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Abstract: An excessive immune response contributes to SARS-CoV, MERS-CoV and SARS-
CoV-2 pathogenesis and lethality, but the mechanism remains unclear. In this study, the N 
proteins of SARS-CoV, MERS-CoV and SARS-CoV-2 were found to bind to MASP-2, the key 
serine protease in the lectin pathway of complement activation, resulting in aberrant complement 
activation and aggravated inflammatory lung injury. Either blocking the N protein:MASP-2 5 
interaction or suppressing complement activation can significantly alleviate N protein-induced 
complement hyper-activation and lung injury in vitro and in vivo. Complement hyper-activation 
was also observed in COVID-19 patients, and a promising suppressive effect was observed when 
the deteriorating patients were treated with anti-C5a monoclonal antibody. Complement 
suppression may represent a common therapeutic approach for pneumonia induced by these 10 
highly pathogenic coronaviruses. 

 

Short Title: SARS-CoV N over-activates complement by MASP-2 

 

One Sentence Summary: The lectin pathway of complement activation is a promising target for 15 
the treatment of highly pathogenic coronavirus induced pneumonia. 
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Main Text:  

Severe acute respiratory syndrome (SARS), that was initially reported in Guangdong, 
China, in November 2002, is a highly contagious and deadly respiratory disease (1, 2). Severe 
acute respiratory syndrome coronavirus (SARS-CoV) was identified as the novel etiological 
agent of this disease. Nearly a decade after the SARS outbreak, a new zoonotic coronavirus, 5 
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV), was identified as the 
etiological agent of MERS (3). Recently, a new coronavirus, SARS-CoV-2 was first identified in 
Wuhan, China and spread rapidly to other provinces in china and all over the world. As of 19 
March 2020, SARS-CoV-2 has infected more than 230000 people with a fatality rate of 4.2% 
(https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/). Infection 10 
of the virus caused severe atypical pneumonia similar to SARS-CoV infection (4). Although the 
pathogenesis of these diseases are being intensively investigated, it is still not well understood 
why the viral infections lead to respiratory failure with a high fatality rate (5). The SARS-CoV 
nucleocapsid (N) protein is a 46-kDa viral RNA-binding protein sharing only 20-30% homology 
with the N proteins of other known coronaviruses(6), whereas N proteins of the highly 15 
pathogenic coronaviruses are more similar, including SARS-CoV-2 (91%) and MERS-CoV 
(51%) by BLASTP (5, 7, 8). The N protein is one of the most abundant viral structural proteins 
in patient sera during SARS-CoV infection (9). Potentially N protein plays a role in the virus 
pathogenesis as the pre-administration of N protein, but not other viral proteins, via recombinant 
vaccinia virus or Venezuelan equine encephalitis virus replicon particles resulted in severe 20 
pneumonia in aged mice challenged with SARS-CoV (10, 11).  

The complement system functions as an immune surveillance system that rapidly 
responds to infection. Activation of the complement system resulted in pathogen elimination and 
acute or chronic inflammation. Nevertheless, dysregulated complement activation has been 
implicated in the development of acute lung diseases induced by highly pathogenic viruses (12, 25 
13). The complement system can be activated via the classical pathway (CP), the lectin pathway 
(LP), or the alternative pathway (AP) (14). In the LP, mannan-binding lectin (MBL) (or ficolins) 
binds to carbohydrate arrays of mannan and N-acetylglucosamine residues on the surfaces of the 
viruses or the surfaces of virus-infected cells, resulting in the activation of MBL-associated 
serine protease-2 (MASP-2), the only known MBL-associated protease that can directly initiate 30 
the complement cascade (15, 16). MBL binds to SARS-CoV-infected cells in a dose-dependent, 
calcium-dependent, and mannan-inhibitable manner in vitro, enhancing the deposition of 
complement C4 on SARS-CoV (17). The N-linked glycosylation site N330 on the SARS-CoV 
spike (S) protein is critical for the specific interactions with MBL (18). Although higher levels of 
activated complement C3 and C4 fragments were found in SARS patients, indicating the 35 
activation of complement pathways (19, 20), the mechanism of SARS-CoV-induced complement 
activation is not well understood. It is also unknown whether a similar pathogenesis occurs in 
SARS-CoV-2 infection. 

