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ABSTRACT 11 
As a first step toward the development of diagnostic and therapeutic tools to fight the Coronavirus 12 
disease (COVID-19), it is important to characterize CD8+ T cell epitopes in the SARS-CoV-2 13 
peptidome that can trigger adaptive immune responses. Here, we use RosettaMHC, a comparative 14 
modeling approach which leverages existing high-resolution X-ray structures from peptide/MHC 15 
complexes available in the Protein Data Bank, to derive physically realistic 3D models for high-16 
affinity SARS-CoV-2 epitopes. We outline an application of our method to model 439 9mer and 17 
279 10mer predicted epitopes displayed by the common allele HLA-A*02:01, and we make our 18 
models publicly available through an online database (https://rosettamhc.chemistry.ucsc.edu). As 19 
more detailed studies on antigen-specific T cell recognition become available, RosettaMHC 20 
models of  antigens from different strains and HLA alleles can be used as a basis to understand the 21 
link between peptide/HLA complex structure and surface chemistry with immunogenicity, in the 22 
context of SARS-CoV-2 infection. 23 
 24 
An ongoing pandemic caused by the novel SARS coronavirus (SARS-CoV-2) has become the 25 
focus of extensive efforts to develop vaccines and antiviral therapies (1). Immune modulatory 26 
interferons, which promote a widespread antiviral reaction in infected cells, and inhibition of pro-27 
inflammatory cytokine function through anti-IL-6/IL-6R antibodies, have been proposed as 28 
possible COVID-19 therapies (2, 3). However, stimulating a targeted T cell response against 29 
specific viral antigens is hampered by a lack of detailed knowledge of the immunodominant 30 
epitopes displayed by common Human Leukocyte Antigen (HLA) alleles across individuals 31 
(public epitopes). The molecules of the class I major histocompatibility complex (MHC-I, or HLA 32 
in humans) display on the cell surface a diverse pool of 8 to 15 amino acid peptides derived from 33 
the endogenous processing of proteins expressed inside the cell (4). This MHC-I restriction of 34 
peptide antigens provides jawed vertebrates with an essential mechanism for adaptive immunity: 35 
surveillance of the displayed peptide/MHC-I (pMHC-I) molecules by CD8+ cytotoxic T-36 
lymphocytes allows detection of aberrant protein expression patterns, which signify viral infection 37 
and can trigger an adaptive immune response (5). A recent study has shown important changes in 38 
T cell compartments during the acute phase of SARS-CoV-2 infection (6), suggesting that the 39 
ability to quantify antigen-specific T cells would provide new avenues for understanding the 40 
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expansion and contraction of the TCR repertoire in different disease cohorts and clinical settings. 41 
Given the reduction in breadth and functionality of the naïve T cell repertoire during aging (7), 42 
identifying a minimal set of viral antigens that can elicit a protective response will enable the 43 
design of diagnostic tools to monitor critical gaps in the T cell repertoire of high-risk cohorts, 44 
which can be addressed using peptide or epitope string DNA vaccines (8). 45 
Human MHC-I molecules are extremely polymorphic, with thousands of known alleles in the 46 
classical HLA-A, -B and -C loci. Specific amino acid polymorphisms along the peptide-binding 47 
groove (termed A-F pockets) define a repertoire of 104-106 peptide antigens that can be recognized 48 
by each HLA allotype (9, 10). Several machine-learning methods have been developed to predict 49 
the likelihood that a target peptide will bind to a given allele (reviewed in (11)). Generally these 50 
methods make use of available data sets in the Immune Epitope Database (12) to train artificial 51 
neural networks that predict peptide processing, binding and display, and their performance varies 52 
depending on peptide length and HLA allele representation in the database. Structure-based 53 
approaches have also been proposed to model the bound peptide conformation de novo (reviewed 54 
in (13)). These approaches utilize various algorithms to optimize the backbone and side chain 55 
degrees of freedom of the peptide/MHC structure according to an all-atom scoring function, 56 
