closed compartmental model, the

sum of all the differential equations of the system is zero (for

all t).

https://arxiv.org/abs/2003.11371
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Fig. 1. A sample compartmental model corresponding to the set of dynamic
equations in (6)

Example 2. A three compartment model corresponding to the

following set of equations is shown in Fig. 1.

dx(t)

dt
= λ− γx(t)2 − αx(t)

dy(t)

dt
= αx(t)− βy(t)

dz(t)

dt
= γx(t)2 + βy(t)− ρz(t)

(6)

which can be put in the matrix form of (5). Due to the state-

dependency of the rate flow between x and z, the model is

nonlinear. It is also an open system, since the sum of rate

changes is non-zero, i.e., there is net flow in and out of the

whole system (due to λ and ρ).

D. Mathematical epidemiology

In order to model the propagation of epidemic diseases in a

population, certain disease- and population-specific assump-

tions are required. The most common assumptions in this

context include:

• The diseases are contagious and transfer via contact.

• A disease may or may not be fatal.

• There may be births during the period of study, and the

birth may (or may not) be congenitally transferred from the

mother to the baby.

• The disease can have an exposure period, during which the

contaminants carry and spread the disease, but do not have

visible symptoms.

• Catching the disease may or may not result in short-term or

long-term immunity. Depending on the case, the recovered

patients can again become susceptible to the disease.

• Interventions such as medication, vaccination, lockdown,

quarantine and social distancing can change the pattern of

propagation.

Let us consider an example, which is the basic model that we

later extend for the COVIC-19 virus propagation pattern.
1) The susceptible-infected-recovered model: A basic

model used for modeling epidemic diseases without lifetime

immunity is known as the susceptible-infected-recovered (SIR)

model [1]. In this model, the total population of N individuals

exposed to an epidemic disease at each time instant t is

divided into three groups (each represented by a compartment):

the susceptible group fraction denoted by s(t), the infected

group fraction denoted by i(t), and the recovered group

fraction denoted by r(t) (the compartment variables are in

fact the fraction of each group’s population divided by N ).

Accordingly, the system is closed and we have

s(t) + i(t) + r(t) = 1 (7)

s i r
βαi

γ

Fig. 2. The basic susceptible-infected-recovered (SIR) model

A compartmental model for the propagation of the disease is

shown in Fig. 2. The compartmental representation of Fig. 2

is equivalent to the following set of differential equations:

ds(t)

dt
= −αs(t)i(t) + γr(t)

di(t)

dt
= αs(t)i(t) − βi(t)

dr(t)

dt
= βi(t)− γr(t)

(8)

Accordingly, moving from the susceptible group to the in-

fected group takes place at a rate that is proportional to the

population of the infected and susceptible groups, with pa-

rameter α. At the same time, infected individuals are assumed

to recover at a constant rate of β. Finally, considering that

the disease is not assumed to result in lifetime immunity

of the subjects, the recovered individuals again return to the

susceptible group at a fixed rate of γ. From (8), it is evident

that
ds(t)

dt
+

di(t)

dt
+

dr(t)

dt
= 0 (9)

which is in accordance with (7) and the fact that the system

is assumed to be closed (no births or deaths have been

considered).

Assuming initial conditions for each group, the set of

nonlinear equations (8) can be (numerically) solved to find the

evolution of the population of each compartment over time.

The numerical solution of a basic (non-fatal) SIR model is

shown in Fig. 3, with and without lifetime immunity. The time-

step for numerical discretizing of the differential equations of

this simulation has been chosen to be ∆=0.1 of a day. Notice

how the outbreak of a disease that does not cause lifetime

immunity (such as a typical flu), can result in a constant

rate of illness throughout time, after its transient period. For

widespread epidemic diseases, the healthcare strategists are in-

terested in the slopes of s(t), i(t) and r(t), rather than the total

number of infected individuals (as it is currently the case for

the COVID-19 Coronavirus). The prolongation of the disease

spread provides the better management of healthcare resources

such as hospitalization, medication, healthcare personnel, etc.

For later reference, it is interesting to study the fixed-point

of the SIR model (where ṡ(t) = i̇(t) = ṙ(t) = 0). Equating

the left sides of (8) with zero, it can be algebraically shown

that if α, γ 6= 0 (the non-immunizing case), the SIR model

has only two fixed-points:

(s∗(t), i∗(t), r∗(t)) = (1, 0, 0)

(s∗(t), i∗(t), r∗(t)) = (
β

α
, I0,

β

γ
I0)

(10)

https://arxiv.org/abs/2003.11371
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(b) Basic SIR without immunity

Fig. 3. Simulation of a basic non-fatal SIR model with α=0.5 and β=0.05
in two cases: a) γ=0.0 (lifetime immunity) and b) γ=0.04

where I0
∆
=

γ(α− β)

α(γ + β)
. The first fixed-point corresponds to the

lack of any infected cases, and the second corresponds to a

persistent disease in the population, as illustrated in Fig. 3(b).

This situation is only reachable if β < α, i.e., when the

infection rate is greater than the recovery rate.

We can also verify whether or not the fixed-points are

stable. Various methods can be used for this purpose. Perhaps,

the most tangible approach is based on perturbation theory.