Previously, we demonstrated that the SARS-CoV N protein interacts with a number of 
host proteins, including MAP19 (21), an alternative splicing product of MASP-2. Thus, in this 40 
study, the interactions of the SARS-CoV, MERS-CoV and SARS-CoV-2 N proteins with 
MASP-2 were intensively investigated, and the pathological effects of these interactions on host 
immunity and inflammation were also elucidated, which provides a mechanism support for 
immunomodulation-based therapy against current COVID-19 epidemic. 
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Results 

N proteins of SARS-CoV, SARS-CoV-2 and MERS-CoV interact with MASP-2 

To investigate the binding between the N protein of SARS-CoV and MASP-2, and to 
delineate the interacting domains of the two proteins, lysates of human 293T cells expressing 
Flag-tagged full-length MASP-2, the N-terminal CUB1-EGF-CUB2 region, or the C-terminal 5 
CCP1-CCP1-SP region (Fig. S1A) were subjected to anti-Flag immunoprecipitation using anti-
Flag antibody-conjugated agarose beads. The immunoprecipitates were next incubated with 
293T cell lysates expressing GFP-tagged SARS-CoV N protein (GFP-SARS N) or truncated 
mutants in the presence of 2 mM CaCl2 or 1 mM EDTA. The adsorbates were probed with anti-
Flag or anti-GFP antibodies by immunoblotting. Associations between Flag-MASP-2 and GFP-10 
SARS N were observed only in the presence of CaCl2 (Fig. 1A), in agreement with the 
requirement of Ca2+ for MASP-2-MBL binding and MASP-2 auto-activation. The CCP1-CCP2-
SP region of MASP-2 (Fig. 1A) and the N-terminal domain (residues 1-175) of the N protein 
(Fig. S1A and Fig. S1B) were crucial for the association, whereas negative controls, or other 
truncated regions did not bind, and GFP-tagged full-length or truncated N protein did not co-15 
immunoprecipitate with mouse IgG conjugated beads (Fig. 1A and Fig. S1B).  

SARS-CoV N protein can be detected in patient serum as early as 1 day after the onset of 
symptoms (22). To simulate the SARS-CoV N protein associations in serum, Flag-tagged N 
protein (1 ng/ml) was added to human or mouse serum and precipitated with anti-Flag antibody 
conjugated agarose beads. The SARS-CoV N protein interacted with MASP-2 derived from both 20 
human and mouse serum (Fig. 1B). Further truncation and deletion analysis showed that amino 
acid residues 116-124, which are located in a coil motif of the SARS-CoV N protein (residues 
115-130), were indispensable for the interaction with MASP-2 (Fig. 1C). However, the 
association of MASP-2 with SARS-CoV N321-323, a mutant that fails to form the N protein 
dimer (Fig. S1C), was not much affected (Fig. 1C). 25 

The crucial motif in SARS-CoV N protein for MASP2 interaction (residues 116-124) 
share a high identity with the corresponding motif in SARS-CoV-2 N (115-123) and MERS-CoV 
N (104-112) (Fig. S1D), suggesting that the N protein of SARS-CoV-2 and MERS-CoV will also 
interact with MASP-2. As expected, exogenously expressed MERS-CoV N and SARS-CoV-2 N 
both associated with MASP-2 (Fig. 1D and 1E), and the Δ104-112 deletion mutant of MERS-30 
CoV N exhibited the predicted reduced association (Fig. 1D). Therefore, a common motif across 
coronavirus N proteins is important for MASP-2 binding. 

N proteins of SARS-CoV, MERS-CoV and SARS-CoV-2 potentiate MASP-2-
dependent complement activation  

The CCP1-CCP2-SP domains of MASP-2 are responsible for self-activation and 35 
substrate binding activity, which in turn mediates complement lectin pathway activation (23). 
The MASP-2: N protein association demonstrated above suggests that SARS-CoV N protein 
may regulate MASP-2 dimerization, activation and cleavage. To demonstrate MASP-2 
dimerization, MASP-2-Flag-conjugated beads were incubated with lysates of 293T cells 
expressing MASP-2-Myc in the presence/absence of N protein and MBL. Binding of MASP-2-40 
Myc to MASP-2-Flag was potentiated by the SARS-CoV N protein, at an approximately equal 
molar stoichiometry (Fig. 2A). Next, purified MASP-2-Flag was incubated with mannan and 
MBL with or without SARS-CoV N protein. Higher levels of the cleaved MASP-2 fragments 
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(residues 445-686) resulting from MASP-2 auto-activation were produced in the presence of 
SARS-CoV N protein (Fig. 2B).   

