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ABSTRACT

Outbreak of coronavirus disease 2019 (COVID-19) occurred in Wuhan and 

has rapidly spread to almost all parts of world. In coronaviruses, the 

receptor binding domain (RBD) in the distal part of S1 subunit of 

SARS-CoV-2 spike protein can directly bind to angiotensin converting 

enzyme 2 (ACE2). RBD promote viral entry into the host cells and is an 

important therapeutic target. In this study, we discovered that theaflavin 

showed the lower idock score (idock score: −7.95 kcal/mol). To confirm 

the result, we discovered that theaflavin showed FullFitness score of 

-991.21 kcal/mol and estimated ΔG of -8.53 kcal/mol for the most 

favorable interaction with contact area of SARS-CoV-2 RBD by 

SwissDock service. Regarding contact modes, hydrophobic interactions 

contribute significantly in binding and additional hydrogen bonds were 

formed between theaflavin and Arg454, Phe456, Asn460, Cys480, Gln493, 

Asn501 and Val503 of SARS-CoV-2 RBD, near the direct contact area 

with ACE2. Our results suggest that theaflavin could be the candidate of 

SARS-CoV-2 entry inhibitor for further study.
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Introduction

In December 2019, an outbreak of coronavirus disease 2019 (COVID-19) 

occurred in Wuhan, China, induced by SARS-CoV-2. Human-to-human 

spread rapidly to the whole world triggering a global public health 

emergency (1-3). In coronaviruses, spike protein on the surface envelop of 

SARS-CoV-2 is responsible for promoting viral entry into the host cells (4). 

The spike protein is composed of two functional subunits: the S1 subunit 

that binds to the host cell receptors and the S2 subunit that mediates the 

fusion of the viral and host cellular membranes. The distal part of the S1 

subunit contains the receptor binding domain (RBD) that directly binds to 

the peptidase domain of angiotensin converting enzyme 2 (ACE2)(5, 6). 

The directly contact area between RBD and ACE2 included several regions. 

Gln498, Thr500, Asn501 residues of the amino terminus (N) of RBD form 

several hydrogen bonds with the Tyr41, Gln42, Lys353, and Arg357 

residues of ACE2. Lys417 and Tyr453 residues of RBD can interact with 

the Asp30 and His34 residues of ACE2, respectively. Gln474 in the 

carboxyl terminus (C) of RBD forms hydrogen bond with Gln24 of ACE2. 

In addition, Phe486 of RBD forms van der Waals forces with Met82 of 
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ACE24 (Fig 1)(5). However, the sequence identity of the spike protein 

between SARS-CoV-2 and SARS-CoV is 76%, and major variation exists 

at the N-terminus encoding the RBD(7). Since RBD of spike protein is 

surface-exposed and promotes entry into host cells, it could be a potential 

target for therapy and vaccination using small molecules and neutralizing 

antibodies to treat COVID-19 (4, 8). 

In a recent study, we discovered that theaflavin possesses a potential 

chemical structure of anti‐SARS‐CoV‐2 RNA‐dependent RNA 

polymerase(9). Some Chinese medicinal compounds are also used for 

prophylaxis of SARS-CoV-2 infection. However, the actual mechanisms 

and efficiency of theaflavin for inhibiting SARS-CoV-2 entry into host 

cells are still unclear. Therefore, we used molecular docking to target the 

RBD of SARS-CoV-2, with the aim of screening these chemical structures 

of traditional Chinese medicinal compounds demonstrating commonly used 

against SARS-CoV and identifying alternative potential chemical structures 

for antiviral therapy.
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Methods and Materials

Structure preparation

The 3D structure of spike protein of SARS-CoV-2 (NCBI Reference 

Sequence: YP_009724390.1) was generated based on homologous 

modeling using Modeller(10) incorporated within the UCSF Chimera(11) 

and SWISS-MODEL(12). 

Compound dataset collection

Eighty-three chemical structures from traditional Chinese medicinal 

compounds and their similar structures were retrieved from ZINC15 

database. 

Molecular docking and virtual screening

We used two molecular docking methods for analysis. First, molecular 

docking and virtual screening was performed using idock download from 

Github (https://github.com/HongjianLi/idock) in a local linux machine. For 

each structure, nine docking posed were generated and the scores for the 

best docking poses of each structure were used for ranking by idock. 

Second, SwissDock server (Swiss Institute of Bioinformatics, University of 

Lausanne, Switzerland) was used for in silico prediction of the lowest free 
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binding energy. The calculation was running online (accessible from 

http://www.swissdock.ch/) in the Internet browser(13). The grid box 

encompassed by Lys417 and Tyr453 of the middle of the bridge, Gln498, 

Thr500, Asn501 of the N-terminus, Gln474 of C-terminus and surrounding 

amino acids around contact surface of SARS-CoV-2 RBD was using for 

ligand docking and virtual screening (Fig 1). 
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Result

Screening of these chemical structures, we discovered that theaflavin 

(ZINC3978446, Fig 2A) also has a lower idock score in the contact area of 

RBD in SARS-CoV-2 (−7.95 kcal/mol). The contact modes between 

theaflavin and RBD of SARS-CoV-2 with the lowest idocking scores are 

illustrated in Figure 1C. Regarding contact modes by idock, hydrophobic 

interactions contribute significantly in binding and additional hydrogen 

bond was found between theaflavin and SARS-CoV-2 RBD (Fig 2B).

