

1 The codon usage pattern of the novel coronavirus is 2 drastically different from those of other pathogenic viruses 3 4 Xiaolong Wang* 5 College of Life Sciences, Ocean University of China, Qingdao, 266003, P. R. China Abstract 6 7 The current outbreak of a novel coronavirus (COVID-19) has caused thousands of deaths and 8 has been declared to be a worldwide pandemic by the World Health Organization. There have been 9 various disputes but the origin of COVID-19 is not clear. Here we analyzed the similarities of codon usage patterns between humans and pathogenic viruses, such as human immunodeficiency virus 10 (HIV), highly pathogenic avian influenza (HPAI), SARS, MERS, and COVID-19. In HIVs, HPAIs, 11 12 SARS, and MERS, codon usages are highly similar to that of humans; in contrast, the codon usage pattern of COVID-19 is drastically different from those of humans and other pathogenic viruses. 13 14 Besides, coronaviruses have been evolving in two opposite directions: human-preferred codons are 15 adopted to substitute less-preferred ones in SARS and MERS but are substituted by less-preferred 16 ones in COVID-19. The unique codon usage pattern suggesting that COVID-19 was evolved in an 17 intermediate host, in which its codon usage pattern becomes drastically different from that of bats 18 or humans, and its pathogenicity is weakened compared with SARS ad MERS COVs. Finally, we 19 appeal to international cooperation to eliminate the epidemic by cutting off the transmission routes among humans and to search for the origin and intermediate hosts of the novel coronavirus to 20 prevent future animal-to-human transmission. 21 22 23 24 25 26 27 28 29 *Xiaolong Wang, College of Life Sciences, Ocean University of China, No. 5 Yushan Road, 30 Qingdao, 266003, Shandong, China, E-mail: Xiaolong@ouc.edu.cn.

1

2

1. Background

In the last two decades, three serious epidemics caused by pathogenic coronavirus have emerged, including Severe Acute Respiratory Syndrome (SARS) in 2002-2003 [1], the Middle East Respiratory Syndrome (MERS) in 2012-2015 [2], and the current outbreak of a novel coronavirus (COVID-19). COVID-19 has caused thousands of deaths and hundreds of thousands of hospitalized cases not only in China but at present more seriously in all over the world and has been declared to be a worldwide pandemic by the World Health Organization.

9 Most pathogenic viruses are of zoonotic origin. For example, human immunodeficiency virus 10 (HIV) was originated from the chimpanzee simian immune deficiency virus (SIVcpz) [3], highly 11 pathogenic avian influenza (HPAI) was originated from bird influenza [4], and pathogenic COVs 12 are originated from a bat coronavirus [5-7]. Lentivirus like HIV inhabits in a host with no symptom 13 for a long period; coronaviruses, such as SARS and MERS, cause severe acute immune responses 14 and respiratory infections in a short period, may cause the death of the host if the viruses are not 15 eliminated by the immune system or medical treatment.

16 Viral genomes are small in size and largely rely on the host to execute biological activities like 17 replication, protein synthesis, and transmission. After the invasion of a human body, viruses adjust 18 their growth rates and change their pathogenicity/immunogenicity to adapt for a short- or long-term 19 inhabiting in humans. A common strategy for the evolution of viruses is to change the usage of 20 codons, which has strong impacts on viral gene expression and the progress of the pathogenic virus. 21 In 1996, Haas, Park, and Seed reported that the change of codon usage can lead to the inhibition of 22 HIV protein synthesis and the limitation in the expression of HIV-1 envelop glycoprotein [8]. In 23 2017, Roy, Banerjee, and Basak demonstrated that the rate of substitution in the envelop gene is associated with disease progression [9]. Also, it was suggested that mutational pressure, rather than 24 25 natural selection for specific coding triplets, is the main determinant of codon usage [10]. In 2013, Moratorio and his colleagues did a comprehensive analysis of the West Nile virus (WNV), which 26 27 suggested that the genomic biases are the result of the evolution of genome composition, the need 28 to escape the antiviral cell responses and to re-adapt its codon usage to different environments [11]. 29 To analyze the evolutionary characteristics of the novel coronaviruses, we analyzed the codon

usages of SARS, MERS, and COVID-19, determined the changes of the codon usages by compared
with those of their most recent common ancestors and those of other pathogenic viruses, including
HIVs and HPAIs. The codon usages of the coronaviruses are associated with their high growth rates
and severe acute inflammatory responses in humans, provides a theoretical basis for the prediction
of possible changes of the pathogenic coronaviruses in the future.