To investigate the effect of SARS-CoV N protein on the MBL-binding capability of 
MASP-2, purified MBL and MASP-2 (24) were incubated in mannan-coated microplate wells at 
4C to avoid MASP-2 activation, and the dynamics of MASP-2: MBL binding were assessed 5 
using an anti-MASP2 antibody. Compared with human serum albumin (HSA), a high-
concentration component in binding buffer used as a negative control for N protein, the binding 
of MASP-2 to MBL was significantly enhanced in the presence of SARS-CoV N protein at a 
relatively low concentration (1%~0.1% of MASP-2) and Ca2+, and the potentiation was 
effectively abrogated by anti-N protein antibody (Fig. 2C). Moreover, SARS-CoV N protein 10 

bearing the 116-124 or 321-323 deletion or N protein from the less pathogenic human 
coronavirus 229E-CoV showed little or no effect on MASP-2:MBL binding compared with the 
full-length SARS-CoV N protein (Fig. 2C). These results indicated that SARS-CoV N protein-
potentiated MASP-2 activation is dependent not only on MASP-2 association but also on N 
protein dimerization.  15 

MASP-2 cleaves complement components C4 and C2 to generate C3 convertase in the 
lectin pathway of the complement system upon activation. Next, the effect of the SARS-CoV N 
protein on LP complement activation was assessed by C4 cleavage. Purified C4 was incubated 
with MASP-2, Mannan, and MBL in the presence/absence of equal molar N protein, and C4 
cleavage was observed to be significantly potentiated by the SARS-CoV N protein in the 20 
presence of mannan and MBL (Fig. 2D and Fig. S2A). Accordingly, mutants of SARS-CoV N 
protein (Δ116-124 and Δ321-323) as well as N protein from H229E-CoV failed to promote 
MASP-2-mediated C4 hydrolysis (Fig. 2E and Fig. S2B). Notably, an anti-MASP-2 monoclonal 
antibody or C1INH, an inhibitor of MASP-2 (25), blocked SARS-CoV-potentiated C4 hydrolysis, 
suggesting that N protein-potentiated C4 cleavage was dependent on MASP-2 activation (Fig. 2E 25 
and Fig. S2B). Moreover MERS-CoV N was also found to potentiate C4 cleavage (Fig. S2C). 
These results indicated that N protein prompts C4 cleavage and therefore complement activation 
by MASP-2 association and activation. 

The impact of SARS-CoV N protein on complement activation via the lectin pathway 
was further investigated by complement deposition assays. Purified C4 was incubated with 30 
immobilized MBL-MASP-2 complex in the presence of indicated N protein. The N protein of 
SARS-CoV, MERS-CoV and SARS-CoV-2 but not the H229E-CoV N potentiated C4b 
deposition, which was dependent on the activity of MASP-2, in a dose-dependent manner (Fig. 
2F-2H). Then, immobilized mannan was incubated with C1q-depleted serum (to eliminate the 
classical pathway) (26) in the presence/absence of SARS-CoV N protein, and the deposited C3 35 
fragments (C3b, iC3b and C3dg) were detected by an anti-activated C3 antibody. In concert with 
C4b deposition, the deposition of activated C3 was evidently increased along with the increase of 
SARS-CoV N protein levels up to ~40 nM (Fig. S2D), suggesting an enhanced activity of C3 
convertase. In addition, SARS-CoV N protein had little or no effect on activated C3 deposition 
in calcium-free buffer containing EGTA, which suggests that SARS-CoV N protein-potentiated 40 
C3 activation occurs through the LP but not the AP pathway, in which C3 activation is Ca2+-
independent (Fig. S2E). As shown in Figure S2D and S2E, C3b deposition was decreased in the 
presence of a high concentration of N protein, possibly due to further cleavage of C3b by soluble 
inhibitors in serum (such as factor H and factor I) when the surface is coated with high densities 
of C3b (27, 28). We further tested the deposition of the C5b-9 complex. As a result of amplified 45 
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complement cascades, significantly increased deposition of the complex was induced by SARS-
CoV N protein at a much lower concentration (Fig. S2F), similar to that observed in patient sera 
(22).  