Simply stated, one can add small perturbations to the fixed-

points of the system and check whether or not the perturbations

are compensated by the system’s dynamics by pushing the

state vector back to its fixed-point. Accordingly, the first fixed-

point in (10) can be perturbed to:

(s(t), i(t), r(t)) = (1 − ǫ, ǫ, 0) (11)

where 0 < ǫ ≪ 1 is a small perturbation (e.g., equivalent to

a single case of disease outbreak in a large population). Now

replacing the perturbed point in (8) and neglecting second and

higher order terms containing ǫ, we obtain:

ds(t)

dt
= −α(1− ǫ)ǫ ≈ −αǫ < 0

di(t)

dt
= α(1− ǫ)ǫ − βǫ ≈ (α − β)ǫ

dr(t)

dt
= βǫ > 0

(12)

s i r
βαi

γµ∗

µs µi µr

Fig. 4. The susceptible-infected-recovered (SIR) model with birth and death
rates

As a result, the first fixed-point is unstable, since due to the

sign of the derivatives of the perturbed system, the system’s

dynamics drives the state vector away from the fixed-point

(since the population of the susceptible group has a negative

derivative). However, depending on whether α > β or not, the

outbreak may or may not result in an increase in the infected

population. Simply put, if the infection rate is greater than

the recovery rate (α > β) the disease would lead into an

outspread; but if the recovery rate is faster than the infection

rate (α < β) the percentage of the infected population

will remain close to zero. In either case, for a non-fatal

non-immunizing disease, all individuals that become infected

recover after a while and move to the recovered group and

again go back to the susceptible group at a rate of γ. Note

that a SIR model with a non-zero infected population fraction

in steady-state, indicates that there is a constant flow between

the compartments, i.e., people are constantly contaminated,

recovered and again become susceptible to the disease.

Perturbing the second fixed-point results in

ds(t)

dt
= −α(

β

α
− ǫ)(I0 + ǫ) + βI0 ≈ ǫ(αI0 − β)

di(t)

dt
= α(

β

α
− ǫ)(I0 + ǫ)− βI0 ≈ −ǫ(αI0 − β)

dr(t)

dt
= β(I0 + ǫ)− β(I0 + ǫ) = 0

(13)

In this case, depending on whether (αI0 − β) > 0 or not, the

fixed-point may be stable or unstable.

2) The fatal SIR model: A fatal version of the SIR model

with rates of birth µ∗ and with different death rates from the

susceptible (µs), infected (µi) and recovered (µr) groups is

shown in Fig. 4. This system is no longer closed and its state

equations can be written as follows:

ds(t)

dt
= γr(t) − αs(t)i(t)− µss(t) + µ∗

di(t)

dt
= αs(t)i(t) − βi(t)− µii(t)

dr(t)

dt
= βi(t)− γr(t) − µrr(t)

(14)

With this background, in the sequel, we propose a com-

partmental model for the epidemiology of the COVID-19

Coronavirus.

III. A COMPARTMENTAL MODEL FOR THE CORONAVIRUS

EPIDEMIC DISEASE

A. The presumed model

Many infectious diseases are characterized by an incuba-

tion period between exposure and the outbreak of clinical

https://arxiv.org/abs/2003.11371
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Fig. 5. The fatal susceptible-exposed-infected-recovered (SEIR) model for
Coronavirus modeling

symptoms. Subjects exposed to the infection are much more

dangerous for the public as compared to the subjects showing

clinical symptoms. The condition becomes more and more

dangerous, with the increase of the incubation rate. A well-

known case is the HIV virus in its clinical latency stage.

The experience of the COVID-19 shows that a two-week

incubation period can spread a virus worldwide and almost

at any level of the society. Remember that any two of us

are only six handshakes apart!2 For this reason, an additional

compartment is added between the susceptibility and infection

stages of the SIR model, which accounts for the symptom-

less exposed subjects. Moreover, since we are also interested

in minimizing the mortality rate of the disease, a termination

compartment is dedicated to the passed-away population. The

variables of the model are therefore:

1) s(t): The susceptible population fraction (the number of

individuals in danger of being infected, divided by the total

population).

2) e(t): The exposed population fraction (the number of indi-

viduals exposed to the virus but without having symptoms,

divided by the total population).

3) i(t): The infected population fraction (the number of

infected individuals with symptoms, divided by the total

population).

4) r(t): The recovered population fraction (the number of

recovered individuals, divided by the total population).

5) p(t): The number of individuals that pass away due to the

disease, divided by the total population).

Keeping in mind that

s(t) + e(t) + i(t) + r(t) + p(t) = 1 (15)

the proposed model and its compartmental representation are

shown in equations (16) and Fig. 5.

ds(t)

dt
= −αes(t)e(t) − αis(t)i(t) + γr(t)

de(t)

dt
= αes(t)e(t) + αis(t)i(t)− κe(t)− ρe(t)

di(t)

dt
= κe(t)− βi(t)− µi(t)

dr(t)

dt
= βi(t) + ρe(t)− γr(t)

dp(t)

dt
= µi(t)

(16)

2Cf. https://en.wikipedia.org/wiki/Six degrees of separation

In (16), similar to the classical SIR model, the interpretation

of the nonlinear terms including s(t)e(t) and s(t)i(t) is that

the rate of exposure to the virus is proportional the population

of both the susceptible and exposed/infected subjects. Note

that the constraint (15) gives us an excess degree of freedom

that will be later used for simplifying the analysis by elimi-

nating one of the state variables.

B. Model assumptions and level of abstraction

The simplifying assumptions behind the proposed model

are:

1) The model variables are assumed to be continuous in both

amplitude and time.

2) Birth and natural deaths have been neglected. Therefore,

other parameters leading to changes in the population are

not considered. Neglecting the birth rate is also supported

by the current findings that babies are not susceptible to

this virus and to the best of our knowledge, no congenital

transmissions of the virus from mothers to fetuses have

been reported.

3) In the current study, we do not distinguish between male

and female subjects; although the current global toll of the

virus suggests that men have been more vulnerable to the

virus than women.

4) Age ranges have not been considered; although we known

that higher aged subjects are more vulnerable to the virus

and countries have different population pyramids.

5) Moreover, in this primary version, we have not yet consid-

ered the possibility of vaccination.

6) Geopolitical factors such as distance, country borders and

continental differences have also been ignored. But con-

sidering that different countries have adopted customized

counter measures against the virus spread, the model pa-

rameters are fitted over country-level data.