derived from physical principles (14–16), that can be further enhanced using modified scoring 57 
terms (17) or mean field theory (18). While these methods do not rely on large training data sets, 58 
their performance is affected by bottlenecks in sampling of different backbone conformations, and 59 
any possible structural adaptations of the HLA peptide-binding groove. 60 
Predicting the bound peptide conformation whose N- and C- termini are anchored within a fixed-61 
length groove is a tractable modeling problem that can be addressed using standard comparative 62 
modeling approaches (19). In previous work focusing on the HLA-B*15:01 and HLA-A*01:01 63 
alleles in the context of neuroblastoma neoantigens, we have found that a combined backbone and 64 
side chain optimization approach can yield accurate pMHC-I models for a pool of target peptides, 65 
provided that a reliable template of the same allele and peptide length can be identified in the 66 
database (20). In this approach (RosettaMHC), a local optimization of the backbone degrees of 67 
freedom is sufficient to capture minor (within 0.5 Å heavy atom RMSD) changes of the target 68 
peptide backbone relative to the conformation of the peptide in the template, used as a starting 69 
point. For HLA-A*02:01, the most common HLA allele among disease-relevant population 70 
cohorts (21), there is a large number of high-resolution X-ray structures available in the PDB (22), 71 
suggesting that a similar principle can be applied to produce models of candidate epitopes directly 72 
from the proteome of a pathogen of interest. Here, we apply RosettaMHC to all HLA-A*02:01 73 
epitopes predicted directly from the ~30 kbp SARS-CoV-2 genome, and make our models publicly 74 
available through an online database. The computed binding energies of our models can be used 75 
as an additional validation layer to select high-affinity epitopes from large peptide sets. As detailed 76 
epitope mapping data from high-throughput tetramer staining (23–25)  and T cell functional 77 
screens (26) become available, the models presented here can provide a toehold for understanding 78 
links between pMHC-I antigen structure and immunogenicity, with actionable value for the 79 
development of peptide vaccines to combat the disease. 80 
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Materials and Methods 81 
Identification of SARS-CoV-2 peptide epitopes 82 
The SARS-CoV-2 protein sequences (https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2) were 83 
obtained from NCBI and used to generate all possible peptides of lengths 9 and 10 (9,621 9mer 84 
and 9,611 10mer peptides). We used NetMHCpan-4.0 (27) to derive binding scores to HLA-85 
A*02:01, and retained only peptides classified as strong or weak binders (selected using the default 86 
percentile rank cut-off values). The binding classification was performed using eluted ligand 87 
likelihood predictions. While in this study we use NetMHCpan-4.0 predictions as inputs to select 88 
candidate epitopes for structure modeling, our workflow is fully compatible with any alternative 89 
epitope prediction method. 90 
 91 
Selection of PDB templates 92 
To model SARS-CoV-2 / HLA-A*02:01 antigens, we identified 3D structures from the PDB that 93 
can be used as templates for comparative modeling. First, we selected all HLA-A02 X-ray 94 
structures that are below 3.5 Å resolution and retained only those that have 100% identity to the 95 
HLA-A*02:01 heavy chain sequence (residues 1-180). We found 241 template structures bound 96 
to epitopes of lengths from 8 to 15 residues (of which 170 are 9mers and 61 are 10mers). For each 97 
SARS-CoV-2 target peptide, we selected a set of candidate templates of the same length by 98 
matching the target peptide anchor positions (P2 and P9/P10) to each peptide in the template 99 
structures. Then, we used the BLOSUM62 (28) substitution matrix to score all remaining positions 100 
in the pairwise alignment of the target/template sequences, and the PDB template with the top 101 
alignment score was selected for modeling. For target peptides where we found no templates which 102 
match both peptide anchors, we scored all positions in the pairwise alignment and selected the top 103 
scoring template for modeling. 104 
 105 
RosettaMHC modeling framework and database 106 
RosettaMHC (manuscript in preparation) is a comparative modeling protocol developed using 107 