Activated complement plays a crucial role in the efficient phagocytosis of pathogens and 
cellular debris by C3b or C5b-mediated opsonization (29). To study complement-dependent 5 
phagocytosis, E. coli and mouse peritoneal macrophages were incubated together in diluted 
serum with or without SARS-CoV N protein. Bound C3 or its large fragment C3b, the product 
after C3 cleavage, was stained with FITC-labeled anti-C3c antibody, and the FITC-positive 
macrophages containing C3-conjugated E. coli were counted under a microscope. In concert with 
complement activation, complement-dependent phagocytosis by mice peritoneal macrophage in 10 
the presence of mouse serum containing complement component including MASP-2 was 
enhanced remarkably by SARS-CoV N protein compared with the HSA control (Fig. S2G). 
These findings indicated that SARS-CoV N protein effectively promoted the activation and 
opsonic effect of the complement system.  

N proteins of SARS-CoV and MERS-CoV aggravates LPS-induced pneumonia by 15 
MASP-2-involved complement activation 

Persistent activation of complement leads to uncontrolled inflammation. To investigate 
the effect of N protein-potentiated MASP-2 activation on inflammation, mice were pre-infected 
with adenovirus (1×109 PFU) expressing SARS-CoV N (Ad-SARS N) or its mutant or 
adenovirus vehicle only (Ad-null). The mice were then challenged with LPS, which contains 20 
MBL-binding motifs, to activate LP and induce inflammation (30). 8 of 10 mice pre-exposed to 
adenovirus vehicle survived when challenged with 5 mg/kg LPS (Fig. 3A), while all 10 mice 
pre-exposed to Ad-SARS N died within 12 hr after LPS administration at the same dosage (Fig. 
3A). Severe lung damage and massive inflammatory cell infiltration were also observed in dead 
mice (Fig. 3B). In concert with previous findings, the pre-infection of Ad-229E N and Ad-SARS 25 

N bearing the 116-124 or 321-323 deletion in the N protein, respectively, had significantly 
reduced effects on mouse mortality. Importantly, when anti-N, anti-MASP-2 antibody or C1INH 
was administered simultaneously with LPS administration in the Ad-SARS N pre-infected mice, 
both death rate and lung tissue inflammation induced by LPS were significantly reduced (Fig. 3A 
and 3B). These results collectively demonstrate that the SARS-CoV N protein greatly potentiated 30 
LPS-induced inflammation via MASP-2 activation, which thereby initiates LP-involved 
complement cascade activation. 

To investigate the complement activation in lung of mice induced by LPS and N protein, 
mice pre-infected with Ad-SARS N (1×108 PFU) were challenged with LPS (5 mg/kg). At 6 hr 
post LPS administration, the mice were sacrificed, and the paraformaldehyde-fixed lung tissue 35 
was subjected to immunohistochemical (IHC) staining with anti-C4b antibody or 
immunofluorescence analysis with FITC-labeled anti-C3c antibody. The C4b and activated C3 
deposition in the lung were significantly increased in mice expressing SARS-CoV N protein (Fig. 
3C and the middle panel of Fig. 3D), compared with the weak staining in the lungs of mice 
treated with LPS and Ad-null (Fig. 3C and the middle panel of Fig. S3A).  40 

The in vivo association of MASP-2 with the N protein was further assessed by in situ 
proximity ligation assay (PLA) with anti-N and anti-MASP-2 antibodies (the left panels of Fig. 
3D and S3A), and red signals, which were only detectable when SARS-CoV N and MASP-2 
bind to each other, were abundantly observed in pulmonary cells from mice expressing SARS-
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CoV N but not negative control animals (Fig. S3A). These results confirmed an in situ direct 
binding and activation of MASP-2 by SARS-CoV N in mice lung tissue. 

Similarly, mice challenged with LPS suffered serious pneumonia and 100% die within 24 
hr when pre-infected with adenovirus expressing MERS-CoV N protein (Ad-MERS N) but not 
its Δ104-112 mutant (Ad-MERS NΔ104-112) for 7 days, which was partially rescued by C1INH 5 
and anti-MASP-2 antibody (Fig. 3E). These results indicate that the N protein is employed by 
both SARS-CoV and MERS-CoV to promote complement activation through the MASP-2-
mediated lectin pathway.  