6 **2. Methods**

7 2.1 Genomes sequences

The reference genome sequences and all available complete genome sequences of COVID-19,
SARS, MERS, HIV, SIVcpz, and HPAI were downloaded from the NCBI Nucleotide Database
during March 1st-16th, 2020. The accession numbers of the reference genome sequences are:
NC_004718.3 (SARS), NC_019843.3 (MERS), NC_045512.2 (COVID-19), NC_001802.1 (HIV1),
AF115393.1 (SIVcpz), NC_002022.1 (H1N1), NC_007361.1 (H5N1), NC_026422.1 (H7N9) and
AF250131.1 (H7N2), respectively.

14 **2.2 Phylogenetic trees**

We constructed a multiple sequence alignment of 299 complete coronavirus genomes of using
a phylogeny-aware alignment software, PRANK v170427. Maximum likelihood phylogenies were
estimated using PhyML v3.115, utilizing the GTR+I+G model of nucleotide substitution with 1,000
bootstrap replicates. The phylogenetic tree was plotted using MEGA v7.0.26 [12].

19

2.3 Analyze of codon usages

20 Genes and genomes display a non-random usage of synonymous codons for specific amino 21 acids. A measure of the extent of this non-randomness is given by the relative synonymous codon usage (RSCU), which is calculated as the ratio of the observed frequency of the codons divided by 22 the expected frequency of the same codon if codon usage was uniform within a synonymous codon 23 group [13]. An RSCU value greater than one indicates that the observed frequency of synonymous 24 codons is more preferred compared to the expected frequency [14]. RSCU values of the 59 codons 25 [excluding the single synonymous codons, AUG (Met) and UGG (Trp) and the termination codons, 26 UGA, UAG, and UAA] of all coding gene sequences were calculated using CodonW v 1.4.2. 27

28 **2.4** Assessment of the distance and the similarity index of codon usages

29 The relationship among the codon usages of humans and different viruses was calculated using

1 a squared Euclidean distance method as described by Wei Ji *et al* [15], which is computed as follows:

- 2
- 3

ca Eachacan distance method as described by werster ar [15], which is computed as I

-

$$d(H, V) = \sum_{i=1}^{59} (h_i - v_i)^2$$

where d (H, V) represents the distance between the overall codon usage pattern of human and
a specific virus, h_i indicates the RSCU value for a particular codon in human, v_i signifies the RSCU
value of the same codon for a certain viral gene or genome.

We also used a similarity index of the codon usages, as described by Roy, Banerjee, and Basak
[9], to understand the influence of the host genome on the adaptability of the virus genome inside
the host. The influence of the overall codon usage pattern of the host on the formation of the codon
usage of the virus is defined as the similarity index, which is computed as follows:

11
$$R(H, V) = \frac{\sum_{i=1}^{59} h_i \cdot v_i}{\sqrt{\sum_{i=1}^{59} h_i^2 \cdot \sum_{i=1}^{59} v_i^2}}$$

12
$$D(H,V) = \frac{1 - R(H,V)}{2}$$

where R (H, V) represents the degree of similarity between the overall codon usage pattern of human (H) and that of a specific viral gene/genome (V), h_i indicates the RSCU value for a particular codon in human, v_i signifies the RSCU value of the same codon for a certain viral gene/genome. D(H, V) represents the potential effect of the overall codon usage of humans on that of the virus. This value ranges from 0.0 to 1.0 and useful for cross-species comparison of codon usages.