PyRosetta (29) to model pMHC-I complexes. The program accepts as input a list of peptide 108 
sequences, an HLA allele definition and a template PDB file (selected as described in the previous 109 
step). To minimize "noise" in the simulation from parts of the MHC-I fold that do not contribute 110 
to peptide binding, only the α1 and α2 domains are considered in all steps. For each peptide, a full 111 
alignment between the target and template peptide/MHC sequences is performed using clustal 112 
omega (30). The alignment is used as input to Rosetta's threading protocol (partial_thread.<ext>). 113 
From the threaded model, all residues in the MHC-I groove that are within a heavy-atom distance 114 
of 3.5 Å from the peptide are subjected to 10 independent all-atom refinement simulations using 115 
the FastRelax method (31) and a custom movemap file. Binding energies are extracted from the 116 
refined structures using interface analyzer protocol (InterfaceAnalyzer.<ext>). The top three 117 
models are selected based on the binding energies, and used to compute an average energy for 118 
each peptide in the input list. RosettaMHC models of SARS-CoV-2/HLA-A*02:01 epitopes are 119 
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made available through an online database (see data availability). The website that hosts our 120 
database was constructed using the Django web framework.  121 
 122 
 123 
Results and Discussion 124 
 125 
Template identification for structure modeling using RosettaMHC 126 
Our full workflow for template identification and structure modeling is outlined in Figure 1a, with 127 
a flowchart shown in Figure 1b. To identify all possible regular peptide binders to HLA-A*02:01 128 
that are expressed by SARS-CoV-2, we used a recently annotated version of all open reading 129 
frames (ORFs) in the viral genome from NCBI (32), made available through the UCSC genome 130 
browser (33). We used 9- and 10- residue sliding windows to scan all protein sequences, since 131 
these are the optimum peptide lengths for binding to the HLA-A*02:01 groove (34). While spliced 132 
peptide epitopes (35) are not considered in the current study, this functionality can be added to our 133 
method at a later stage. Using NetMHCpan-4.0 (27), we identified all 439 9mer and 279 10mer 134 
epitopes that are predicted to yield positive (classified as both weak and strong) binders. To further 135 
validate this set and derive plausible 3D models of the peptide/HLA-A*02:01 complexes, we used 136 
a structure-guided approach, RosettaMHC, which aims to derive a physically realistic fitness score 137 
for each peptide in the HLA-A*02:01 binding groove using an annotated database of high-138 
resolution structures and Rosetta’s all-atom energy function (36). RosettaMHC leverages a 139 
database of  241 HLA-A*02:01 X-ray structures encompassing a range of bound peptides, to find 140 
the closest match to each target epitope predicted from the SARS-CoV-2 proteome. To identify 141 
the best template for structure modeling, we use sequence matching criteria which first consider 142 
the peptide anchors (positions P2 and P9/P10 for 9mer/10mer epitopes), followed by a sequence 143 
similarity metric calculated from the full alignment between the template and target peptide 144 
sequences. The template assignment statistics for the four different classes of SARS-CoV-2 145 
epitopes in our set are shown in Figure 2a. We find that we can cover the entire set of 718 predicted 146 
binders using a subset of 114 HLA-A*02:01 templates in our annotated database of PDB-derived 147 
structures (Figure 2b). Each target peptide sequence is then threaded onto the backbone of its best 148 
identified template, followed by all-atom refinement of the side chain and backbone degrees of 149 
freedom using Rosetta’s Ref2015 energy function (36), and binding energy calculation. 150 
 151 
RosettaMHC models recapitulate features of high-resolution X-ray structures 152 
The sequence logos derived from 9mer and 10mer peptides with good structural complementarity 153 
to the HLA-A*02:01 groove according to Rosetta's binding energy (see below) adhere to the 154 
canonical motif, with a preference for hydrophobic, methyl-bearing side chains at the peptide 155 