The pathogenicity of N protein was further investigated using Masp2 knockout (KO) 
mice (KO region was indicated by Fig. S3B) with MASP-2 protease activity deficiency by the 10 
same way. Mice were pre-infected with Ad-SARS N or Ad-MERS N (1×109 PFU) for 5 days, 
and then challenged with LPS. Compared with wild-type mice, Masp2 KO mice survived longer 
and had a higher survival rate (Fig. 3F), which may be attributed to a compromised complement 
activation because of MASP-2 deficiency. 

Complements cascade is over-activated in lungs of COVID-19 patients 15 

Because the SARS-CoV and SARS-CoV-2 induce only mild lung damage in mice, and 
investigation with live SARS-CoV, including mouse adapted SARS-CoV, is not allowed by 
related regulations in China, we try to get the clinical evidence that the over-activation of 
complement LP pathway occurred in COVID-19 patients. The paraformaldehyde-fixed lung 
tissue of patients who died of COVID-19 were collected and subjected to IHC staining with 20 
MBL, MASP-2, C4alpha, C3 or C5b-9 antibodies. All these complement cascade components 
demonstrated strong IHC staining signals in the patient lung tissue (Fig. 4A-4E), which 
suggested that the complement components were deposited in type I and type II alveolar 
epithelia cells, as well as inflammatory cells, some hyperplastic pneumocytes, and exudates in 
alveolar spaces with necrotic cell debris. Notably, SARS-CoV-2 N protein was also observed in 25 
the lung tissue of died patients by autopsy (31). Further, significantly increased serum C5a level 
was also observed in COVID-19 patient, particularly in severe cases (Fig. 4F). These results 
collectively indicated that complement pathways were aggressively activated in the lungs of 
COVID-19 patients, which may be attributed to SARS-CoV-2 N protein. 

Complement-targeted therapy shows a promising curative effect against COVID-19 30 

It has been widely accepted that the excessive inflammatory and cytokine storm greatly 
contribute to the severity and lethality of COVID-19, which may be attributed to the unrestrained 
activation of complement pathway. Therefore, downregulation of MASP-2 as well as its 
downstream signal molecules, such as the potent anaphylatoxin C5a, may provide a new 
approach to control the pneumonia induced by the SARS-CoV-2.  35 

Based on our finding and its potential and tempting application in COVID-19 therapy, a 
recombinant C5a antibody (BDB-001 injection by Staidson (Beijing) Biopharmaceuticals Co., 
Ltd), which was in phase I clinical trial for hidradenitis suppurativa, was rapidly approved by 
National Medical Product Administration (NMPA) for clinical trials for the treatment of 
COVID-19 (2020L00003). “A multicenter, randomized double blind placebo-controlled trial in 40 
mild COVID-19 patients” and an open label “two-cohort clinical trial in patients with severe and 
critical COVID-19” were carried out simultaneously under the approval from ethic committee of 
Huoshensan Hospital with the informed consent of the patients. While the larger dataset from 
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more patients in the COVID-19 cohort will be reported elsewhere when the trial is finished, here 
we reported the first 2 cases administrated with anti-C5a antibody in the open label trial.  

Patient #1, a 54 years old male resident in the city of Wuhan, was admitted to Dongxihu 
Hospital on the 4th day after the onset of symptoms (5 days of illness) with fever. Infection of 
SARS-CoV-2 was confirmed by rRT-PCR for SARS-CoV-2， and chest CT scan showed 5 

bilateral opacities. The disease was getting worse from day 9 of illness, with high fever 
(38.7C~39.8C), SpO2 <93% on room air, pneumonia progression on CT scan, and severe 
hepatic damage. Prednisone (40 mg/day for 4 days) was administrated on day 10 through 13 of 
illness but the condition deteriorated, so the patient was transferred to Wuhan Huoshenshan 
Hospital, a new hospital established urgently for severe COVID-19 patients, on the day 14 of 10 
illness (Fig. 5A), and was considered as severe case in critical condition with moderate ARDS 
(oxygenation index <150), respiratory rate 30/min，and the Percutaneous oxygen saturation 
(SpO2) dropped to 77% when exposed to room air for 1 minute.  Supportive care was provided，
including high-flow nasal oxygen (HFNO) to target SpO2>95% (Fig. 5B, left). He was also 
administrated with the antibiotics (moxifloxacin) and human serum albumin, while prednisone 15 