18

2.5 Codon and aa unified sequence alignment

The packaging and the fusion of a virus into a cell rely on their surface/envelop proteins. The spike glycoprotein (S) of COVs and the envelop glycoproteins (GP120) of HIV have become the first choice of the targets in various studies. Here, the *gp120* gene of HIVs and the *s* gene of COVs were aligned by Codon-AA Unified Sequence Alignment (CAUSA v2.1.018) [16]. By comparing with their most recent common ancestors, synonymous and nonsynonymous codon substitutions were found and subject to the analyses of the change of codon preferences.

25 **3. Results**

Square Preprint

1 **3.1** Phylogenetic analyses

All available complete genome sequences that are related to SARS and COVID-19 viruses were aligned and a genome-wide maximum likelihood phylogenetic tree was established by phyML. As of March 1st, 2020, there were 45 COVID-19 viral genomes deposited in GenBank. As shown in Fig 1a, the overall phylogenetic tree is consistent with those reported earlier [15, 17-19]. COVID-19 share 79.5% identify to SARS-Cov and is 96% identical to a bat coronavirus (RaTG13) at the whole genome level [18], which is identified as the most recent common ancestor of COVID-19 and SARS COVs.

9 **3.2** Codon usages of different viruses and their similarities to that of humans

10 The RSCU values of different viral genomes were compared with that of humans to assess the influence of the human host in shaping the patterns of codon usage among the viruses. It has been 11 12 reported that the rate of codon substitution in the envelop gene is associate with disease progression, 13 differs among the three different types of HIV, rapid progressor (RP), slow progressor (SP), and 14 long-term non-progressor (LTNP) of HIV1 infected individuals [9]. Based on the RSCU values for different viruses given by CodonW, the relationship among codon usages of humans and different 15 viruses was calculated using a squared Euclidean distance and a similarity index of codon usages. 16 17 As shown in Table 1, the codon usage patterns of HIVs are all similar to that of human and that of HPAIs are even more similar to that of humans. The codon usage patterns of SARS and MERS are 18 also highly similar to that of humans, however, COVID-19 has a very special codon usage pattern 19 20 which is drastically different from that of humans, suggesting that COVID-19 was evolved in an 21 intermediate host, in which its codon usage pattern becomes drastically different from that of bats or humans, and its pathogenicity is significantly weakened compared with SARS ad MERS COVs. 22 23 Recently, it is reported that the intermediate hosts could be snakes [15] or pangolins [17], but further investigations are needed to validate these speculations. 24

25

3.3 The changes of codon usages in the protein-coding genes

Because the sizes of viral genomes are very small, the differences of codon usages could be obscured by noise when they were calculated by counting the number of codons used in the genome sequences. As shown in Fig 2, we performed codon alignments of their surface/envelop proteins, identified synonymous and nonsynonymous codon substitutions, calculate the codon preferences, 1 and investigated whether codon preferences have been changed in different viruses.

Research Square Preprint

2 When compared with the gp120 gene of SIVcpz, the HIV gp120 gene has 226 synonymous 3 and 279 nonsynonymous substitutions. The average RSCU of the substitutional codons is used as 4 an index for human preference (HPI). As shown in Table 1, HPI decreased in the nonsynonymous 5 substitutions significantly (paired t-test P=0.0301). In contrast, compared with the s gene of the bat 6 coronavirus RaTG13, the s gene of SARS contains 450 synonymous and 262 nonsynonymous substitutions, while that of COVID-19 contains only 215 synonymous and 29 nonsynonymous 7 8 substitutions. As shown in Table 1, compared with RaTG13, HPI increased in SARS but decreased 9 in COVID-19.

10 Besides, compared with SARS, HPI decreased even further in COVID-19 in both synonymous 11 and nonsynonymous substitutions. Although neither of the differences of preference among SARS, 12 COVID-19 and bat COV is statistically significant, the difference of the preference of the 13 synonymous substitutions between COVID-19 and SARS is close to statistically significant (paired 14 t-test P=0.0523). It is clear that coronaviruses are evolving in two opposite directions: in SARS, 15 human-preferred codons are adopted to substitute less-preferred ones; in COVID-19, however, human-preferred codons are abandoned and substituted by less-preferred ones, suggesting that the 16 HPI of COVID-19 has been decreasing since it was isolated from bat COV. 17

18

2. Discussion & Conclusion

The above analysis concludes that codon usages have been changed in tested human pathogenic viruses comparing with their ancestors in wild animals. In HIV, HPAIs, SARS, and MERS, codon usages are highly similar to that of humans. In contrast, in COVID-19, hundreds of human-preferred codons were substituted by synonymous codons that are less preferred in humans, making its codon usage patterns drastically different from that of humans.

