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Abstract  

Background: Chest CT had high sensitivity in diagnosing novel coronavirus 

pneumonia (NCP) at early stage, giving it an advantage over nucleic acid detection in 

time of crisis. Deep learning was reported to discover intricate structures from clinical 

images and achieve expert-level performance in medical image analysis. To develop 

and validate an integrated deep learning framework on chest CT images for auto-

detection of NCP, particularly focusing on differentiating NCP from influenza 

pneumonia (IP). 

Methods: 35 confirmed NCP cases were consecutively enrolled as training set from 

1138 suspected patients in three NCP designated hospitals together with 361 

confirmed viral pneumonia patients from center one including 156 IP patients, from 

May, 2015 to February, 2020. The external validation set enrolled 57 NCP patients 

and 50 IP patients from eight centers.  

Results: 96.6% of NCP lesions were larger than 1 cm and 76.8% were with intensity 

below –500 Hu, indicating less consolidation than IP lesions which had nodules 

ranging 5-10 mm. The classification schemes accurately distinguished NCP and IP 

lesions with area under the receiver operating characteristic curve (AUC) above 0.93. 

The Trinary scheme was more device-independent and consistent with specialists than 

the Plain scheme, which achieved a F1 score of 0.847, higher than the Plain scheme 

(0.774), specialists (0.785) and residents (0.644). 

Conclusions: Our study potentially provides an accurate early diagnosis tool on chest 

CT for NCP with high transferability, and shows high efficiency in differentiating 

NCP and IP, helping to reduce misdiagnosis and contain the pandemic transmission. 

Keywords: deep learning; novel coronavirus pneumonia; influenza pneumonia; chest 

CT 
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Introduction  

The spread of novel coronavirus pneumonia (NCP) induced by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) has now entered a new phase in 

which new confirmed cases continue to decline in China while the novel virus rapidly 

spreading across the world with infected patients surging in hot spots of countries, 

such as European and Eastern Mediterranean region. 

 Early diagnosis is critical for both epidemic control and prompt medical 

intervention. Notably, pneumonia identified outside high-incidence areas are likely to 

be induced by a broad spectrum of pathogens, especially influenza which has high 

incidence in winter and spring. Influenza pneumonia (IP) brings huge burden to 

healthcare system due to its high morbidity and mortality rate. In United States, 

influenza accounted for more than 29 million infections and 16,000 deaths in 2019 

(1). It was reported that oral oseltamivir accelerates symptom alleviation and reduces 

risks of lower respiratory tract complications in influenza (2). Therefore, early 

diagnosis and separation of IP patients from NCP patients will improve prognosis and 

optimize the allocation of medical resources. However, apart from overlapping 

symptoms and laboratory abnormalities, IP and NCP manifest similar chest CT 

findings (3), making it difficult to differentiate these two kinds of viral pneumonia.  

The diagnostic efficiency of nucleic acid detection (4) is constrained by following 

limitations: 1) high false negative rate owing to low virus load at early infection stage 

(5) or possible genetic mutations (6); 2) shortage of detection reagents; and 3) long 

waiting time. It is found that some early-onset NCP patients who had already 

presented abnormal chest CT findings still got negative results on the initial nucleic 

acid test. As a result, the category of clinically diagnosed NCP was added in the fifth 

version of diagnosis and treatment scheme released by Chinese National Health 
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Commission (7), referring to suspected cases showing characteristics of viral 

pneumonia on chest CT, with the intention to reduce mortality rate and occurrence of 

cross infection while patients wait for laboratory confirmation. Additionally, CT has 

the advantage of evaluating the severity and surveilling the dynamic progress of 

pneumonia (8). The key issues in improving the capability to distinguish NCP from IP 

on chest CT scan are how to find the lesions quickly and make accurate differential 

diagnosis.  

The problem could be alleviated by deep learning, a technique that has witnessed 

striking advances in healthcare applications (9, 10). It could achieve expert-level 

performance in medical image analysis with minimal time and labor cost, like 

detection of diabetic retinopathy and classification of skin cancer (11, 12). Deep 

learning is also widely used to automatically detect pneumonia based on chest X-ray 

images (13, 14), and discriminate usual interstitial pneumonia from nonspecific 

interstitial pneumonia based on chest CT images (15).  