anchor residues P2 and P9 (Figure 3a). The anchor residue preferences are recapitulated in 156 
representative 9mer and 10mer models of the two top binders in our set as ranked by Rosetta’s 157 
energy (Figure 3c and 3d), corresponding to epitopes TMADLVYAL and FLFVAAIFYL derived 158 
from the RNA polymerase and nsp3 proteins, respectively, which are both encoded by orf1ab in 159 
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the viral genome (NCBI Reference YP_009724389.1). In accordance with features seen in high-160 
resolution structures of HLA-A*02:01-restricted epitopes, the peptides adopt an extended, bulged 161 
backbone conformation. The free N-terminus of both peptides is stabilized by a network of polar 162 
contacts with Tyr 7, Tyr 159, Tyr 171 and Glu 63 in the A- and B- pockets of the HLA-A*02:01 163 
groove. The Met (9mer) or Leu (10mer) side chain of P2 is buried in a B-pocket hydrophobic cleft 164 
formed by Met 45 and Val 67. Equivalently, the C-terminus is coordinated through polar contacts 165 
with Asp 77 and Lys 145 from opposite sides of the groove, with the Leu P9/P10 anchor nestled 166 
in the F-pocket defined by the side chains of Leu 81, Tyr 116, Tyr 123 and Trp 147. Residues P3-167 
P8 form a series of backbone and side chain contacts with pockets C, D and E, while most 168 
backbone amide and carbonyl groups form hydrogen bonds with the side chains of residues lining 169 
the MHC-I groove. These high-resolution structural features are consistent across low-energy 170 
models of unrelated target peptides in our input set, suggesting that, when provided with a large 171 
set of input templates, a combined threading and side chain optimization protocol can derive 172 
physically realistic models. 173 
 174 
Selection of high-affinity peptide epitopes using a structure-based score 175 
To evaluate the accuracy of our models and fitness of each peptide within the HLA-A*02:01 176 
binding groove, we computed Rosetta all-atom binding energies across all complexes modeled for 177 
different peptide sets. High binding energies can be used as an additional metric to filter low-178 
affinity peptides in the NetMHCpan-4.0 predictions, with the caveat that high energies can be also 179 
due to incomplete optimization of the Rosetta energy function as a result of significant deviations 180 
between the target and template backbone conformations, not captured by our protocol. We 181 
performed 10 independent calculations for each peptide, and the 3 lower-energy models were 182 
selected as the final ensemble and used to compute an average binding energy. The results for all 183 
9mer peptides are summarized in Figures 3e, f, while additional results for 10mers are provided 184 
through our web-interface and outlined in Supplemental Table 1. As a positive reference, we used 185 
the binding energies of the idealized and relaxed PDB templates, which are at a local minimum of 186 
the Rosetta scoring function. As a reference set for sub-optimal binders, we modeled decoy 187 
structures of poly alanine (polyA) peptide sequences (predicted by NetMHCpan-4.0 to be a top 188 
9th percentile binder for HLA-A*02:01), threaded onto the same PDB templates.  189 
 190 
We observe a significant, negative (-26 kcal/mol) energy gap between the average binding energies 191 
for PDB templates and poly alanine models. The binding energies for all modeled 9mers from the 192 
SARS-CoV-2 genome fall between the average energies of the optimal PDB templates and sub-193 
optimal polyA binders, and show a bimodal distribution with significant overlap with the refined 194 
PDB template energies (Figure 1e). Comparison of the distributions between epitopes that are 195 
classified as strong versus weak binders by NetMHCpan-4.0 shows a moderate bias towards lower 196 
binding energies for the strong binders and a larger spread in energies for weak binders, likely due 197 
to suboptimal residues at the P2 and P9 anchor positions (Figure 3f). As an intendent positive set, 198 
we also modeled 28 9mer peptides that are homologous to peptides in the SARS viral genome and 199 
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have been previously reported to bind HLA-A*02:01 in the IEDB and ViPR (12, 37, 38) databases 200 
(Supplemental Table 2). Inspection of Rosetta binding energies derived from models in this set 201 