Moreover, SARS and MERS have an excessive number of highly human-preferred codons, the growth rate of them will be too fast and dysregulated in an infected human body, rob host cells of too many nutrients, energy, and resources. After infection, the fast growth of viruses is the cause of high mortality of the patients, as it may trigger a serve acute response, an inflammatory storm in the human body. Compared with the codon usages of SARS/MERS, the codon usage of COVID-19 is more different from that of humans. On one hand, COVID-19 infection is therefore not as

1 severe as SARS and MERS, on the other hand, however, as it is much milder than SARS and MERS, 2 COVID-19 is indeed a more successful pathogenic coronavirus and perhaps has greater potential. 3 Like other pathogenic viruses, the coronaviruses evolve by optimizing the sequence, structure, 4 and functionality of their proteins by changing their codons. If the current epidemic could not be 5 eliminated in a short period, very likely, the coronavirus will develop a chronic disease eventually. 6 It may evolve either into an HIV-like lentivirus or a flu-like self-limiting virus, or both, but they may keep their severe acute pathogenicity and remain to be dangerous for a long period. As a novel 7 8 pathogenic coronavirus, they are in the early stage of their evolutionary journey in humans. Finally, 9 we appeal to international cooperation to eliminate the epidemic by cutting off the transmission 10 routes among humans and to search for the origin and intermediate hosts of the novel coronavirus to prevent future animal-to-human transmission. 11

12 Data availability

Research Square Preprint

This study conduct data analyses based on existing gene/genome sequences that are available in the NCBI Nucleotide Database and the Global Initiative on Sharing Avian Influenza Data (GISAID) database. The list of GenBank accession numbers of the genome sequences is available online as a text file (AllCoronaVirus.list.txt). The RSCU data for human and viruses are available online as a excel spreadsheet (RSCU-human-viruses.xlsx).

18 Acknowledgments

This research is funded by the National Natural Science Foundation of China (Grant 31571369).
We acknowledge the doctors, nurses, and scientists from all over the world for battling against
the epidemic and making the genomic sequences of coronavirus freely and publicly available.

23 **Competing interests**

24 We declare that we have no conflicts of interest.

25 **References**

26

 Lau, S.K., et al., Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A, 2005. 102(39): p. 14040-5.
 Zaki, A.M., et al., Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 2012. 367(19): p. 1814-20.