 In this study, we developed and validated an integrated deep learning framework 

on chest CT images for auto-detection of NCP, particularly focusing on differentiating 

NCP from IP, ensuring prompt implementation of isolation. To alleviate transferability 

problem that a well-trained deep learning model performs poorly on data from unseen 

sources (16), we proposed a novel training scheme (Trinary scheme) to encourage the 

model to learn device independent features.  

 

Materials and methods 

1. Patients 

This retrospective study was conducted in eight tertiary referral centers (Center 

1~8). In three designated hospitals for NCP screening, 35 confirmed NCP cases were 
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enrolled as training set from a consecutive case series of 1138 suspected patients, 

together with 361 patients with confirmed viral pneumonia from Center one including 

156 IP patients. Patients were diagnosed as viral pneumonia according to the 2016 

Clinical Practice guidelines by the Chinese Thoracic Society and 2007 Infectious 

Diseases Society of America/American Thoracic Society guidelines (17, 18). The 

external validation set enrolled 57 NCP patients and 50 IP patients from eight 

hospitals. Inclusion and exclusion criteria, distribution of patients and flow chart of 

this study was shown in Figure 1. More details were in the Method E1. 

2. Lesion detection  

In our study, the lesion regions of each CT image were annotated by two 

radiologists, who have more than 10 years of experience in pulmonary-thoracic 

disease and were aware of the clinical history of infection. We used YOLOv3 to 

perform lesion detection on the selected images (19). The structure of YOLOv3 was 

presented on Figure E1 and detail information and CT slice thickness were presented 

on Table E1 and Method E2. 

3. Lesion level classification 

Because of the limited number of annotations, we chose VGGNet as the 

classification model (20). It is improved on the basis of AlexNet. To better fit our 

problem, we made some modifications on the original VGGNet and used transfer 

learning (16, 21). based on previous reports. We denoted the normal training process 

as the Plain scheme. To better solve the transferability problem of deep learning, we 

proposed a possible device-specific solution, named as the Trinary training scheme. 

The process for the Trinary scheme was described in the Method E3. 

4. Patient level classification 

Patient level classification was based on lesion level classification results. By 
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taking sum of the predicted probabilities for all the lesions of a patient and then 

normalized between NCP and IP, we got the patient level classification. This simple 

averaging step could be considered as a model ensemble (22) for patient level 

classification.  

5. Comparison with expert performance on the external validation set 

To compare the performance of the deep learning framework and radiologists in 

the external validation group, a panel of ten radiologists were recruited. They were 

instructed to independently provide a classification decision on NCP or IP each time. 

We also classified the lesion by radiologists to determine which scheme was closer to 

the judgement of human experts. Details on evaluation were shown in the Method E4. 

To better understand the performance difference between the Plain scheme and 

the Trinary scheme in different CT devices, we divided the NCP data on the external 

validation set into two categories. The first category contained 20 cases from centers 

(Center 1~3) that also appeared in the training set. The second category contained the 

remaining 37 cases from Center 4~8. We compared the performance between two 

schemes on the two categories. 

6. Statistics 

The classification metrics used included area under the receiver operating 

characteristic curve (AUC), sensitivity, specificity, accuracy, precision and F1 score. 

Details of statistics were in the Method E5. 

 

Results  

1. Patient information 

Details of clinical information for patients in the training, validation, test and 

external validation set were shown in Table E2 and the Result E1.  
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2. Comparison of imaging features between NCP and IP on the training and test set 

We further performed a joint analysis of imaging features for the 35 NCP patients 

and 156 IP patients with 499 (1178) NCP (IP) lesions. 96.6% of NCP lesions were 

larger than 10 mm and 35.3% of the lesions were inhomogeneous, which was 

significantly different from that of IP (p=0.0094). Lesions with intensity less than - 

500Hu accounted for 76.8% of lesions in NCP indicating less consolidation than IP. 

5.4% lesions in IP were nodules (Hu>0) and 21 (5.6%) nodules of IP were 5-10 mm. 

Detailed information was presented on the Result E2, Table E3 and Figure E2-E3. 

Examples for CT image features of NCP and IP patients were shown on Figure 2 and 

Figure E4. 