shows a similar distribution to the epitopes classified by NetMHCpan-4.0 as strong binders, with 202 
the energies of 19/28 peptides falling well within the distribution of the refined PDB templates 203 
(red dots in Figure 3e).  204 
 205 
Based on these observations, we further classified all epitopes in the original set provided by 206 
NetMHCpan-4.0 as strong or weak binders according to the Rosetta binding energy. Peptides with 207 
binding energies that fall well within the PDB template distribution (green curve and red dots in 208 
Figure 3e) are classified as strong binders. We obtained 154 9mer and 72 10mer strong binders 209 
which show optimal complementarity within the HLA-A*02:01 peptide-binding groove according 210 
to our modeling simulations. These results suggest that the high-resolution features seen in our 211 
models (Figure 3c, d) yield optimal binding energies for a significant fraction of the epitopes 212 
predicted by NetMHCpan-4.0 (45/33% of strong binders and 30/25% of weak binders for 213 
9mers/10mers, respectively), which are comparable to locally refined PDB structures. The average 214 
binding energies for all peptides are provided in our web-interface and in Supplemental Table 1. 215 

 216 
Surface features of peptide/HLA-A*02:01 models for T cell recognition 217 
Visualization of our models through an interactive online interface provides direct information on 218 
SARS-CoV-2 peptide residues that are bulging out of the MHC-I groove, and are therefore 219 
accessible to interactions with complementarity-determining regions (CDRs)  of T cell receptors 220 
(TCRs). Given that αβ TCRs generally employ a diagonal binding mode to engage pMHC-I 221 
antigens where the CDR3α and CDR3β TCR loops form direct contacts with key peptide residues 222 
(39, 40), knowledge of the surface features for different epitopes adds an extra layer of information 223 
to interpret sequence variability between different viral strains. For other important antigens with 224 
known structures in the PDB, such features can be derived from an annotated database connecting 225 
pMHC-I/TCR co-crystal structures with biophysical binding data (41), and were recently 226 
employed in an artificial neural network approach to predict the immunogenicity of different HLA-227 
A*02:01 bound peptides in the context of tumor neoantigen display (42). A separate study has 228 
shown that the electrostatic compatibility between self vs foreign HLA surfaces can be used to 229 
determine antibody alloimmune responses (43). Given that antibodies and TCRs use a common 230 
fold and similar principles to engage pMHC-I molecules (40), it is likely that surface electrostatic 231 
features play an important role in recognition of peptide/HLA surfaces by their cognate TCRs in 232 
the context of SARS-CoV-2 infection. 233 
Electrostatic surface potentials calculated using a numerical solution to the Poisson-Boltzmann 234 
Equation (44) for our modeled peptide/HLA-A*02:01 complexes allow us to compare important 235 
features for TCR recognition between different high-affinity epitopes (Figure 4). We observe a 236 
moderate electropositive character of the HLA-A*02:01 α1 helix, and a moderate negative 237 
potential on the α2 helix, which is consistent between complexes with different bound peptides. 238 
However, due to substantial sequence variability in surface-exposed residues at the P2-P8 239 
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positions, we observe a range of electrostatic features ranging from negative (epitope 240 
TMADLVYAL), to neutral (NLIDSYFVV) or positively charged (KLWAQCVQL). Further 241 
classification and ranking of the top binders in our set on the basis of their molecular surface 242 
features would enable the selection of the most diverse panel of peptides for high-throughput 243 
pMHC tetramer library generation (23-25). Tetramer screening of T cells from COVID-19 244 
patients, recovered individuals and healthy donors can be used to identify critical gaps in the T cell 245 
repertoire of high-risk groups, and to design epitope DNA strings for vaccine development. 246 
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FIGURES 403 
 404 

 405 
FIGURE 1. Structure-guided modeling of T cell epitopes in the SARS-CoV-2 proteome  406 
(a) General workflow of our pipeline for structure-guided epitope ranking. (b) Protein sequences 407 