1 2	3. Rambaut, A., et al., <i>Human immunodeficiency virus. Phylogeny and the origin of HIV-1.</i> Nature, 2001. 410 (6832): p. 1047-8.
2 3	4. Lee, D.H., et al., Evolution, global spread, and pathogenicity of highly pathogenic avian
5 4	influenza H5Nx clade 2.3.4.4. J Vet Sci, 2017. 18 (S1): p. 269-280.
5	5. Hon, C.C., et al., Evidence of the recombinant origin of a bat severe acute respiratory
6	syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. J
7	Virol, 2008. 82 (4): p. 1819-26.
8	6. Mohd, H.A., J.A. Al-Tawfiq, and Z.A. Memish, Middle East Respiratory Syndrome
9	Coronavirus (MERS-CoV) origin and animal reservoir. Virol J, 2016. 13: p. 87.
10	7. Hu, B., et al., Discovery of a rich gene pool of bat SARS-related coronaviruses provides new
11	insights into the origin of SARS coronavirus. PLoS Pathog, 2017. 13 (11): p. e1006698.
12	8. Haas, J., E.C. Park, and B. Seed, Codon usage limitation in the expression of HIV-1 envelope
13	<i>glycoprotein.</i> Curr Biol, 1996. 6 (3): p. 315-24.
14	9. Roy, A., R. Banerjee, and S. Basak, HIV Progression Depends on Codon and Amino Acid
15	Usage Profile of Envelope Protein and Associated Host-Genetic Influence. Front Microbiol, 2017. 8:
16	p. 1083.
17	10. Shackelton, L.A., C.R. Parrish, and E.C. Holmes, Evolutionary basis of codon usage and
18	nucleotide composition bias in vertebrate DNA viruses. J Mol Evol, 2006. 62 (5): p. 551-63.
19	11. Moratorio, G., et al., A detailed comparative analysis of the overall codon usage patterns
20	<i>in the West Nile virus.</i> Infect Genet Evol, 2013. 14 : p. 396-400.
21	12. Kumar, S., G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis
22	Version 7.0 for Bigger Datasets. Mol Biol Evol, 2016. 33 (7): p. 1870-4.
23	13. Sharp, P.M. and W.H. Li, An evolutionary perspective on synonymous codon usage in
24	unicellular organisms. J Mol Evol, 1986. 24 (1-2): p. 28-38.
25	14. dos Reis, M., L. Wernisch, and R. Savva, Unexpected correlations between gene expression
26	and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic
27	Acids Res, 2003. 31 (23): p. 6976-85.
28	15. Ji, W., et al., Cross-species transmission of the newly identified coronavirus 2019-nCoV. J
29	Med Virol, 2020. 92 (4): p. 433-440.
30	16. Wang, X. and C. Yang, CAUSA 2.0: accurate and consistent evolutionary analysis of proteins
31	using codon and amino acid unified sequence alignments. PeerJ PrePrints 3 .
32	17. Lam, T.TY., et al., Identification of 2019-nCoV related coronaviruses in Malayan pangolins
33	in southern China. bioRxiv, 2020: p. 2020.02.13.945485.
34	18. Zhou, P., et al., A pneumonia outbreak associated with a new coronavirus of probable bat
35	origin. Nature, 2020. 579 (7798): p. 270-273.
36	19. Matsuda, T., H. Suzuki, and N. Ogata, <i>Phylogenetic analyses of the severe acute respiratory</i>
37	syndrome coronavirus 2 reflected the several routes of introduction to Taiwan, the United States,
38	and Japan. 2020: arXiv:2002.08802 [q-bio.GN].
39	
40	

Virus	Strain / Type	d (H, V)	R (H, V)	D (H, V)
SIV	SIVcpz	27.1721	0.8263	0.0868
	RP	27.6765	0.8176	0.0912
HIVs	SP	28.2044	0.8143	0.0929
	LTNP	28.3472	0.8145	0.0927
	H5N1	12.8378	0.9116	0.0442
HPAIs	H7N9	13.0191	0.9069	0.0466
TPAIS	H1N1	13.0251	0.9066	0.0467
	H7N2	14.4611	0.8972	0.0514
	MERS	26.1475	0.8301	0.0850
COVs	SARS	27.9605	0.8245	0.0878
	COVID-19	39.3928	0.7636	0.1182

Table 1. Codon usages of different type of virus and their distance/similarity to that of humans

3 4

1

2

Research Square Preprint | CC BY 4.0

Research Square Preprint

1 Table 2. Codon substitutions and the average RSCU frequencies of codons of the envelop or surface protein

2

Compare	Type of codon	Number of Codon		reference Index CU Frequency Pe	· ·
-	Substitution	Substitutions	SIVcpz	HV1	P-value
1111/1	Synonymous	226	17.7783	18.2407 个	0.2877
HIV1 vs SIV	Nonsynonymos	279	18.4039	17.1276 🗸	0.0301*
			Bat Cov	SARS	P-value
SARS vs Bat Cov	Synonymous	450	16.7153	17.0744 个	0.1856
SARS VS BULCOV	Nonsynonymos	262	16.8462	17.2905 个	0.2242
			Bat Cov	Cov-2019	P-value
Covid-19 vs Bat Cov	Synonymous	215	17.7167	17.2065 🗸	0.2052
COVID-19 VS BUL COV	Nonsynonymos	29	16.9897	15.6690 🗸	0.2200
			SARS	COVID-9	P-value
Covid-19 vs SARS	Synonymous	435	17.2218	16.5579 🗸	0.0523
COVIG-19 VS SANS	Nonsynonymos	265	17.2400	16.6743 🗸	0.1710

