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Abstract
A mathematical model is proposed to assess the effects of a vaccine on the time
evolution of a coronavirus outbreak. Themodel has the basic structure of SIRI compart-
ments (susceptible–infectious–recovered–infectious) and is implemented by taking
into account of the behavioral changes of individuals in response to the available
information on the status of the disease in the community. We found that the cumu-
lative incidence may be significantly reduced when the information coverage is high
enough and/or the information delay is short, especially when the reinfection rate
is high enough to sustain the presence of the disease in the community. This analy-
sis is inspired by the ongoing outbreak of a respiratory illness caused by the novel
coronavirus COVID-19.

Keywords Epidemic model · Coronavirus · Reinfection · Vaccine · Information

Mathematics Subject Classification 92D30 · 34C60

1 Introduction

On 7 January 2020, China announced the outbreak of a respiratory illness caused by
a novel coronavirus which did not match any other known virus. The coronavirus
was temporarily named 2019-nCoV and finally COVID-19 [32]. The outbreak was
first detected in Wuhan City, Hubei Province, and then expanded in the rest of China
and other countries [31]. Coronaviruses are a large family of viruses which can affect
many different species of animals, like cattle, cats, and bats. Rarely, animal coron-
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aviruses can infect people and then spreading from person-to-person. However, this
may happen with serious consequences: well known cases are that of Severe acute
respiratory syndrome (SARS) which killed 813 people worldwide during 2002–2003
outbreak [29], and the more recent case of Middle East respiratory syndrome coron-
avirus (MERS), where a total of 2494 confirmed cases including 858 associated deaths
were reported, the majority from Saudi Arabia (at the end of November 2019, [30]).
Therefore, coronavirus may represent a serious public health threat.

The emergency related to the novel outbreak in China is still ongoing at time of
writing this article and it is unclear how the situation worldwide will unfold. The news
released by media create great concern and behavioral changes can be observed in the
everyday life of individuals, even in Europe where at the moment only few cases have
been reported. For example, the fear of coronavirus has driven rapidly to sold out of
protective face masks in pharmacies in Italy long before the first case in the country
was reported [1].

A specific aspects of diseases caused by coronavirus is that humans can be rein-
fected with respiratory coronaviruses throughout life [19]. The duration of immunity
for SARS, for example, was estimated to be greater than 3 years [34].Moreover, inves-
tigations on human coronavirus with infected volunteers has shown that even though
the immune system react after the infection (serum-specific immunoglobulin and IgC
antibody levels peak 12–14 days after infection) at one year following experimen-
tal infection there is only partial protection against re-infection with the homologous
strain [9].

Predictions or insight concerning the time-evolution of epidemics, especially when
a new emerging infectious disease is under investigation, can be obtained by using
mathematical models. In Mathematical Epidemiology, a large amount of literature
is devoted to the use of the so called compartmental epidemic models, where the
individuals of the community affected by the infectious disease are divided in mutu-
ally exclusive groups (the compartments) according to their status with respect to
the disease [3,4,10,21,24]. Compartmental epidemic models are providing to be the
first mathematical approach for estimating the epidemiological parameter values of
COVID-19 in its early stage and for anticipating future trends [2,11,28].

When the disease under interest confer permanent immunity from reinfection after
being recovered, the celebrated SIR model (susceptible–infectious–recovered) and
its many variants are most often adopted. However, where reinfection cannot be
neglected the SIRS model (susceptible–infectious–recovered, and again susceptible)
and its variants may be used, under the assumption that infection does not change the
host susceptibility [3,4,10,21,24].

Since the disease of our interest has both reinfection and partial immunity after
infection, we consider as starting point the so-called SIRI model (susceptible-
infectious-recovered-infectious) which takes into account of both these features (see
[25] and the references contained therein for further information on SIRI model).
When the epidemic process may be decoupled from the longer time-scale demo-
graphic dynamics, i. e. when birth and natural death terms may be neglected, one gets
a simpler model with an interesting property. In fact, according to the values of three
relevant parameters (the transmission rate, the recovery rate and the reinfection rate),
the model exhibits three different dynamics [18,20]: (i) no epidemic will occur, in the
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sense that the fraction of infectious will decrease from the initial value to zero; (ii)
an epidemic outbreak occurs, in the sense that the fraction of infectious will initially
increase till a maximum value is reached and then it decreases to zero; (iii) an epidemic
outbreak occurs and the disease will permanently remain within the population.