3. Lesions could be effectively detected and classified by deep learning models 

We applied the lesion detection model on the test set. The detected lesion 

examples were presented on Figure E5. The results showed that the detection 

performance was not sensitive to the confidence score as long as the cutoff for 

confidence score was in a reasonable range (Table E4). The detection model achieved 

F1 score 0.742 under confidence cutoff 0.1. We further used the annotated lesions to 

train and evaluate the model. Trinary scheme (with AUC 0.95) performed better than 

the Plain scheme (with AUC 0.93) (Figure E6). More performance measures can be 

found in Table E5. Two experienced specialists classified the lesions on which two 

schemes made very different predictions (with probability difference no less than 0.5) 

(Figure E7). 366 (or 174) out of 540 NCP lesions were identified by Trinary (or Plain) 

scheme correctly. Detailed analysis showed that the Plain scheme tend to yield 

unreasonably high or low probability of lesion predictions depending on the lesions 

from centers in the training set or not. The results indicated the Trinary scheme was 

more consistent with specialists than Plain scheme on the lesion level classification. 
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Detailed information is presented in the Results E3-E5.  

4. Trinary scheme outperformed the specialist group on patient level classification 

The performance of human experts for patient classification was shown in Table 

E6 and the Result E6. Both of the specialist group and the resident group reached 

good consistency, with intraclass correlation coefficient (ICC) of 0.899 and 0.798, 

respectively. Correlation for 10 radiologists was presented on Table E7. 

For the Plain and Trinary scheme, it took 10 seconds to detect and classify all 

detected lesions for a single patient on average. Figure 3 showed the ROC curves for 

the test and the external validation set of both training schemes. On the test set, the 

Plain and Trinary scheme performed similarly good with AUC of 0.99 (Figure 3A). 

The AUCs were much higher than the AUCs on the lesion level owing to the 

ensemble effect. For both schemes, the sensitivity is 100%. The specificities were 

92.5% and 95% for the Plain and Trinary scheme, respectively (Table E8). On the 

external validation set, 13 (22.8%) patients with NCP were correctly classified by our 

Trinary scheme, but misdiagnosed by at least three specialists. Among them, 4 

patients had the CT findings less frequently reported in other NCP cases, such as a 

small mixed ground glass opacity in the central part or solitary consolidation. They 

were misdiagnosed by five specialists (Figure 4). The results indicated both of the 

schemes surpassed the discrimination capability for residents for NCP and IP and 

achieved specialist level. More details were shown in the Result E7. 

As expected, both the Plain and the Trinary scheme performed better on cases 

from centers if the training data contained cases from same centers. Both schemes 

performed similarly (AUC 0.93 and 0.94, Figure 3C). Importantly, Trinary scheme 

performed better (AUC 0.91) than Plain scheme (AUC 0.87) on the second category 

(data was not from centers included in the training set) (Figure 3D). In terms of F1 
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measure, the Trinary scheme achieves score 0.847, which is higher than the Plain 

scheme (0.774) and also much higher than the specialist group (average 0.785) and 

the resident group (average 0.644). Trinary scheme was better correlated with 

specialists in both categories (Table E9). More details were in the Result E7. 

5. Trinary scheme performed better on new CT devices 

Table 1 summarized the CT devices on which both schemes and ten radiologists 

made wrong classification on cases from the external validation set. We first observed 

that the IP cases are from 10 CT devices, despite the fact that they were from the same 

center. The majority of the tested IP cases have been correctly classified by both 

schemes. The only exception was uCT 528, a new CT device. On uCT 528, eight 

patients were examined, seven of them were IP from Center 1, from which six and 

five cases were misclassified by Plain and Trinary scheme respectively. Yet more than 

three patients were also misdiagnosed by the specialists. The main manifestations 

were peripheral single or multiple ground grass opacities with or without patchy 

consolidation in the lower lobe or bilateral distribution, which mimic the findings of 

NCP, leading to the misclassification (Figure E8). Another one was from Center 8 

which was an NCP but misdiagnosed by all specialists (Figure 4A). The Trinary 

scheme performs better than the Plain scheme in this situation. 