3 4

RaTG13 [1]

COVID-19 [45]

Bat SARS HKU [13]

bat SARS-like Cov [3]

Bat SARS-like Cov [2]

t SARS Cov [2] t SARS-like Cov [8

SARS-like Cov [6]

sees-like Cov[3

SARS Cov GD/GZ [2 SARS Cov other [20] SARS Cov Guangdon SARS Cov [168]

0.12

100

100

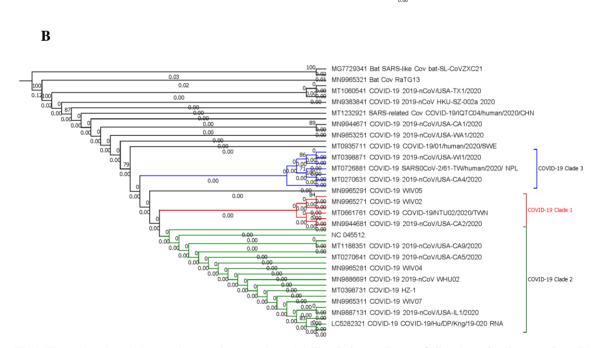
100

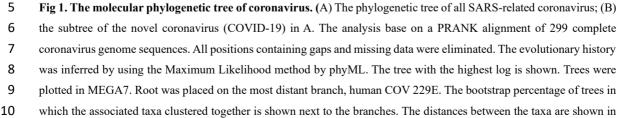
100

 $\begin{array}{c|c}1\\2&A\\\\\hline\\ & & \\$

100

100


0.05


0.02

0.04

0.0

3 4

11 the middle of the branches.