At time of writing this paper, scholars are racing to make a vaccine for the novel
COVID-19 coronavirus available. As of February 12, 2020, it was announced that ‘The
first vaccine could be ready in 18 months’ [32]. Therefore, it becomes an intriguing
problem to qualitatively assess how the administration of a vaccine could affect the
outbreak, taking into account of the behavioral changes of individuals in response to
the information available on the status of the disease in the community. This is the
main aim of this paper.

The scenario depicted here is that of a community where a relatively small quantity
of infectious is present at time of delivering the vaccine. The vaccination is assumed
to be fully voluntary and the choice to get vaccinated or not is assumed to depend in
part on the available information and rumors concerning the spread of the disease in
the community.

The behavioral change of individuals is introduced by employing the method of
information-dependent models [14,15,33] which is based on the introduction of a
suitable information index. Such an approach has been applied to general infectious
diseases [8,14,15,23,33] as well as specific ones, including childhood diseases like
measles, mumps and rubella [14,33] and is currently under development (for very
recent papers see [5,22,35]). Therefore, another goal of this manuscript is to provide
an application of the information index to a simple model containing relevant features
of a coronavirus disease. Specifically, we use epidemiological parameter values based
on early estimation of novel coronavirus COVID-19 [28].

The rest of the paper is organized as follows: in Sect. 2 we introduce the basic
SIRI model and recall its main properties. In Sect. 3 we implement the SIRI model by
introducing the information-dependent vaccination. The epidemic and the reinfection
thresholds are discussed in Sect. 4. Section 5 is devoted to numerical investigations:
the effects of the information parameters on the time evolution of the outbreak are
discussed. Conclusions and future perspective are given in Sect. 6.

2 The SIRI model

Since the disease of our interest has both reinfection and partial immunity after infec-
tion, we first consider the SIRI model, which is given by the following nonlinear
ordinary differential equations (the upper dot denotes the time derivative) [18]:

Ṡ = μ(1 − S) − βSI
İ = βSI + σβRI − (γ + μ) I
Ṙ = −σβRI + γ I − μR.

(1)

Here S, I and R denote, respectively, the fractions of susceptible, infectious (and
also infected) and recovered individuals, at a time t (the dependence on t is omitted);
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β is the transmission rate; γ is the recovery rate; μ is the birth/death rate; σ ∈ (0, 1)
is the reduction in susceptibility due to previous infection.

Model (1) assumes that the time-scale under consideration is such that demographic
dynamics must be considered.

However, epidemics caused by coronavirus often occurs quickly enough to neglect
the demographic processes (as in the case of SARS in 2002–2003).When the epidemic
process is decoupled from demography, i.e. when μ = 0, one obviously gets the
reduced model:

Ṡ = −βSI
İ = βSI + σβRI − γ I
Ṙ = −σβRI + γ I .

(2)

This very simplemodel has interesting properties. Indeed, introduce thebasic repro-
duction number R0 = β/γ . It has been shown that the solutions have the following
behavior [20]:

If R0 ≤ 1, then no epidemic will occur, in the sense that the state variable I (t)
denoting the fraction of infectious will decrease from the initial value to zero;

If R0 ∈ (1, 1/σ), then an epidemic outbreak will follow, in the sense that the
state variable I (t) will initially increase till a maximum value is reached and then it
decreases to zero;

If R0 > 1/σ , then an epidemic outbreak will follow and the disease will per-
manently remain within the population, in the sense that the state variable I (t) will
approach (after a possibly non monotone transient) an endemic equilibrium E , given
by:

E = (
S, I , R

)
,

where:

S = 0; I = 1 − 1

σ R0
; R = 1

σ R0
. (3)

The equilibrium E is globally asymptotically stable [20] and it is interesting to note
that, since the demography has been neglected, the diseasewill persist in the population
due to the reservoir of partially susceptible individuals in the compartment R.