C. Model parameters

Having formed the model, we now explain its parameters

and their relationship with real-world factors and clinical

protocols. The techniques for estimating and fitting these

parameters on real data is later detailed in Section IV.

Note that all the model parameters have the dimension of

inverse time, to balance the left and right side dimensions

of (16), and that the studied model is essentially based on

an exponential law assumption, as detailed in Section II-B.

Therefore, we can find rules of thumb for selecting the model

parameters based on clinical facts and protocols.

• κ: The rate at which symptoms appear in exposed cases,

resulting in transition from the exposed to the infected

population. The selection of this parameter is according to

the exponential law detailed in Section II-B. Assume that we

are dealing with an extremely contagious disease for which

the healthcare decision makers have agreed on the above

noted 99.75% percentage as the target infection drop-out

threshold, and advised 14 days of quarantine for the whole

population. In that case, we can select κ = 6/14 = 0.43
(inverse days) in our model. Apparently, there is a lot of

https://arxiv.org/abs/2003.11371
https://en.wikipedia.org/wiki/Six_degrees_of_separation
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simplifications in this discussion; the age range, the subject-

specific body immune system features, the severeness of

the virus and many more factors have been neglected. But

it gives an idea about how the parameters can be tuned

in practice, up to a reasonable order of magnitude. With

this background, we now explain the interpretation of each

parameter of the model.

We should add that wide screening policies adopted by

certain countries are external factors that can significantly

accelerate the identification of the infected cases. In this

case, screening is a factor that increases κ.

• αi: The contagion factor between the infected and suscepti-

ble populations, which is related to the contagiousness of the

virus and social factors such as personal hygiene, population

density and level of human interactions. In order to find the

range (or order of magnitude) of this parameter, we can start

with the contagion factors of more known viruses, such as

flu and influenza, which are more or less influenced by the

same spreading factors.

• αe: The contagion factor between the exposed and sus-

ceptible populations. This parameter is logically far greater

than αi, since in ordinary conditions (before lockdowns and

quarantine), people rarely avoid contact with a symptom-less

individual; nor does the individual itself avoid interaction

with others.

• γ: The reinfection rate, or the rate of returning from the

recovered group to the susceptible group. This happens for

the cases that the body does not develop lifetime immunity

after recovery, or the virus itself starts to mutate over

time. This parameter is the inverse of the immunity rate

of the virus. It is currently too early to comment about the

immunity characteristics of the Coronavirus3. Although at

least one case of reinfection soon after recovery has been

reported, preliminary research have suggested short-term

immunity of up to four months.

• β: The recovery rate of the infected cases. By considering

the fourth equation in (16), we can denote the change in

the number of hospitalized recoveries (or under control

in any form, e.g., under home-care) by rh, resulting in

rh(t + ∆) − rh(t) ≈ ∆βi(t), where ∆ is the time unit of

approximation (for example 1 day). Therefore, the parameter

β can be approximated by dividing the daily recovery count

of the population under study, by the total infected cases

in the same day. In the real world, apart from the body

strength of the infected subject in resisting against the virus,

this parameter depends on the healthcare infrastructure of a

country (hospitalization facilities, availability of medication,

number of intensive care units, etc.).

• ρ: The recovery rate of the exposed cases (the cases that

are exposed, but recover without any symptoms). This

parameter is not directly measurable from pure observations

and requires lab-based experiments. However, we logically

expect this parameter to be of the same order or greater than

the parameter β (the recovery rate of the infected population

3Refer to:
https://www.who.int/docs/default-source/coronaviruse/
who-china-joint-mission-on-covid-19-final-report.pdf

with symptoms).

• µ: The mortality rate of the infected cases. By approximat-

ing the last equation in (16) by p(t+∆)− p(t) ≈ ∆µi(t),
where ∆ is the time unit of approximation (for example

1 day), the parameter µ can be approximated by dividing

the daily death toll by the total infected cases in the same

day. As with β, the mortality of the virus itself, the immune

system of the subjects, and the medical infrastructure are

important factors that influence the parameter.

• e0: The initial exposed population (seed).

By studying the above factors, we can see that the only

parameters of the model that can be changed in the short-

term (before the development of long-term solutions such

as vaccination, medication, improvement of hospitalization

facilities, etc.), is to reduce the infection rates by minimizing

human contacts (social distancing), or to apply public screen-

ing. These are the two policies, which have been adopted

worldwide.

D. Fixed-point analysis

As with the basic SIR model presented in Example II-D1,

the fixed-point(s) of the model can be sought by letting the left

hand sides of all equations in (16) equal to zero. Accordingly,

assuming that all the model parameters are nonzero, the only

fixed-point is the no-disease case (i(t) = e(t) = r(t) = 0):

(s∗(t), e∗(t), i∗(t), r∗(t), p∗(t)) = (1 − p0, 0, 0, 0, p0) (17)

where 0 ≤ p0 ≤ 1 is the steady-state total death fraction. The

stability of this fixed-point can be addressed by perturbing the

fixed-point with a minor exposure ǫ (which can correspond to

a single new exposed case in the real world):

(s(t), e(t), i(t), r(t), p(t)) = (1− p0 − ǫ, ǫ, 0, 0, p0) (18)

Putting this point in the state dynamics (16), we find:

ds(t)

dt
= −αe(1− p0 − ǫ)ǫ ≈ −αe(1− p0)ǫ < 0

de(t)

dt
= αe(1− p0 − ǫ)ǫ− κǫ− ρǫ ≈ (αe − αep0 − κ− ρ)ǫ

di(t)

dt
= κǫ > 0

dr(t)

dt
= ρǫ > 0

dp(t)

dt
= 0

(19)

which is unstable, i.e., the system’s dynamics drives it away

from the fixed-point in the direction of reducing the healthy

cases, resulting in further infection. A more rigorous study of

the system stability conditions is presented in the following

sections using eigenanalysis.