c	ea	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
HV				1	1	1	1	1			1	1	{			1					{	Agca							[
HV				-	-		Naac	-		-		-				-						Agca							-	
		-	-				Kaaa				-											Agca			_					
HV		-		-				- T														Agca								
				-				-		-		-				-				-		Agca						_	-	
HV		Ctgt	Sag	Age	Agca	Ega	Naat	Lttg	Wtgg	Vgtc	Таса	Vgtc	Ytat	Ytat	Gggg	Vgta	Pcct	Vgtg	Wtgg	Kaaa	Egaa	Agca	Тасс	Тасс	Tact	Lcta	Fttc	Ctgt	Agca	S
HV		Ctgt	Sag	Agc	Agca	Egag	Dgac	Lttg	Wtgg	Vgtc	Таса	Vgtc	Ytat	Ytat	Gggg	Vgta	Pcct	Vgtg	Wtgg	Kaaa	Egaa	Agca	Тасс	Тасс	Tact	Lcta	Fttt	Ctgt	Agca	St
HV	LC4	Ctgt	Sag	Agc	Agca	Agca	a Naac	Lttg	Wtgg	Vgtc	Таса	Vgtc	Ytat	Ytat	Gggg	Vgta	Pcct	Vgtg	Wtgg	Kaaa	Egaa	Agca	Тасс	Тасс	Tact	Lcta	Fttt	Ctgt	Agca	Sf
HV	EL	Ctgt	Sag	Agc	Agca	Dga	Naat	Lctg	Wtgg	Vgtc	Таса	Vgtt	Ytat	Ytat	Gggg	Vgtg	Pcct	Vgta	Wtgg	Kaag	Egaa	Agca	Тасс	Тасс	Tact	Lcta	Fttt	Ctgt	Agca	s
HV:	LND	Ctgt	Sag	Agc	Agca	Ega	a Dgat	Lttg	Wtgg	Vgtc	Таса	Vgtt	Ytat	Ytat	Gggg	Vgtg	Pcct	lata	Wtgg	Kaag	Egaa	Agca	Tact	Тасс	Tact	Lcta	Fttt	Ctgt	Agca	s
HV	MA	Ctgt	Sag	latt	Agca	Ega	Dgat	Lttg	Wtgg	Vgtt	Таса	Vgtt	Ytat	Ytat	Gggg	Vgta	Pcct	Vgtg	Wtgg	Kaaa	Egaa	Agca	Тасс	Tact	Tact	Lcta	Fttt	Ctgt	Agca	s
SI	/CZ	Ctgt	Lttg	Тасо	Stct	Eg-	ag	Ltta	Wtgg	Vgta	Таса	Vgta	Ytat	Ytat	Ggga	Vgta	Pcct	Vgtt	Wtgg	Hcat	Dgat	Agct	Dgac	Pccg	Vgta	Lctc	Fttt	Ctgt	Agcc	s
,																														
В																														
	Seq	6	70 6	671 6	672 6	73 6	674 6	75 67	6 67	7 67	8 67	9 68	0 68	1 68	2 683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	,
WK-	-501	la	ua c	ugc A	gcu S	agu <mark>Y</mark>	uau Qo	ag Ta	cu Qc	ag Ta	cu Na	au Su	eu Pcc	u Rcg	ig Rcg	g Age	a Rcgi	u Sag	u Vgua	a Age	u Sag	u Qcaa	Suco	lauc	lauu	Agcc	Yuac	Tacu	Maug	s
WK-	-012	la	ua c	ugc A	gcu Sa	agu Y	uau Qo	ag Ta	cu Qc	ag Ta	cu Na	au Su	cu Pcc	u Rcg	lg Rcg	g Age	a Rcgi	u Sag	u Vgua	a Age	u Sag	u Qcaa	Suco	lauc	lauu	Agcc	Yuac	Tacu	Maug	s
WK-	-521	la	ua c	ugc A	gcu S	agu Y	uau Qo	ag Ta	cu Qc	ag Ta	cu Na	au Su	su <mark>Pcc</mark>	u Rcg	Ig Rcg	g Agc	a Rcgi	u Sag	u Vgua	a Age	u Sag	u Qcaa	Suco	lauc	lauu	Agcc	Yuac	Tacu	Maug	s
WA:	L-A1	2 la	ua c	ugc A	gcu Si	agu Y	uau Qo	ag Ta	cu Qc	ag Ta	cu Na	au Su	eu <mark>Pcc</mark>	u Rcg	lg Rcg	g Age	a Rcgi	u Sag	u Vgua	a Agc	u Sag	u Qcaa	Suco	lauc	lauu	Agcc	Yuac	Tacu	Maug	s
WA:	l-F6	la	ua c	ugc A	gcu S	agu Y	uau Qo	ag Ta	cu Qc	ag Ta	cu Na	au Su	cu Pcc	u Rcg	lg Rcg	g Age	a Rcgi	u Sag	u Vgua	a Agc	u Sag	u Qcaa	Suco	lauc	lauu	Agcc	Yuac	Tacu	Maug	s
HU-	-1	la	ua c	ugc A	gcu Si	agu Y	uau Qo	ag Ta	<mark>cu</mark> Qc	ag Ta	cu Na	au Su	cu <mark>Pcc</mark>	u Reg	Ig Rcg	g Age	a Rcgi	u Sag	u Vgua	a Age	u Sag	u Qcaa	Suco	lauc	lauu	Agcc	Yuac	Tacu	Maug	s
Raï	G13	la	ua C	ugc A	gcc S	agu Y	uau Qo	ag Ta	cu Qc	aa Ta	cu Na	au Su	ca				Rcgi	u Sag	u Vgu	g Age	c Sag	u Qcaa	Suci	lauu	lauu	Agcc	Yuac	Tacu	Maug	S

Fig 2. Codon and aa unified view of the codon alignments: (A) the codon alignment of HIV/SIV
envelop protein gene; HV1J3-HV1MA: HIV strains, SIVCZ: chimpanzee SIV; (B) the codon alignment
of the spike protein gene of coronaviruses. WK-501, WK-012, WK-521, WA1-A12, WA1-F6, HU-1:
COVID-19 isolates; RaTG13: a bat coronavirus (MN996532.1) which is identified as the most recent
common ancestor of COVID-19 and SARS COVs. Uppercase: amino acids; lowercase: nucleotides.

14

15