was discontinued. Treatment with anti-C5a monoclonal antibody (BDB-001) was initiated on the 
morning of day 15 of illness. The antibody was given intravenously in 250 ml saline, at a dosage 
of 300 mg/day, on day 1, 2, 3, 5, 7, 9, 11 and 13. No adverse event was observed and the clinical 
condition improved in the next days, with normal body temperature in the evening of the same 
day (Fig. 5C, left), increased oxygenation index (PaO2/FiO2) (Fig. 5B, left) and lymphocyte cell 20 
number (Fig. 5C, left), decreased C reactive protein (CRP) concentration (Fig. 5C, left), and 
significantly improved hepatic function (shown by decreased ALT, AST, and increased total 
serum protein and serum albumin concentration) (Fig. 5D, left). The fraction of inspiration O2 
and the gas flow rate of high-flow nasal oxygen (HFNO) was eventually decreased from the 
highest (80%, 40 L/min to 30%, 20 L/min) to target a SpO2>95% (Fig. 5B, left). Because the 25 
high risk of taking the patient in critical condition to CT scan in the temporarily established 
hospital (the long distance and the cold raining weather without HFNO), no CT scan just before 
anti-C5a administration was available for evaluation. Nevertheless, the pneumonia 20 days after 
the 1st dose is observed obviously improved than 11 days after the 1st dose (Fig. S4, upper 
panel).     30 

Patient #2 was a 67 years old male who was admitted to the Sixth Hospital of Wuhan on 
the 5th day after the onset of symptoms (6 day of illness) with fever and cough. CT scan showed 
opacity on the superior lobe of left lung (Fig. S4). Infection of SARS-CoV-2 was also confirmed 
by rRT-PCR at day 11 of illness. Anti-viral (Arbidol) and antibiotics (moxifloxacin) was 
administrated together with other supportive treatment. Condition was worsening by day 8 with 35 

severe cough and high fever (39.7C) (Fig. 5C, right). Methylprednisolone (40 mg/day, for 7 
days from the 8th day after illness) showed little if any improvement of symptoms. The patient 
was transferred to Wuhan Huoshenshan Hospital on day 10 (Fig. 5A) and the illness continued 
getting worse as shown by SpO2 (<90% on room air on day 14), high fever (>39C on day 10-13) 
(Fig. 5C, right) and pneumonia on chest CT on day 11 of illness (2 days before the 1st dose) (Fig. 40 
S4, lower panel). The patients reported severe cough, chest tightness and dyspnea. HFNO has to 
be given to maintain SpO2>95%. Anti-C5a was administrated on the morning of illness day 14, 
and continued as in the patient #1. Subsequently, a normal temperature was observed on the 
same day (Fig. 5C, right). Cough, dyspnea and oppression in chest were reported to be getting 
better the next day (Day 15 of illness). A significant decreased C reactive protein (CRP) level, 45 
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significantly increased white blood cell and lymphocyte number were also observed in the next 
days (Fig. 5C, right). Hepatic function was gradually improved (Fig. 5D, right, data on day 15 
are not available). Flow rate and Fraction of inspiration O2 necessary to maintain SpO2>95% 
gradually decreased, with the increasing SpO2/FiO2 (Fig. 5B, right).  Chest CT on day 26 of 
illness (12 days after the 1st dose) also showed alleviated pneumonia (Fig. S4, lower panel).  5 

These data provided the first evidence for a damaging role of C5a in severely affected 
COVID-19 patients. The two severe patients are significantly benefited from anti-C5a 
monoclonal antibody therapy, which suggested that an aberrant complement cascade should be 
considered as a promising therapeutic target of COVID-19.  

Discussion 10 

In the past 17 years, successively emerged SARS-CoV, MERS-CoV and SARS-CoV-2 
broke through the species barrier and brought new infectious diseases and social panic to human. 
All these highly pathogenic coronavirus cause acute lung injury and acute respiratory distress 
syndrome (ARDS), therefore resulting in an increased severity and lethality. Patients infected 
with the virus may develop to atypical pneumonia resulting from severe immune injury. The 15 
excessive human immune responses that were characterized by the extensive release of pro-
inflammatory cytokines and chemokines, called a “cytokine storm”(5), is thought to be the major 
initiator of the sever pneumonia caused by high pathogenic coronavirus, including the latest 
SARS-CoV-2 (4). Although immunopathogenesis has been partially implicated in SARS or 
MERS, the mechanism responsible for virus-induced hyper-activation of host immune system 20 
remains poorly understood.  