E. Model behavior before its nonlinear phase

Let us study the model during its primary rising phase, when

the infection toll is much smaller than the total population. For

instance, suppose that a country has 100,000 of exposed or

infected cases, which is indeed significant for any country, as

https://arxiv.org/abs/2003.11371
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
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it is far beyond the available number of intensive care unit beds

of even the most developed countries4. But for a country with

100 million population, such an exposure/infection toll is only

0.1% of the total population. Therefore, during the primary

phases of the disease spread, the model can be simplified by

assuming that the susceptible population is almost constant

(s(t) ≈ 1) and ds(t)/dt ≈ 0, regardless of the other param-

eters of the model. This assumption practically implies that

the total population is not important during low percentages

of infection, resulting in

Result 1. In low percentages of infection, the perfor-

mance of epidemic control policies of states, countries,

and regions should not be evaluated by normalizing the

infection/recovery/death tolls to their total population;

but rather the net values should be compared.

Under this assumption, (16) is simplified to the linear set of

equations:






















de(t)

dt
di(t)

dt
dr(t)

dt
dp(t)

dt























≈









(αe − κ− ρ) αi 0 0
κ −(β + µ) 0 0
ρ β −γ 0
0 µ 0 0



















e(t)

i(t)

r(t)

p(t)











(20)

Defining x(t) = (e(t), i(t), r(t), p(t))T , (20) can be written

in matrix form:

d

dt
x(t) = Ax(t), x(0) = (e0, 0, 0, 0) (21)

where A is the 4×4 state matrix on the right hand side of

(20). The characteristic function of this linear system is:

|λI−A| = λ(λ+γ)[λ
2 +(β+µ− δ)λ− δ(β+µ)− καi] = 0

(22)

where δ
∆
= (αe − κ − ρ). Therefore the system’s eigenvalues

are:

λ1 = 0, λ2 = −γ

λ3 =
δ − β − µ+

√

(δ + β + µ)2 + 4καi

2

λ4 =
δ − β − µ−

√

(δ + β + µ)2 + 4καi

2

(23)

which are all real-valued. Moreover, it is straightforward to

check that λ3 > δ > λ4. The eigenvectors corresponding to

each eigenvalue are:

v1 = (0, 0, 0, k1)
T , v2 = (0, 0, k2, 0)

T

v3 = k3(1,
λ3 − δ

αi

,
ραi + β(λ3 − δ)

αi(λ3 + γ)
,
µ(λ3 − δ)

αiλ3
)

v4 = k4(1,
λ4 − δ

αi

,
ραi + β(λ4 − δ)

αi(λ4 + γ)
,
µ(λ4 − δ)

αiλ4
)

(24)

where k1, k2, k3 and k4 are arbitrary constants. The general

form of the solution of the compartmental variables is a

4See for example:
https://link.springer.com/article/10.1007/s00134-012-2627-8/tables/2

summation of exponential terms with the above exponential

rates and eivenvectors:

x(t) =

4
∑

k=1

ake
λktvk (25)

Specifically, after some algebraic simplifications, we can cal-

culate the infected and exposed populations as follows:

i(t) =
e0(λ3 − δ)(δ − λ4)

αi(λ3 − λ4)
[exp (λ3t)− exp (λ4t)]

e(t) =
e0

λ3 − λ4
[(λ3 − δ) exp (λ4t) + (δ − λ4) exp (λ3t)]

(26)

From the last equation in (16), it is clear that the death toll

will not stop before i(t) = 0. Also from (26), we can see that

since λ3 is the dominant eigenvalue, the steady-state behavior

and whether or not i(t) and e(t) diverge from or converge to

zero, depends on the sign of λ3. The necessary and sufficient

condition for the linearized system’s stability (stopping the

death doll) is λ3 < 0, which simplifies to καi+δ(β+µ) < 0,

or:

καi < (κ+ ρ− αe)(β + µ) (27)

A sufficient condition that guarantees this property is when

αi = αe = 0. The condition αi = 0 implies that the suscep-

tible group avoids contact with the infected ones. However,

the second condition (αe = 0) is difficult to fulfill in the real-

world, since the exposed group do not have any symptoms.

This is why social distancing is required to enforce αe ≈ 0 and

to permit all the exposed subjects to move to the infected group

without infecting new individuals, after which the symptom-

less group can be all considered clear of the disease. Another

practical case is when αi ≈ 0 (healthy people avoid contact

with the infected) and κ+ ρ > αe (the rate of recovery of the

exposed or the appearance of their symptoms is faster than the

rate of new exposures). This condition is fulfilled by social

distancing and lockdown (isolation of even the symptom-less

cases for a certain period).

However, if none of the above conditions are fulfilled and

λ3 > 0, the number of exposed and infected cases increases

exponentially at a rate of λ3. In this case, with fixed system

parameters, the infection rate rises exponentially up to a point

at which the linear approximation does no longer hold. This

practically translates into:

Result 2. During an exponential outbreak of an epi-

demic (λ3 > 0), the system is unstable and without

enforcing temporary lockdowns, social distancing and

quarantine of the infected cases (resulting in the model

parameter changes), the exponential increase in the

number of infected subjects continues to a point where

a significant percentage of the population is infected.

https://arxiv.org/abs/2003.11371
https://link.springer.com/article/10.1007/s00134-012-2627-8/tables/2
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Result 3. Under counter measures, the model eigen-

values change and λ3 (the dominant eigenvalue), or

equivalently the reproduction number R0 = e∆λ3 , is the

parameter that can be tracked as a score for evaluating

how good counter measures such as social distancing

and quarantine are performing.

Considering that the death toll p(t) is composed of the same

exponential terms as the infected cases in (26), the above result

is indeed disturbing.