As shown in Table 1, the Plain scheme misclassified 16 cases and the Trinary 

scheme reduced it to 10. The error rates of both schemes for the two CT devices 

(SOMATOM Definition Flash and LightSpeed VCT) from Center 6 were 

exceptionally high compared to all other CT devices. As both of them only 

contributed IP training cases for the model, the classification model may learn the 

device specific features, and wrongly treated these features as specific to IP during 

training. During testing, the schemes would therefore tend to wrongly classify NCP. 
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Similar problems have been observed in previous study (23). The Trinary scheme 

performed better than the Plain scheme on these devices, implying that the Trinary 

scheme is less influenced by the device specific features. Detailed information was in 

the Results E8. 

 

Discussion 

The escalating crisis caused by SARS-CoV-2 with high infectivity and multiple 

routes of transmission is complicated by its co-occurrence with seasonal influenza, 

exactly as the things happening in the United States that some COVID-19 deaths have 

been misdiagnosed as influenza. The similarities in clinical symptoms between NCP 

and IP, along with shortage and high false negative rate of nucleic acid detection kits, 

make the differential diagnosis difficult (24–26), prompting clinicians to investigate 

new diagnostic methods. Chest CT had high sensitivity in diagnosing NCP at early 

stage, giving it an advantage over nucleic acid detection in time of crisis. This is the 

reason why Hubei Provincial Government adopted characteristic chest CT finding as 

an important criterion for diagnosis of NCP at the peak of outbreak. However, the 

similar chest CT manifestations of NCP and IP will inevitably lead to inaccurate 

diagnosis even for experienced physicians, and increase the risk of over-diagnosis and 

cross infection (3, 8). The main challenge to employ CT as a predominant diagnostic 

tool is to improve the accuracy and speed in identifying specific lesions on chest CT 

images.  

We first annotated NCP and IP lesions and analyzed the difference of their chest 

CT features. We found that 76.8% of lesions in NCP are less than -500 HU, 96.1% of 

NCP patients had bilateral lung damage and 33.3% had all five lung lobes affected, 

consistent with the pathophysiology of NCP. SARS-CoV-2 is presumed to bind to 
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angiotensin converting enzyme 2 (ACE2) receptor (27) concentrated on alveolar type-

2 epithelial cells, which will undergo apoptosis after infection, leading to diffuse 

alveolar damage and interstitial fluid absorption disorder (28). Pathological findings 

of NCP showed pulmonary edema and hyaline membrane formation (29). While 

influenza viruses primarily cause damage to the trachea epithelial cells, leading to 

necrotizing bronchitis and diffuse alveolar damage to the upper respiratory tract (3). It 

was reported that the size of the nodules helps to differentiate different types of 

infections, for instance, the nodules of viral infection are ordinarily less than 10 mm 

(30). Consistent with previous reports, we found that nodules are present more often 

in IP with their sizes ranging 5-10 mm. 

Based on above observations, we constructed an integrated artificial intelligence 

(AI) framework consisting of two deep learning models. The YOLOv3 model is 

applied to identify lesions, followed by lesion classification by the modified VGGNet. 

During developing the deep learning model, the first problem we met lies in 

transferability (5, 6). The model performs better on cases from CT device appearing 

in the training set than cases from CT devices not included. To address this problem, 

especially when classifying image data from multiple CT devices, we proposed a 

Trinary classification scheme to penalize the network from extracting device specific 

features during learning. By doing so, it would lead to high cost on the random region 

inputs, forcing the model to extract more lesion specific features. Although it is 

impossible to exclude all device specific features, we observed a visible improvement 

in performance (AUC from 0.85 to 0.89) on patient level classification. Such a 

performance is comparable with the judgement of experienced specialists. 13 (22.8%) 

NCP patients presenting uncommon CT findings, such as a small ground-glass 

opacity (GGO) in the central part were correctly classified by our Trinary scheme, 
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instead, were misdiagnosed by three specialists. We have verified the clinical 

applicability of our developed AI model by including data from multiple machines 

and centers. We first demonstrated that the AI model performed well using training 

and test data from four machines of three centers with an AUC of 0.99. Similar 

performance of the model with specialists on independent verification data from 

fifteen machines of eight centers further suggests good clinical applicability.  