Here we show that SARS-CoV, MERS-CoV and SARS-CoV-2 share a common 
mechanism connecting the viral N proteins to binding and potentiation of an MBL, Ca2+-
dependent auto-activation of MASP-2, leading to the uncontrolled activation of complement 
cascade, as characterized by the enhanced C4 cleavage and complement deposition (Fig. 1 and 2). 25 
The binding of N protein to MASP-2 amplifies the effects of MASP-2-mediated lectin pathway 
activation. N protein mutants either failed to interact with MASP-2 or failed to form an N dimer 
have little or no effect on MASP-2-mediated lectin pathway activation (Fig. 1C and 1D), 
suggesting that the effects of N protein are dependent on binding and dimerization.  

As a “dual-edged sword”, complement is critical for innate immunity against pathogens. 30 
Anaphylatoxins, such as C3a and C5a, can activate immune cells, and therefore induce the 
release of various cytokines. Activated complement cascade produces the cytolytic terminal 
complement complex C5b-9 and the C3b and C5b fragments (29, 32). These peptides induce the 
synthesis of arachidonic acid metabolites, including prostaglandin (PG) E2, thromboxane B2 and 
leukotrienes (30, 33), which further induce the recruitment and activation of neutrophils, 35 
monocytes and eosinophils, and stimulate the production of a number of pro-inflammatory 
cytokines and mediators (34). These cytokines trigger and maintain inflammatory processes and 
help the innate immunity to fight the virus. Nevertheless, complement-involved innate immunity 
activation must be fine-tuned because unrestrained complement activation always contributes to 
disseminated intravascular coagulation (DIC), inflammation, cell death, and immune paralysis 40 
and ultimately leads to multiple organ failure and death. The finding that the coronavirus N 
protein potentiating complement activation provides a new insight into the causation of 
pneumonia induced by SARS-CoV, MERS-CoV and SARS-CoV-2 infection. Additionally, we 
also noticed that the pre-infection of Ad-SARS N or Ad-MERS N evidently increased the fatality 
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of LPS-induced pneumonia (Fig. 3), underlining the potential role of N protein in the 
inflammatory injury of tissue caused by the massive LPS released from secondary bacterial 
infections (35, 36).  

The involvement of N protein-mediated MASP-2 and therefore the complement cascade 
over-activation in the pathogenesis of coronavirus provides new potential strategies to develop 5 
therapeutics against SARS, MERS or the latest COVID-19, a schematic summary of which was 
demonstrated in Fig. 6.  

Firstly, neutralization of N protein in the serum by antibody effectively alleviated lung 
injury and reduced the fatality in LPS/Ad-SARS N challenged mice. Coincidentally, SARS 
patients who produce higher levels of N protein specific but not spike protein specific antibodies 10 
tend to recover more rapidly, suggesting that levels of N antibodies correlated with outcome of 
SARS (37). According to our findings, similar mechanisms may be present in MERS-CoV or 
SARS-CoV-2 infection.  

Secondly, Masp2 KO mice showed significantly mild symptoms and a shorter course of 
disease in LPS induced, N protein boosted mice pneumonia model, which confirmed the harmful 15 
role of MASP-2 in this severe pneumonia. Accordingly, administration of anti-MASP-2 antibody 
or the MASP-2 inhibitor C1INH showed a promising treatment effect (Fig. 3). Improved MASP-
2 antibodies that have higher affinity and neutralization activity, such as OMS721 (38) (which 
showed promising effects on thrombotic microangiopathy), or an injectable C1INH medicine, 
such as HAEGARDA, may provide effective protection. Further clinical evaluation is of value to 20 
be carried out for the treatment of SARS-CoV-2 induced pneumonia.  