It is also interesting to observe from (26 ) that the population

of the different compartments of the model is only linearly

proportional to the initial exposed population size e0
5. There-

fore, for a large population (at the level of a populated city or

country), the initial infected seed size is not as important as the

other model parameters that influence the exponential behavior

of the model (such as the social contact rates). Therefore:

Result 4. The initial seed size is not the most criti-

cal parameter for epidemic management. Regions with

smaller initial seeds of infected/exposed cases may end

up with a higher infected and death toll depending on

their infection rates, defined by factors such as human-

contact rate and personal hygiene.

Another interesting property is to check the ratio between

the number of infected (which is measurable in the real world)

and the number of exposed (which is not directly measurable).

From (26), we can find6:

i(t)

e(t)
=

exp(λ̃3t)− exp(−λ̃4t)

αi[λ̃
−1
3 exp(λ̃3t) + λ̃−1

4 exp(−λ̃4t)]
(28)

where λ̃3
∆
= λ3 − δ and λ̃4

∆
= δ − λ4 are both positive.

Therefore, when the terms containing exp(−λ̃4t) (which is a

decaying exponential) vanish and the epidemic model is still

in its linear phase (i(t) ≪ s(t) or s(t) ≈ 1), the ratio can be

approximated by:

i(t)

e(t)
→

λ̃3

αi

for t ≫ λ̃−1
4 and i(t) ≪ s(t) (29)

which gives the following practical result:

Result 5. During the primary phases of an epidemic

outbreak (when the number of contaminated cases has

an exponential growth, but the percentage of the infected

individuals to the total population is still small), the

number of exposed subjects can be approximated by

e(t) ≈ αiλ̃
−1
3 i(t), permitting its estimation from i(t).

F. Trend estimation requirements

The ability to estimate the future trend of the epidemic

pattern is extremely important from the strategic perspective.

This requires the accurate estimation of the compartmental

5Note that the COVID-19 is believed to have started from a single case.
6The numerator and denominator of (28) have been multiplied by exp(−δt)

to obtain the simplified form.

model variables from reported statistics of the virus spread.

The trend estimation requirements are addressed in the sequel

for both the linearized and general form of the model. As

noted before, these results can be used to design an estimation

scheme, based on for example a Kalman filter, for estimation

and prediction of the current and future trends, in presence of

inaccurate infection tolls.

1) The linearized case (low fraction of infection): Among

the different state variables of the linearized compartmental

model (in the low fraction of infection case), all except e(t)
are directly measurable. The measurements can be formulated

in matrix form as follows:







I(t)

R(t)

P (t)






=





0 1 0 0
0 0 1 0
0 0 0 1















e(t)

i(t)

r(t)

p(t)











+











ve(t)

vi(t)

vr(t)

vp(t)











(30)

where I(t), R(t), and P (t) are the reported infection, recovery

and death tolls divided by the total population. The variables

can be considered as noisy measurements for the system’s

“true” infection, recovery and death tolls. The evident sources

of noises include: unavailable information regrading the exact

population, intentional and unintentional misreported values,

mis-classified reasons of death (especially for the elderly

or subjects suffering from multiple health issues), and the

marginal cases that may be unknown or misclassified for

the healthcare system. Equation (30) can be written in more

compact form as follows:

y(t) = Cx(t) + v(t) (31)

where x(t) = [e(t), i(t), r(t), p(t)]T is the reduced state-

vector. Although the variable e(t) is not directly measurable

from the available public data, one may seek whether of

not this variable can be indirectly estimated from the other

measurements (assuming that the other model parameters are

known). Here, we can use the notion of observability from

system theory [17], [18]. Without going into the theoretical

details, for the model matrix pair (A,C) the observability

matrix is defined as follows:

Ok =









Ck

CkAk

· · ·
CkA

m−1
k









(32)

If Ok has rank m (4 in our model), all the four state variables

of the linearized model (20) are observable at its output, which

means that they can be estimated from the observations in

finite time. It is straightforward to numerically calculate (32)

for arbitrary choices of the model parameters and to check that

none of its four columns are linearly dependent7. Therefore, all

the state variables, including e(t), are observable and may be

estimated using state estimation techniques such as the Kalman

filter (as the optimal linear estimator).

7Matlab has a function called obsv for calculating the observability matrix,
from the matrix pair (A,C).

https://arxiv.org/abs/2003.11371
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2) The general case: For the original nonlinear compart-

mental model (16), the variations in s(t) is no longer negli-

gible; but the constraint (15) on the system being closed still

holds. Therefore, we can reduce the model order by replacing

s(t) = 1 − e(t) − i(t) − r(t) − p(t), which simplifies the

compartmental model as follows:

de(t)

dt
= [1− e(t)− i(t)− r(t) − p(t)][αee(t) + αii(t)]

− κe(t)− ρe(t)

di(t)

dt
= κe(t)− βi(t)− µi(t)

dr(t)

dt
= βi(t) + ρe(t)− γr(t)

dp(t)

dt
= µi(t)

(33)

In this case, the observability rank test (32) can be checked

for the matrix pair (A(t),C), where the matrix C is similar

to the linearized case in (30) and A(t) is the Jacobian

of the nonlinear model (33), with respect to the entries of

the reduced state-vector x(t) = [e(t), i(t), r(t), p(t)]T . The

entries of the Jacobian have been listed in Appendix A; some

of which are time-dependent. Due to the non-evident form of

the observability matrix of this case, the proof of observability

of the matrix pair (A(t),C) in its general case is cumbersome.

However, it is simple to check this property numerically for

arbitrary values of the model parameters. We have tested this

property for our later shown simulated results, as part of the

source codes provided online at [6]. Therefore, we can state the

following result in both the general and linear approximated

case:

Result 6. Although the number of exposed cases of

the population is not directly measurable, if the model

parameters are known (or accurately estimated), the

number of exposed cases can also be estimated from

the other observations.