Although our AI system achieved good performance, it misclassified a small 

number of NCP and IP patients, which may be caused by poor spatial resolution of 

some of images. In this study, we used 5 mm instead of 1 mm layer thickness in CT 

reconstruction, which would limit our capability to detect small lesions. Nevertheless, 

5 mm layer thickness is a standard parameter in most hospitals and is sufficient to 

identify major imaging differences between NCP and IP as demonstrated by our 

study. Therefore, it is worthy to sacrifice certain accuracy to provide wider 

applicability of the deep learning model.  

Currently, SARS-CoV-2 is wildly spreading around the world, efficient and 

accurate diagnosis of NCP is crucial for prevention and control. Our deep learning 

model potentially provides an accurate early diagnostic tool for NCP, especially when 

nucleic acid test kits are short of supply, which is a common problem during 

outbreaks. This could help reduce the missed diagnosis rate and diagnosis time, 

ensure prompt patient isolation and early treatment, improve prognosis and largely 

prevent transmission. The high efficiency of our model to differentiate NCP and IP 

could be very beneficial to reduce misdiagnosis rate and optimize the allocation of 

medical resources, particularly in areas with high prevalence of both NCP and IP. 

Trinary scheme not only improves the performance of the model in discriminating 

NCP from IP, but also behaves more similar to specialists than the Plain scheme. 
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Because the proposed Trinary scheme is designed for general purpose, we believe that 

it can be applied to a wide range of medical image classification.  
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Table 1. Statistics Specific to Each Center and Device on the External Validation 

Set. 

Device Train Test EA S1 S2 S3 S4 S5 R1 R2 R3 R4 R5 Plain Trinary 

IP                

Center1                

  iCT 256 8 3 3 1 1 1 1 0 0 1 1 1 0 1 1 

  uCT 760 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

  SOMATOM Definition Flash 13 3 3 0 0 0 0 0 1 1 0 1 1 0 0 

  LightSpeed VCT 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

  Aquilion One 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  IQon Spectral 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

  Discovery CT750 25 9 12 0 1 2 3 0 2 2 1 1 1 0 0 

  LightSpeed16 59 21 23 0 0 2 4 0 10 4 2 6 7 1 1 

  uCT S-160 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

  uCT 528 0 0 7 4 3 3 1 0 3 4 3 3 2 6 5 

Total 116 40 50 5 5 8 9 0 16 12 7 12 11 8 7 

NCP                

Center 1                

  iCT 256* 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

  uCT 528 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0 

  LightSpeed16* 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Center 2                

  Brilliance 64 16 7 8 2 1 1 3 1 6 6 4 5 5 0 0 

  Brilliance16 7 4 2 1 1 1 1 1 2 2 1 1 2 1 1 

Center 3                

  uCT 760* 8 0 7 2 2 5 4 6 5 3 2 3 4 1 1 

  Perspective 0 1 2 0 0 0 0 0 0 0 0 0 1 0 0 

Center 4                

 SOMATOM Definition AS+ 0 0 11 3 1 3 2 7 5 3 3 4 5 1 0 

Center 5                

  LightSpeed16* 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

  Revolution Frontier 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 

  LightSpeed Ultra 0 0 3 1 1 0 0 2 1 1 1 1 2 0 0 

Center 6                

  SOMATOM Definition Flasha 0 0 7 2 1 4 3 4 3 4 4 3 3 6 4 

  LightSpeed VCTa 0 0 7 0 0 0 0 2 2 3 3 4 2 3 2 

Center 7                
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  Aquilion ONEa 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 

  SOMATOM Perspective 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 

Center 8                

  uCT 528 0 0 3 1 1 1 1 1 1 1 1 1 1 1 0 

  uCT 510 0 0 2 0 0 0 0 0 0 0 0 0 0 2 1 

Total 35 15 57 14 9 16 17 26 26 24 20 25 27 16 10 

Train, Test, and EV individually shows number of NCP or IP cases in the training set, 

the test set and the external validation set. Number of misclassified patients is 

presented on the specialist group (S1~S5), the resident group (R1~R5) and both deep 

learning schemes on the external validation group. Table top shows all IP patients 

were from Center 1 with 10 CT devices. To be specific, 8, 7 and 7 devices were 

independently applied on the training set, the test set and the external validation set. 