From a mathematical point of view, the threshold R0 = R0σ , where R0σ = 1/σ , is
a bifurcation value for model (2). This does not happen for model (1). In fact, when
demography is included in the model, the endemic equilibrium exists for R0 > 1,
where R0 = β/(μ+γ ) and therefore both below and above the reinfection threshold.

Model (2) (as well as (1)) is a simple model which is able to describe the time-
evolution of the epidemic spread on a short time-scale. However, it does not takes into
account of possible control measure. The simplest one to consider is vaccination. We
consider the scenario where the vaccination is assumed to be fully voluntary. In order
to emphasize the role of reinfection, we assume that only susceptible individuals (i.e.
individuals that did not experience the infection) consider this protective option.When
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the vaccine is perfect (i.e. it is an ideal vaccine which confer 100 percent life-long
immunity) one gets the following model:

Ṡ = −βSI − ϕ0S
İ = βSI + σβRI − γ I
Ṙ = −σβRI + γ I
V̇ = ϕ0S.

(4)

where V denotes the fraction of vaccinated individuals and ϕ0 is the vaccination rate.
In the next section we will modify the SIRI model (4) to assess how an hypothetical

vaccine could control the outbreak, taking into account of the behavioral changes of
individuals produced by the information available on the status of the disease in the
community.

3 The information-dependentmodel

We modify the SIRI model by employing the idea of the information-dependent
epidemic models [23,33]. We assume that the vaccination is fully voluntary and
information-dependent, in the sense that the choice to get vaccinated or not depends
on the available information and rumors concerning the spread of the disease in the
community.

The information is mathematically represented by an information index M(t),
which summarizes the information about the current and past values of the disease
and is given by the following distributed delay [12–14,16]:

M(t) =
∫ t

−∞
g̃ (S(τ ), I (τ ), V (τ )) K (t − τ)dτ , (5)

Here, the function g̃ describes the information that individuals consider to be relevant
for making their choice to vaccinate or not to vaccinate. It is often assumed that g̃
depends only on prevalence [5,12,14,16]

g̃ =
{
0 if t < 0
g(I ) if t ≥ 0

,

where g is a continuous, differentiable, increasing function such that g(0) = 0. In
particular, we assume that:

g(I ) = k I . (6)

In (6) the parameter k is the information coverage and may be seen as a ‘summary’ of
two opposite phenomena, the disease under-reporting and the level of media coverage
of the status of the disease, which tends to amplify the social alarm. The range of
variability of k may be restricted to the interval (0, 1) (see [6]).
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Fig. 1 The
information-dependent
vaccination rate (8) as function
of the information index M . The
parameter values are given in
Table 1
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The delay kernel K (t) in (5) is a positive function such that
∫ +∞
0 K (t)dt = 1 and

represents the weight given to past history of the disease. We assume that the kernel
is given by the first element Erl1,a(t) of the Erlangian family, called weak kernel or
exponentially fading memory. This means that the maximum weight is assigned to
the current information and the delay is centered at the average 1/a. Therefore, the
parameter a takes the meaning of inverse of the average time delay of the collected
information on the disease. With this choice, by applying the linear chain trick [26],
the dynamics of M is ruled by the equation:

Ṁ = a (k I − M) . (7)

We couple this equation with model (4). The coupling is realized through the fol-
lowing information-dependent vaccination rate:

ϕ (M) = ϕ0 + ϕ1 (M) , (8)

where the constant ϕ0 ∈ (0, 1) represents the fraction of the population that chooses to
get vaccinate regardless of rumors and information about the status of the disease in the
population, and ϕ1 (M(t)) represents the fraction of the population whose vaccination
choice is influenced by the information.

Generally speaking, we require thatϕ1(0) = 0 andϕ1 is a continuous, differentiable
and increasing function. However, as done in [5,14], we take:

ϕ1(M) = (1 − ϕ0 − ε)
DM

1 + DM
,

where ε > 0. This parametrization leads to an overall coverage of 1−ε (asymptotically
for M → ∞). Here we take ε = 0.01, which means a roof of 99% in vaccine uptakes
under circumstances of high perceived risk. We also take D = 500 [14]. Note that this
choice of parameter values implies that a 96.4% vaccination coverage is obtained in
correspondence of an information index M = 0.07 (see Fig. 1).