G. Repeated waves of the disease

The peaks of the infected group population, and its potential

repetition in time, is important from the strategic viewpoint

[19]. These points correspond to local or global extremums of

i(t), which mathematically correspond to where di(t)/dt = 0
in (16), i.e., where i(t) = κe(t)/(β + µ). It can be shown

that this leads to a reduced order set of nonlinear dynamic

equations, which can be solved for the remaining variables

[s(t), e(t), r(t), p(t)]T . The simulations demonstrated in the

sequel, show that the infected population can have multiple

local peaks over time, with recurrent behaviors, proving that:

Result 7. The epidemic disease can repeat pseudo-

periodically over time (in later seasons or years) and

turn into a persistent disease in the long term. The

amplitude and time gap of the infection peaks depends

on the model parameters.

This behavior has been observed in previous pandemics, such

as the 1918 pandemic influenza, known as the Spanish flu,

where three pandemic waves of infection have been observed

within an interval of a few months (cf. https://en.wikipedia.

org/wiki/Spanish flu). A very insightful mathematical study

of sustained oscillations of similar compartmental models was

previously presented in [20].

IV. MODEL PARAMETER IDENTIFICATION IN FIXED AND

SOCIALLY CONFINED SCENARIOS

An important step in making the proposed model useful

in practice is to fit its parameters on real data. As noted

before, the general compartmental model in (5 ) depends on

the parameter vector θ(t), which is generally time dependent

(relies on social contact, hygiene, etc.). In order to fit the model

parameters various methods are available in the literature. We

study two approaches, which can be applied to our problem

of interest.

A. Constrained least squares parameter estimation

A general formulation for parameter identification is to

use constrained weighted least squares (CWLS) estimation.

This approach becomes equivalent to the maximum likelihood

estimate, if the measurement noises belong to specific families

of probability distributions (such as the Gaussian distribution).

Nevertheless, the CWLS is more generic as it only attempts

in finding the parameter vector that minimizes a quadratic

error cost function between the model and measurements

(without any probabilistic priors on the origin of the model

or measurement noises). We can specifically refer to the

CWLS formulation proposed in [21] and other prior research,

which have been specifically developed for nonlinear dynamic

models. Accordingly, for the general dynamic model (5), if we

define the modeling error function

e(t)
∆
= y(t)− g(x(t); θ(t), t), (34)

assuming temporarily that the model parameters θ(t) = θ

are fixed, the problem of parameter identification can be

formulated as follows:

θ̂ = argmin
θ

trE[e(t)We(t)T ]

subject to:

θmin ≤ θ ≤ θmax,
ẋ(t) = f(x(t),w(t); θ, t), x(0) = x0

(35)

Where E(·) denotes averaging over time, tr(·) denotes matrix

trace, θmin and θmax define the lower and upper bounds of

the model parameters dictated by physical constraints, and W

is the inverse of the covariance matrix of the measurement

noise vector v(t) (if available; otherwise can be set to identity

for an unweighted version). This problem is in the form

of nonlinear CWLS for which a variety of stable numerical

solvers exist. Refer to [21] for a survey of methods and [22,

Ch. 5] for methods specific to dynamic systems. In (35), since

the temporal averaging is performed over all time samples,

the procedure is only applicable to offline model fitting. Now

if θ(t) is time variant, an adaptive version of the above

https://arxiv.org/abs/2003.11371
https://en.wikipedia.org/wiki/Spanish_flu
https://en.wikipedia.org/wiki/Spanish_flu
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algorithm can be used, by averaging the error cost function

over t0 ≤ τ ≤ t, resulting in a sample-wise updates of the

parameter vector. In the following subsection, we propose an

alternative approach for the time variant case, which is more

flexible, does not require nonlinear least-squares solvers, and

simultaneously estimates the model state variables.

B. An extended Kalman filter for joint parameter and variable

estimation

A well-known method for adaptive estimation of dynamic

system parameters is to consider the (possibly) time-varying

parameters of the model as additional state variables with

presumed dynamics and to estimate them at the same time

or in parallel with the original state vector. For this, let

us assume that all the parameters of our base epidemic

model (16) are time-variant, resulting in the parameter vector

θ(t) = [αi(t), αe(t), κ(t), β(t), ρ(t), µ(t), γ(t)]
T , that should

be estimated from real-world epidemic data. From the mod-

eling perspective, this vector can have some deterministic or

stochastic fluctuations. For example, let us assume that the

model parameters are a simple Wiener process (Brownian mo-

tion) plus deterministic inputs to model social interventions:

dαi(t)

dt
=

dui

dt
(t) + wi(t)

dαe(t)

dt
=

due

dt
(t) + we(t)

dκ(t)

dt
= wκ(t)

dβ(t)

dt
= wβ(t)

dρ(t)

dt
= wρ(t)

dµ(t)

dt
= wµ(t)

dγ(t)

dt
= wγ(t)

(36)

where w(t) = [wi(t), we(t), wκ(t), wβ(t), wρ(t), wµ(t), wγ(t)]
T

is zero-mean white noise acting as process noise, and ui(t) and

ue(t) are the deterministic inputs due to social intervention

that change the level of social contact (considered for

modeling the effect of social distancing and quarantine). For

example, the effect of lockdown applied at time t = t0 can

be modeled by combinations of functions of the form:

ui(t) = ai − bie
−ci(t−t0)u(t− t0)

ue(t) = ae − bee
−ce(t−t0)u(t− t0)

(37)

where ci and ce define the speed of lockdown application,

and ai, bi, ae and be define the range of lockdown effect. The

effect of lockdown termination can be modeled in a similar

manner. In any case, as detailed in Appendix A, the above

dynamics can be state augmented with the compartmental

model dynamics in (16) and (30) to form an augmented model,

which can be tracked using an extended Kalman filter (EKF).

The implementation of an EKF requires the Jacobian matrix

of the state augmented model with respect to all the elements

of the augmented state vector x̃(t)
∆
= [x(t); θ(t)] (where ; de-

notes column-wise stacking), as detailed in the appendix. The

details of the EKF is beyond the scope of the current study,

which is focused on the modeling aspects of the problem.