from the annotated SARS-CoV-2 proteome are used to generate peptide epitopes with a sliding 408 
window covering all frames of a fixed length (9,621 9mer and 9,611 10mer possible peptides). 409 
Candidate peptides are first filtered by NetMHCpan-4.0 (27) to identify all predicted strong and 410 
weak binders (439 9mer and 279 10mer epitopes). For rapid template matching and structure 411 
modeling, we use a local database of 241 HLA-A*02:01 X-ray structures with resolution below 412 
3.5 Å from the Protein Data Bank (22). Each candidate peptide is scanned against all peptide 413 
sequences of the same length in the database, and the top-scoring template is used to guide the 414 
RosettaMHC comparative modeling protocol and to compute a binding energy.  415 
 416 
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 417 
FIGURE 2. Coverage of predicted HLA-A02 epitopes by structural templates in the PDB  418 
(a) Peptide anchor matching statistics of all predicted SARS-CoV-2 strong (SB) and weak binders 419 
(WB) of lengths 9 and 10 to a database of  241 high-resolution HLA-A*02:01 X-ray structures (b) 420 
Plot showing cumulative distribution (CDF) of strong and weak binder peptides of lengths 9 and 421 
10, as a function of the total number of matching templates from the Protein Data Bank (22). 422 
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 423 
FIGURE 3. Summary of RosettaMHC modeling results for SARS-CoV-2 peptide epitopes 424 
Sequence logos from the n top ranking epitopes in the SARS-CoV-2 genome, predicted by 425 
NetMHCpan-4.0 (27) and further refined using RosettaMHC binding simulations are shown for: 426 
(a) 9mers (n=154) and (b) 10mers (n=72). The top 9mer and 10mer epitopes in our refined set are 427 
shown: (c) TMADLVYAL, from RNA polymerase and (d) FLFVAAIFYL, from nsp3. Dotted 428 
lines indicate polar contacts between peptide and heavy chain residues, with peptide residues 429 
labelled. The template PDB IDs and original peptides used for modeling the target peptides are 430 
indicated below each model. (e) Density plots showing distribution of average Rosetta binding 431 
energies (kcal/mol) for all epitopes of length 9. Distributions reflect 93 PDB templates (green), 432 
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164 strong binder epitopes (according to NetMHCpan-4.0 (27))  (blue), and 93 poly alanine 433 
peptides modeled using the same PDB templates and used as a reference set for sub-optimal 434 
binders (polyA; pink). The binding energies of models generated for 28 confirmed SARS T cell 435 
epitopes from the IEDB and ViPR (37, 38) are indicated by circles at the bottom of the plot. Red 436 
circles (19/28) indicate epitopes that lie within the distribution of refined PDB templates and black 437 
circles (9/28) indicate epitopes that fall within the distribution of polyA (sub-optimal binders). (f) 438 
Box plots showing distribution of average binding energies for 93 PDB templates, 93 poly alanine 439 
peptides, 28 confirmed epitopes (37, 38) and RosettaMHC models for 164 strong (SB) and 275 440 
weak (WB) binder 9mer epitopes predicted  from the SARS-CoV-2 proteome using NetMHCpan-441 
4.0 (27). 442 
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 444 
FIGURE 4. Variability in TCR recognition features of HLA-A02 with different high-affinity 445 
peptides. Molecular surfaces of SARS-CoV-2/HLA-A*02:01 RosettaMHC models are shown for 446 
four top-scoring epitopes (ranked by Rosetta binding energy from left to right) captured in the A, 447 
B, C, D, E and F pockets of the MHC-I groove (top panel). The origins of the peptide epitopes in 448 
the ~30 kbp SARS-CoV-2 genome are noted. Electrostatic surfaces computed for the same models  449 
are shown in the bottom panel. Solvent-accessible surface representation with electrostatic 450 
potential in the indicated ranges (down to −60 kcal/(mol·e) in red and up to +61 kcal/(mol·e) in 451 
blue) were calculated using the APBS solver (45) in Pymol (46). All calculations were performed 452 
at 150 mM ionic strength, 298.15 Kelvin, pH 7.2, protein dielectric 2.0, and solvent dielectric 453 
78.54. Electrostatic potentials are given in units of kT/e. A 1.4 Å solvent (probe) radius and 10.0 454 
points/Å2  density was used to calculate molecular surfaces.  455 
 456 
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