123



Effects of information-dependent vaccination behavior on…

Table 1 Description and baseline values of the parameters of model (9)

Parameter Meaning Baseline value Reference

β Transmission rate 1.07 ind−1day−1 [28]

γ Recovery rate 0.278 day−1 [28]

σ Rel. susceptibility of recovered indiv. – Varying

ψ Rel. susceptibility of vaccinated indiv. 0.15 Guessed

ϕ0 Information-independent vaccinaton rate 0.04 day−1 [5]

k Information coverage (0.2, 1) Guessed

1 − ε Max vaccin. coverage due to information 0.99 [5]

D Michaelis–Menten parameter 500 [14]

T Average time delay of information (0, 120) day Guessed

a Inverse average time delay of infor. (1/T ) (0.00833, ∞) Guessed

Finally we assume that the vaccine is not perfect, which is a more realistic hypothe-
sis, so that the vaccinated individuals may be infected but with a reduced susceptibility
ψ .

The SIRI epidemicmodel with information-dependent vaccination that we consider
is therefore given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ṡ = −βSI − ϕ (M) S

İ = βSI + σβRI + ψβV I − γ I

Ṙ = −σβRI + γ I

V̇ = −ψβV I + ϕ (M) S

Ṁ = a (k I − M)

(9)

The meaning of the state variables, the parameters and their baseline values are
given in Table 1.
Note that

d

dt
(S + I + R + V ) = 0,

therefore assuming that S(0) + I (0) + R(0) + V (0) = 1 we can substitute S =
1 − I − R − V in (9) to get:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

İ = β (1 − I − R − V ) I + σβRI + ψβV I − γ I

Ṙ = −σβRI + γ I

V̇ = ϕ (M) (1 − I − R − V ) − ψβV I

Ṁ = a (k I − M)

(10)
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4 The epidemic and the reinfection thresholds

4.1 The epidemic threshold

Let us introduce the quantity

P0 = β

γ
, (11)

which is the basic reproduction number of model (2) [20]. From the second equation
of (9) it easily follows that

İ = γ I [P (S, R, V ) − 1] ,

where:

P (S, R, V ) = P0S + σP0R + ψP0V .

It immediately follows that, if I (0) > 0, then:

P (S(0), R(0), V (0)) > 1 ⇐⇒ I ′(0) > 0,

and

P (S(0), R(0), V (0)) < 1 ⇐⇒ I ′(0) < 0.

Assuming that I (0) > 0 and R(0) = V (0) = 0 (and therefore S(0) < 1) it follows
that:

If P0 < 1/S(0), then the epidemic curve initially decays. If P0 > 1/S(0) the
epidemic takes place since the infectious curve initially grows.

4.2 The reinfection threshold

From the first equation in (9) it can be seen that at equilibrium it must be S̃ = 0.
Therefore, all the possible equilibria are susceptible-free. Since the solutions are clearly
bounded, this means that for large time any individual who was initially susceptible
has experienced the disease or has been vaccinated. Looking for equilibria in the form

Ẽ =
(
Ĩ , R̃, Ṽ , M̃

)
, from (10) we get:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β
(
1 − Ĩ − R̃ − Ṽ

)
Ĩ + σβ R̃ Ĩ + ψβ Ṽ Ĩ − γ Ĩ = 0

−σβ R̃ Ĩ + γ Ĩ = 0

ϕ
(
M̃

) (
1 − Ĩ − R̃ − Ṽ

)
− ψβ Ṽ Ĩ = 0

a
(
k Ĩ − M̃

)
= 0

(12)
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Disease-free equilibria: If Ĩ = 0. It can be easily seen from (12) that

ϕ0

(
1 − R̃ − Ṽ

)
= 0.

Therefore there are infinitely many disease-free equilibria of the form

E0 = (0, R0, V0, 0) ,

where R0 + V0 = 1.
Endemic equilibrium: We begin by looking for equilibria such that

Ĩ 
= 0; S̃ = 1 − Ĩ − R̃ − Ṽ = 0. (13)

This implies that:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σβ R̃ Ĩ + ψβ Ṽ Ĩ − γ Ĩ = 0

−σβ R̃ Ĩ + γ Ĩ = 0

ψβ Ṽ Ĩ = 0

k Ĩ = M̃ .