Nevertheless, the algorithmic steps of the discretized version

of the compartmental model are presented in Appendix B.

An implementation of the EKF for epidemic model parameter

and state vector tracking will be provided online in the Git

repository of the project [6]. The interested reader is referred

to classical textbooks for the required signal processing and

algorithmic details of the EKF and its extensions [23, Ch. 5

and 6], [16], [24, P. 191], [25, Appendix 9.A and 9.B].

Note that a great advantage of using the EKF for estimat-

ing the model states and parameters is that in addition to

estimating the values, it also provides confidence intervals

for the estimates (which is an advantage of all Bayesian

inference/estimation methods). In other words, under the given

assumptions on the process and measurement noise statistics,

one can for example determine how accurate the number

of infected and exposed cases have been estimated. In the

context of interest, such confidence intervals permit healthcare

strategists to have an idea about the accuracy of the estimated

values and appropriate timing for lockdown and quarantine

management.

V. SIMULATED RESULTS

We have carried-out several simulations with different sets

of parameters, resulting in the different scenarios explained in

previous sections.

Example 3 (Life-time immune case). The first scenario is

illustrated in Fig. 6, where we have considered a single virus

outbreak in a 84 million population, with constant parameters

αe = 0.65, αi = 0.005, κ = 0.05, ρ = 0.08, β = 0.1, µ =
0.02 and γ = 0, simulated over one year. The assumption γ =
0 implies that the disease has been assumed to develop lifetime

immunity, therefore there is no return from the recovered to

the susceptible compartment. In Fig. 6, we can observe the

constant ratio between i(t) and e(t) during the exponential

outbreak (when i(t) ≪ s(t) and before reaching the nonlinear

phase of the model), which approves the relationship derived

in (29).

Example 4 (Recurrent epidemic). The second scenario is

illustrated in Fig. 7. All the model parameters are identical

to Example 3, except for the re-susceptibility rate (loss of

immunity) that is now γ = 0.001. It is interesting to see that

in this scenario, the model has recurrent decaying peaks over

time, similar to the aforementioned 1918 Spanish flu.
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Fig. 6. Scenario A: Simulation of the fatal SEIR model with parameters
αe = 0.65, αi = 0.005, κ = 0.05, ρ = 0.08, β = 0.1, µ = 0.02
and γ = 0, over 10 months. Notice the constant i(t)/e(t) ratio during the

exponential outbreak, which is approximately equal to αiλ̃
−1

3
= 0.078.
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Fig. 7. Scenario B: Simulation of the fatal SEIR model with parameters αe

= 0.65, αi = 0.005, κ = 0.05, ρ = 0.08, β = 0.1, µ = 0.02, γ = 0.001, in (a)
five months and (b, c) ten years

Example 5 (Short lockdown period). The next scenario is

illustrated in Fig. 8. This scenario corresponds to the case

where a one month lockdown is applied by the government

to identify the exposed and infected cases. The parameters

of the model before quarantine are αe = 0.6, αi = 0.005,

κ = 0.05, ρ = 0.08, β = 0.1, µ = 0.02 and γ = 0.001. In the

30th day after the initial outbreak, the one month lockdown is

applied, during which αe and αi are reduced to 0.1 and 0.001,

respectively, while keeping the other parameters unchanged.

After one month, αi remains 0.001 (people keep distance with

the infected ones), but αe is increased to 0.4 (much more

than the quarantine period, but two-third of the original social

contact factor). We can see that with this scenario, which

corresponds to an insufficient quarantine period, the population

of the infected and exposed peaks have decreased; but the

quarantine does not significantly change the mortality toll after

five months. But why? Because, after the quarantine period,

there is still a minor fraction of the population that is exposed,

and this very small seed can re-initiate the virus spread. We

therefore come to the following result:

Result 8. Imposing quarantines is effective in delaying

and reducing the infection population peaks; but is

insufficient in the long term. Social distancing and other

measures should remain for a long period after the

initial quarantine, to make the number of contaminated

subjects equal to “zero.”
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Fig. 8. Scenario C: Simulation of the fatal SEIR model with a quarantine
period between day 30 and 60. E1(t), I1(t) and P1(t) correspond to the
case without quarantine and E2(t), I2(t) and P2(t) correspond to the case
with quarantine. Refer to the text for further details and the switching of the
parameters.

Example 6 (Healthcare system saturation). Our next scenario

corresponds to the case where the healthcare system reaches

its maximum capacity or break-point, due to limited test

kits, medication, hospitalization, excessive fatigue or mortality

of the healthcare personnel, economic breakdowns, etc. This

phenomenon is the worst feared case for pandemic strategists

and it can be modeled at various levels. Suppose that we

model it in its simplest form and assume that the recovery

and mortality rates of the model change as functions of the

number of infected cases:

β(t) = (βs − β0)h(i(t)) + β0

µ(t) = (µs − µ0)h(i(t)) + µ0
(38)

where β0 and µ0 are the recovery and mortality rate parameters

before healthcare system saturation, βs (βs ≪ β0) and µs

(µs ≫ µ0) are the recovery and mortality rates after saturation,

and h(i(t)) is a saturation function such that h(0) ≈ 0 and
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h(∞) ≈ 1. For example, the hyperbolic tangent with a slope

parameter σ is a reasonable and common choice for modeling

such phenomena:

h(i) =
1

2
[1 + tanh (

i − i0
σ

)] (39)

where i0 is the infection break-point of the healthcare system.

The above choice is also beneficial for parameter optimization

and tracking, due to the smoothness and differentiability of the

hyperbolic tangent function.

A simulation of this scenario is illustrated in Fig. 9. The

parameters of the model are αe = 0.6, αi = 0.005, κ = 0.05,

ρ = 0.08, and γ = 0.001. The healthcare system breakdown

parameters are β0 = 0.1, µ0 = 0.02, βs = 0.01, µs = 0.2,

σ = 1, i0 = 0.1 (although in reality, the healthcare system is

expected to reach its breakpoint far below this infection rate).