Because theaflavin has the lower idock score in the contact area of 

SARS-CoV-2 RBD (−7.95 kcal/mol), we used the SwissDock server to 

confirm the result. Favorable binding modes were scored based on 

FullFitness scores and binding energy (Estimated ΔG (kcal/mol)) by the 

SwissDock server. The FullFitness scores and binding energy results and 

were obtained from the docking of theaflavin (ZINC3978446) into contact 

area of SARS-CoV-2 RBD. Theaflavin showed FullFitness scores of 

-991.21 kcal/mol and estimated ΔG of -8.53 kcal/mol for the most 

favorable interaction with contact area of SARS-CoV-2 RBD (Fig 3A). The 

3D and 2D contact modes between contact area of SARS-CoV-2 RBD and 
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theaflavin with the lowest binding energy are illustrated in Figure 3B, C 

and D. Regarding the contact modes by SwissDock server, hydrophobic 

interactions contribute significantly for binding (Fig  3D and E). The 

additional hydrogen bonds hydrogen bonds were formed between 

theaflavin and Arg454, Phe456, Asn460, Cys480, Gln493,Asn501 and 

Val503 of SARS-CoV-2 RBD, near the direct contact area with ACE2.
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Discussion

The previous study reported that dihydrotanshinone I also had 

inhibitory effects against viral entry and replication in the MERS-CoV 

through the cell model (14). In addition, the recent study showed 

dihydrotanshinone I could inhibit viral entry through binding to the fusion 

cone of spike protein which is important for viral membrane fusion(15). 

The docking binding energy between dihydrotanshinone I and spike protein 

is -5.16 kcal/mol (15). In our previous study, we discovered that theaflavin 

(ZINC3978446) is a potential chemical structure of anti-SARS-CoV-2 

RNA-dependent RNA polymerase(9). Moreover, we also found that 

theaflvin was able to dock in contact area in RBD of SARS-CoV-2. 

Theaflvin formed hydrophobic interactions and additional hydrogen bonds 

with the direct contact area of RBD. It is possible that theaflavin could 

ocuppy the contact area of RBD and block the interaction between ACE2 

and RBD of SARS-CoV-2. Nevertheless, the mechanisms of viral entry 

blockage by dihydrotanshinone I and theaflavin could vary.

Our results suggest that theaflavin could be the candidate for prophylaxis 

or treatment of SARS-CoV-2 infection through RBD targeting. However, 
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the exact in vivo effect remains unclear and further studies are necessary to 

confirm the effects of theaflavin against SARS-CoV-2 entry.
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Legends to figures

Fig 1. (A) A modeled structure of SARS-CoV-2 spike protein. Orange 

molecule represent crystallographic binding contact surface of RBD in 

SARS-CoV-2. Read molecule represent crystallographic directly binding 

amino acid residues of RBD in SARS-CoV-2. Grid box size for binding 

site is used by Modeller. The contact area and grid box size (light yellow) 

is showed for binding site. 

Fig 2. (A) The structure of theaflavin (ZINC3978446). (B) The contact 

model between theaflavin and SARS-CoV-2 RBD are showed in 2D 

interaction diagram by idock. Their relative distances between amino acid 

residues and catechin pentabenzoate or theaflavin digallte are analyzed and 

illustrated by LigPolt+. Carbon, oxygen, nitrogen, and fluoride molecules 

are marked as white, red, blue, and green circles, respectively. Covalent 

bonds in theaflavin and amino acid residues of RBD are labeled in purple 

and orange solid lines, respectively. The light blue dot lines label the 

distance (in Å) of hydrogen bonds formed between the functional moieties 

of theaflavin and amino acid residues. Hydrophobic interactions between 

theaflavin and RBD are depicted by the name of involving amino acid 
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residues, which are labeled with dark green with dark red eyelashes 

pointing to the involved functional moiety of theaflavin.

Fig 3. (A) Clustering results obtained from the docking of theaflavin into 

RBD by SwissDock service. (B) The molecules represent crystallographic 

and predicted pose for theaflavin in the pocket of RBD. (C) The hydrogen 

bonds interaction established by theaflavin with the closest residues of 

RBD are showed through Protein-Ligand Interaction Profiler (PLIP). (D) 

The contact model between theaflavin and SARS-CoV-2 RBD are showed 

in 2D interaction diagram by SwissDock. Their relative distances between 

amino acid residues and theaflavin are analyzed and illustrated by LigPolt+. 

Carbon, oxygen, nitrogen, and fluoride molecules are marked as white, red, 

blue, and green circles, respectively. Covalent bonds in theaflavin and 

amino acid residues of RBD are labeled in purple and orange solid lines, 

respectively. The light blue dot lines label the distance (in Å) of hydrogen 

bonds formed between the functional moieties of theaflavin and amino acid 

residues. Hydrophobic interactions between  theaflavin and RBD are 

depicted by the name of involving amino acid residues, which are labeled 

with dark green with dark red eyelashes pointing to the involved functional 

.CC-BY 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted March 26, 2020. . https://doi.org/10.1101/2020.03.26.009803doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.26.009803
http://creativecommons.org/licenses/by/4.0/


17

moiety of theaflavin. (E) The table of hydrogen bonds between theaflavin 

and RBD by SwissDock.
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