(14)

Therefore: Ṽ = 0 and

R̃ = γ

σβ
,

and from (13):

Ĩ = 1 − R̃.

It follows that an unique susceptibles-free endemic equilibrium exists, which is given
by:

E1 = (I1, R1, 0, M1) , (15)

where

I1 = 1 − 1

σP0
; R1 = 1

σP0
; M1 = k I1, (16)

which exists only if

P0 >
1

σ
. (17)

The quantity

σc = 1/P0, (18)
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is the reinfection threshold.When σ > σc the diseasemay spread and persist inside the
community where the individuals live. Note that in classical SIR models the presence
of an endemic state is due to the replenishment of susceptibles ensured by demography
[20], which is not the case here.
The local stability analysis of E1 requires the Jacobian matrix of system (10):

J =

⎡

⎢
⎢
⎣

J11 −β I + σβ I −β I + ψβ I 0
−σβ R + γ −σβ I 0 0

−ϕ(M)−ψβ V −ϕ(M) −ϕ(M)−ψβ I −ϕ′(M) (1−I−R−V )

ak 0 0 −a

⎤

⎥
⎥
⎦

where

J11 = −β I + β (1 − I − R − V ) + σβ R + ψβ V − γ.

Taking into account of (13), (14) and that V1 = 0, it follows

J (E1) =

⎡

⎢
⎢
⎣

−β I1 −β I1 + σβ I1 −β I1 + ψβ I1 0
0 −σβ I1 0 0

−ϕ(M1) −ϕ(M1) −ϕ(M1) − ψβ I1 0
ak 0 0 −a

⎤

⎥
⎥
⎦

The eigenvalues are:

λ1 = −a; λ2 = −σβ I1,

and the eigenvalues of the submatrix:

J̃ =
[ −β I1 −β I1 + ψβ I1

−ϕ(M1) −ϕ(M1) − ψβ I1

]

The trace is negative and the determinant is

det J̃ = ψβ2 I 21 + ψβϕ(M1) I1 > 0,

so that E1 is locally asymptotically stable.

Remark 1 We remark that:

(i) the stable endemic state E1 can be realized thanks to the imperfection of the
vaccine, in the sense that when ψ = 0 in (9) the variable V is always increasing.

(ii) the information index, in the form described in Sect. 3, may be responsible of the
onset of sustained oscillations in epidemic models both in the case of delayed
information (see e.g. [12,14,16,17]) and instantaneous information (as it happens
when the latency time is included in the model [7]). In all these mentioned cases,
the epidemic spread is considered on a long time-scale and demography is taken
into account. The analysis in this section clearly shows that sustained oscillations
are not possible for the short time-scale SIRI model with information.
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Fig. 2 Time profiles of fraction of infectious I (Left panel) and and information index M (Right panel). The
dotted line correspond to a value of the reinfection rate σ above the threshold 1/P0 = 0.259. Therefore the
disease is sustained endemically by reinfection. The continuous line correspond to a value of σ below the
threshold 1/P0 = 0.259, so that the epidemic will eventually die out. The information coverage is k = 0.2
and the average time delay of information is T = 120 days. The other parameter values are given in
Table 1

5 Numerical investigations

We use epidemiological parameter values based on early estimation of novel coro-
navirus COVID-19 provided in [28]. The estimation, based on the use of a SEIR
metapopulation model of infection within Chinese cities, revealed that the transmis-
sion rate within the city of Wuhan, the epicenter of the outbreak, was 1.07 day−1, and
the infectious period was 3.6 days (so that γ = 0.27 day−1).

Therefore the BRN given in (11) is P0 = 3.85 (of course, in agreement with the
estimate in [28]), and the value σc := 1/P0 = 0.259 is the threshold for the infection
rate.

For vaccinated individuals, the relative susceptibility (compared to an unvacci-
nated individuals) is set ψ = 0.15, which means that vaccine administration reduces
the transmission rate by 85% (vaccine efficacy= 0.85). This value falls within the esti-
mates for the most common vaccine used in the USA, where vaccine efficacy ranges
between 0.75 and 0.95 (see Table 9.3, p. 222, in [24]).