We can observe how the death rate significantly increases as

the system reaches its break-point.
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Fig. 9. Scenario D: Simulation of the fatal SEIR model when the healthcare
system reaches its breakdown point at i(t) = 0.1. The curves i1(t), r1(t),
and p1(t) are the non-saturated cases and i2(t), r2(t), and p2(t) correspond
to the saturated cases.

Based on the simulations of this section, we can propose a

protocol that can be effective in practice:

VI. CONCLUSION AND FUTURE WORK

In this study we considered some of the properties of

epidemic diseases from a mathematical and signal processing

perspective, by using a compartmental model for the propa-

gation of the epidemic disease. It was shown that the model

is not stable around its fixed-point (the no-infection case). We

should indeed be proactively worried about the instability of

our societies to such epidemic outbreaks; since a fatal virus

with an initial seed as small as a single subject worldwide can

trigger the avalanche of pandemic waves, killing many people

worldwide, as the COVID-19 Coronavirus has shown. Note

however that from the modeling and dynamics perspective,

Algorithm 1 Proposed protocol for effective epidemic disease

control

1: Apply maximum lockdown of the entire population and

quarantine of the infected cases, as soon as possible.

2: Estimate the number of exposed subjects and the level of

confidence of the estimate.

3: Keep the maximal lockdown until as many of all the

number of estimated exposed subjects are identified at a

very high level of confidence.

4: Switch from lockdown to strict social distancing and

personal hygiene protocols.

5: Switch to normal life only when no new cases have been

reported for a long period.

there is nothing specific to the Coronavirus, apart from its

specific parameters. In fact, humans have always been living in

such a metastable condition and researchers from all domains

need to synergize to think a way through this condition.

The research will be continued and extended from var-

ious aspects in the future versions. Specifically, by fitting

the model over real data, the prediction of infection and

mortality rates under quarantine and vaccination, and the study

of the recurrent pattern of the epidemic disease over time.

Non-exponential law infection distributions have also been

considered in the literature [13]. This can be an interesting

track of research for the study of epidemic diseases, including

the family of Coronaviruses.

APPENDIX

A. Compartmental Model Jacobians

Following (33) and the Wiener process model for the model

parameters presented in (36), the most general form of the

proposed compartmental model with time-varying parameters

is as follows

de(t)

dt
= [1− e(t)− i(t)− r(t) − p(t)][αe(t)e(t) + αi(t)i(t)]

−κ(t)e(t)− ρ(t)e(t)
di(t)

dt
= κ(t)e(t)− β(t)i(t)− µ(t)i(t)

dr(t)

dt
= β(t)i(t) + ρ(t)e(t)− γ(t)r(t)

dp(t)

dt
= µ(t)i(t)

dαi(t)

dt
=

dui

dt
(t) + wi(t)

dαe(t)

dt
=

due

dt
(t) + we(t)

dκ(t)

dt
= wκ(t)

dβ(t)

dt
= wβ(t)

dρ(t)

dt
= wρ(t)

dµ(t)

dt
= wµ(t)

dγ(t)

dt
= wγ(t)

(40)

If we define the variable and parameter augmented state vector:

x(t)
∆
= [e(t), i(t), r(t), p(t),

αi(t), αe(t), κ(t), β(t), ρ(t), µ(t), γ(t)]
T

(41)

which can be written in the compact state-space form (5). The

Jacobian of this form is defined

A(t)
∆
=

∂f(·)

∂x
∈ R

11×11 (42)
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with the following non-zero entries (we have dropped the time

index of all variables and parameters for better readability):

A1,1 = αe[1− 2e− i− r − p]− αii− κ− ρ
A1,2 = αi[1− e− 2i− r − p]− αee
A1,3 = −[αee+ αii] A1,4 = −[αee+ αii]
A1,5 = i[1− e− i− r − p] A1,6 = e[1− e− i− r − p]
A1,7 = −e A1,9 = −e
A2,1 = κ A2,2 = −β − µ
A2,7 = e A2,8 = −i A2,10 = −i
A3,1 = ρ A3,2 = β A3,3 = −γ
A3,8 = i A3,9 = e A3,11 = −r
A4,2 = µ A4,10 = i

(43)

B. The extended Kalman filter algorithm

Official epidemic data are commonly reported on a daily or

weekly bases. Therefore, the measurements used for model

variable and parameter estimation are discrete time, while

the compartmental model proposed throughout this work is

continuous. As a result two approaches are available for

implementing an EKF: 1) to use continuous-discrete Kalman

filters, which mix continuous state equations with discrete

measurement equations, or 2) to discretize the dynamic model

of the system and to implement a discrete EKF. The formula-

tion for the latter approach is detailed in Algorithm 2.

Algorithm 2 An extended Kalman filter for simultaneous

compartment variable and model parameter tracking

Input: Noisy measurements (regular reports) of the

epidemic spread yk

Input: Initial conditions: Q, R, x̂+
0 , P+

0

Output: x̂+
k (vector of state and model parameter estimates)

1: for k = 0 · · ·T do

2: State prediction:

3: x̂−

k+1 = f(x̂+
k , w̄; θ̂+

k , k∆)

4: P−

k+1 = A
+
k P

+
k A

+T
k +Q

Measurement update:

5: Kk = P−

k C
−T
k [C−

k P
−

k C
−T
k +R]−1

6: ŷ−

k = g(x̂−

k ; θ̂
−

k , k∆)
7: ik = yk − ŷ−

k

8: σ̂+
k = σ̂−

k +Kkik
9: P+

k = [I−KkC
−

k ]P
−

k

10: Check and enforce variable and parameter ranges

using hard-constraints

11: Performance monitoring

12: end for
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