There were 116, 40 and 50 cases on the training, test and external validation sets. 

Similar performance (misclassified cases, 8 vs 7) was found for both schemes on the 

external validation set, which was generally comparable to that of the specialist group 

but outperformed the resident group. Table below shows NCP patients of three 

datasets were from Center 1~8 with 17 CT devices. There were 4, 6, 15 devices 

applied and 35, 15, 57 cases on the training, test and external validation sets. Similar 

to (a), the performance of both schemes bore comparison to the specialist group and 

outperformed the resident group. However, the Trinary scheme performed better than 

the Plain scheme with less misclassified cases (16 vs 10). It is noteworthy that there 

were total 50 NCP cases on the training and test sets, for one case was randomly 

selected on the validation set. On the contrary, IP cases on the validation set were all 

randomly selected from the training set. Therefore, a total of 156 IP cases were in the 

training and test sets. * means that IP patients from this type of device appear in the 

training set. IP=influenza pneumonia. NCP=novel coronavirus pneumonia. 
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Figure 1. Flowchart Illustrating Deep Learning Process for Differentiating Diagnosis 

of NCP and IP from Multicenter. 

VP=viral pneumonia. NCP=novel coronavirus pneumonia. IP=influenza pneumonia. 
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Figure 2. CT Image Features of an NCP Patient and an IP Patient  

(A-B) Chest CT of an NCP patient: 45-year-old female with history of stay in Wuhan 

for two days. Presenting with fever and cough for 4 days, she was proved to have the 

NCP. CT scan (A) shows bilateral GGO scatted in four lobes with an obvious 

peripheral distribution and bilateral lobular or subsegmental GGO involving mainly 

the subpleural lung regions. Vascular dilation with GGO surrounding was more 

evident and pulmonary venous branch passed through the lesion with luminal dilation 

(white arrow) and it is more obvious in maximum-intensity projection (MIP) imaging 

(B). (C-D) CT images of an IP patient: CT scan shows multiple, bilateral, and 

randomly distributed small ill-defined nodules (white arrow head) with small branch 

opacities indicating the bronchiolitis. Peripheral subpleural consolidation (white 

arrow) in the left lower lobe with the interlobular septum and pleura thickening (black 

head).  
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Figure 3. Receiver Operating Characteristic Curves of Patient Level Classification.  

(A) both of the schemes achieved an AUC of 0.99 for differentiating diagnosis of 

NCP and IP patients on the test set. (B) AUCs of deep learning schemes and human 

experts for differentiating diagnosis on the external validation set. Both of the 

schemes performed better than most of the human experts and the Trinary scheme 

(AUC 0.92) performed better than the Plain scheme (AUC 0.89). Specialist group 

(S1~S5) performed better than the resident group (R1~R5) did. (C) AUCs on patients 

in the first category (all 50 IP cases and 20 NCP patients from Center 1~3). The 

performance of both schemes is very similar (AUC 0.93 and 0.94). (D) AUCs on 

patients in the second category (all 50 IP cases and 37 NCP cases from Center 4~8). 
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The performance of Trinary schemes is better than plain scheme (AUC 0.91 and 

0.87). 
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Figure 4. CT Images of Four NCP Patients Misdiagnosed by Specialists but Correctly 

Classified by Trinary Schemes. 

Axial CT plain scan in patients suffering from NCP which were misdiagnosed as IP 

by the specialist panel. (A) .50-year-old female with small piece of pure GGO in left 

upper lobe (arrow); she was negative in nucleic acid tests twice until positive in the 

third time (predicted probability 0.573); (B). 49-year-old female also with a small 

GGO (arrow) in right middle lobe (predicted probability 0.56); (C). 65-year-old 

female with patchy and punctate GGO and small nodules (arrow) in right middle lobe 

(predicted probability 0.515); (D). 65-year-old female with patchy consolidation 

(arrow) (predicted probability 0.831). Their common characteristics were either small 

lesions located in one segment or lack of specificity of typical findings in NCP. 

Patients above were correctly classified as NCP by Trinary scheme. (Predicted 

probability represented the probabilities of being NCP by the Trinary scheme)  
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