As for the relative susceptibility of recovered individuals, we consider two relevant
baseline cases:

(i) Case I: σ = 0.2. This value is representative of a reinfection value below the
reinfection threshold σc;

(i) Case II: σ = 0.4. This value is representative of a reinfection value above the
reinfection threshold σc.

The information parameter values are mainly guessed or taken from papers where
the information dependent vaccination is used [5,14]. The information coverage k
ranges from a minimum of 0.2 (i.e. the public is aware of 20% of the prevalence) to 1.
The average time delay of information ranges from the hypothetical case of immediate
information (T=0) to a delay of 120 days.
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Fig. 3 Time profile of incidence.
The reinfection rate σ above the
threshold 1/P0 = 0.259. The
dotted line correspond to a low
value of the information
coverage (k = 0.2). A greater
value (k = 0.4, continuous line)
results in the elimination of the
disease. The average time delay
of information is T = 120 days.
The other parameter values are
given in Table 1
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The description and baseline values of the parameters are presented in Table 1. The
initial data reflect a scenario in which a small portion of infectious is present in the
community at time of administrating the vaccine. Furthermore, coherently with the
initial data mentioned in Sect. 4, we assume that:

I (0) = 10−4, R(0) = 0, V (0) = 0, M(0) = k I (0), (19)

and, clearly, S(0) = 1 − I (0).
According to the analysis made in Sect. 4, values of σ below the threshold σc

implies that the epidemic will eventually die out. When σ is above σc, then the disease
is sustained endemically by reinfection. This behavior is illustrated in Fig. 2, where it
is considered the worst possible scenario, where k = 0.2 and T = 120 days.

In Fig. 2, left panel, the continuous line is obtained for σ = 0.2. Vaccination is
not able to influence the outbreak, due to the large delay. However, even though an
epidemic peak occurs after three weeks, thereafter the disease dies out due to the low
level of reinfection. The case σ = 0.4 is represented by the dotted line. As expected,
the reinfection is able to ‘restart’ the epidemic. The trend (here captured for one year)
would be to asymptotically converge to the endemic equilibrium E1.

The corresponding time evolution of the information index M is shown in Fig. 2,
right panel. In particular, in the elimination case (σ = 0.2), the information index
reaches a maximum of 0.002 (approx.) which corresponds to a vaccination rate of
51.5% (see Fig. 1). After that, it declines but, due to memory of past events, the
information index is still positive months after the elimination of the disease. The
‘social alarm’ produced in the case σ = 0.4 is somehow represented by the increasing
continuous curve in Fig. 2, right panel. At the end of the time frame it is M ≈ 0.022
which corresponds to a vaccination rate of 91%.

In summary, a large reinfection ratemay produce a large epidemic.However, even in
this worst scenario, the feedback produced by behavioral changes due to information
may largely affect the outbreak evolution. In Fig. 3 we see the effect of an higher
information coverage (k = 0.4, left panel) on the incidence of the disease which, for
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Fig. 4 Cumulative incidence of the disease (first and third panel from the left) and percentage variation of
the cumulative incidence (second and fourth panel) by varying the information coverage k. The first two
panels refer to the case σ = 0.2. The third and fourth panel refer to the case σ = 0.4. The parameter values
are given in Table 1

model (10), is given by the quantity:

incidence(t) = β S(t) I (t) + σβR(t)I (t) + ψβV (t)I (t).

More informed people react and vaccinate and this, in turn, contribute to the elim-
ination of the disease. Therefore, a threshold value kc exists above which the disease
can be eliminated. An insight on the overall effect of parameter k on the epidemic may
be determined by evaluating how it affects the cumulative incidence (CI),

CI =
∫ t f

0
(β S I + σβRI + ψβV I ) dt, (20)

i.e. total number of new cases in the time frame [0, t f ].We also introduce the following
index

RCCI, p := CI(p1) − CI(p2)

CI(p2)
, (21)

which measures the relative change of cumulative incidence for two different values,
say p1 and p2, of a given parameter p over the simulated time frame (in other words,
the percentage variation of the cumulative incidence varying p from p2).

In Fig. 4 (first plot from the left) it is shown the case of a reinfection value σ = 0.2,
that is under the reinfection threshold. It can be seen howCI is decliningwith increasing
k. In Fig. 4 (second plot from the left) a comparison with the case of low information
coverage, k = 0.2, is given: a reduction till 80% of CI may be reached by increasing
the value of k till k = 0.99. When the reinfection value is σ = 0.4 (Fig. 4, third and
fourth plot), that is above the reinfection threshold, the ‘catastrofic case’ is represented
in correspondence of k = 0.2. This case is quickly recovered by increasing k, as we
already know from Fig. 3, because of the threshold value kc, between 0.2 and 0.3,
which allows to pass from the endemic to no-endemic asymptotic state. Then, again
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Fig. 5 Cumulative incidence of the disease (first and third panel from the left) and percentage variation of
the cumulative incidence (second and fourth panel) by varying the information delay T = 1/a. The first
two panels refer to the case σ = 0.2. The third and fourth panel refer to the case σ = 0.4. The parameter
values are given in Table 1

CI is declining with increasing k. This means that when reinfection is high, the effect
of information coverage is even more important. In fact, in this case the prevalence is
high and a high value of k result in a greater behavioral response by the population.

In Fig. 5 it is shown the influence of the information delay T on CI. In the case
σ = 0.2 CI grows concavely with T (first plot from the left). In Fig. 5 (second plot)
a comparison with the case of maximum information delay, T = 120 days, is given:
a reduction till 75% of CI may be reached by reducing the value of T till to very few
days. When the reinfection value is σ = 0.4 (Fig. 5, third and fourth plot), that is
above the reinfection threshold, CI increases convexly with T . A stronger decreasing
effect on CI can be seen by reducing the delay from T = 120 days to T ≈ 90, and a
reduction till 98% of CI may be reached by reducing the value of T till to very few
days.

6 Conclusions

In this paperwehave investigatedhowahypothetical vaccine could affect a coronavirus
epidemic, taking into account of the behavioral changes of individuals in response to
the information about the disease prevalence.

We have first considered a basic SIRI model. Such a model contains the specific
feature of reinfection, which is typical of coronaviruses. Reinfection may allow the
disease to persist even when the time-scale of the outbreak is small enough to neglect
the demography (births and natural death).

Then, we have implemented the SIRI model to take into account of: (i) an available
vaccine to be administrated on voluntary basis to susceptibles; (ii) the change in the
behavioral vaccination in response to information on the status of the disease.

We have seen that the disease burden, expressed through the cumulative incidence,
may be significantly reduced when the information coverage is high enough and/or
the information delay is short. When the reinfection rate is above the critical value, a
relevant role is played by recovered individuals. This compartment offers a reservoir
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of susceptibles (although with a reduced level of susceptibility) and if not vaccinate
may contribute to the re-emergence of the disease. On the other hand, in this case a
correct and quick information may play an even more important role since the social
alarm produced by high level of prevalence results, in turn, in high level of vaccination
rate and eventually in the reduction or elimination of the disease.

The model on which this investigation is based is intriguing since partial immunity
coupled to short-time epidemic behavior may lead to not trivial epidemic dynamics
(see the ‘delayed epidemic’ case, where an epidemics initially may decrease to take
off later [27]). However, it has many limitations in representing the COVID-19 prop-
agation. For example, the model represents the epidemics in a closed community over
a relatively short time-interval and therefore it is unable to capture the complexity of
global mobility, which is one of the main concerns related to COVID-19 propagation.
Another limitation, which is again related to the global aspects of epidemics like SARS
and COVID-19, is that we assume that individuals are influenced by information on
the status of the prevalence within the community where they live (i.e. the fraction I
is part of the total population) whereas local communities may be strongly influenced
also by information regarding far away communities, which are perceived as potential
threats because of global mobility.

Moreover, in absence of treatment and vaccine, local authorities face with coro-
navirus outbreak using social distancing measures, that are not considered here:
individuals are forced to be quarantined or hospitalized. Nevertheless, contact pat-
tern may be reduced also as response to information on the status of the disease. In
this case the model could be modified to include an information-dependent contact
rate, as in [5,7]. Finally, the model does not include the latency time and the disease-
induced mortality is also neglected (at the moment, the estimate for COVID-19 is at
around 2%). These aspects will be part of future investigations.
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