Thirdly, we’ve observed an excessive activation of complement cascade in lung tissue of 
dead patient, which is coincident with the observation in Ad-SARS N pre-infected and LPS-
primed mice model. High-level C5a was accumulated in the serum of severe but not mild 
COVID-19 patients (Fig. 3 and 4). So, it will make sense that complement cascade-targeted 25 
immunomodulation may be effective for inflammation-control in highly pathogenic coronavirus-
related diseases. In this pathway, C5a is the most potent complement protein triggering 
inflammation. Blockage of C5a signaling has also been reported to improve treatment of acute 
lung injury (ALI) induced by highly pathogenic viruses (39). Based on our scientific finding and 
the good safety record in phase II trial for other disease by Staidson and InflaRx GmbH (whom 30 
produce the anti-C5a antibody in the same cell line), the recombinant anti-C5a antibody 
produced by Staidson Biopharmaceuticals was approved by NMPA for the clinical trial for 
treatment of severe and critical COVID-19 patients. At least in the first two patients, both are in 
the disease deterioration, the anti-C5a antibody showed rapid and promising effect exceeding the 
expect of clinical physicians. Although the final efficacy will be released until the clinical trial is 35 
finished, it is worth to expect that anti-C5a antibody would provide a new approach for the 
treatment of COVID-19.  

 

 

 40 
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Materials and Methods 

Cell culture and transfections 

The 293T cell line was obtained from the Cell Resource Center of Peking Union Medical 
College. Cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen) 
supplemented with 10% heat-inactivated fetal bovine serum (FBS) (HyClone), 2 mM L-5 
glutamine, 100 units/ml penicillin, and 100 µg/ml streptomycin. Cells were transfected with 
plasmid DNA using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. 

Vectors and epitope tagging of proteins 

The N gene of SARS-CoV (GenBank Accession #AY274119) was amplified by RT-PCR 
from the SARS-CoV RNA of patient serum samples (Upstream primer: 5’-10 
CGGAATTCCATATGTCTGATAATGGACCCCAA-3’; downstream primer: 5’-
CGGGATCCTTATGCCTGAGTTGAATCAGC-3’) and cloned into the pcDNA3-based Flag 
vector (Invitrogen), pCMV-Myc (Clontech), pGEX-4T-2 (GE Health care), and the BglII and 
EcoRI sites of pEGFPC1 (Clontech). The N gene of MERS-CoV was chemically synthesized 
(Huaxinrcomm Technology Co., Ltd) and cloned into the pcDNA3-based Flag vector at the 15 
BamHI and EcoRI sites. The N gene of SARS-CoV-2 was chemically synthesized (General 
Biosystems (Anhui) Co. Ltd) and cloned into the pcDNA3.1-based HA vector at the KpnI and 
XbaI sites. The MASP2 gene was amplified from human hepatocyte cDNA library and inserted 
into corresponding vectors. 

Immunoprecipitation and immunoblotting 20 

Cell lysates were prepared in lysis buffer (50 mM Tris-HCl, pH 7.5, 1 mM 
phenylmethylsulfonyl fluoride, 1 mM dithiothreitol, 10 mM sodium fluoride, 10 µg/ml aprotinin, 
10 µg/ml leupeptin, and 10 µg/ml pepstatin A) containing 1% Nonidet P-40. Soluble proteins 
were subjected to immunoprecipitation with anti-Flag M2 agarose (Sigma). The adsorbates were 
then separated by SDS-PAGE and transferred onto an Immobilon-P transfer membrane 25 
(Millipore) by semi-dry transblot (Biorad). The membrane was blocked by 5% Western-Blocker 
(Biorad). Immunoblot analysis was performed with horseradish peroxidase (HRP)-conjugated 
anti-Flag (Sigma), anti-β-actin (Sigma), anti-green fluorescent protein (GFP) (Clontech), anti-
MASP-2 (Santa Cruz), anti-C4α (Santa Cruz), HRP-conjugated anti-Myc (Santa Cruz), and goat 
anti-mouse immunoglobulin G (IgG) (Amersham/Pharmacia) antibodies. The antigen-antibody 30 
complexes were visualized by chemiluminescence (GE Health Care). 

Purification of SARS-CoV and MERS-CoV N protein 

As described previously (40), pET22b-SARS/MERS-CoV N was transformed into the 
expression strain BL21 (DE3). After induction with 1 mM IPTG for 8 h, the bacteria were 
harvested by centrifugation and re-suspended in buffer A (25 mM Na2HPO4/NaH2PO4 (pH 8.0), 35 
1 mM EDTA, and 1 mM DTT) before sonication. Soluble N protein in the lysate was purified 
with ion-exchange chromatography with SP-Sepharose Fast Flow (25 mM Na2HPO4/NaH2PO4 
(pH 8.0), 1 mM EDTA, 1 mM DTT, and 0.35-0.5 M NaCl), followed by Superdex 200 gel 
filtration (GE Healthcare) and elution with buffer A. E. coli transformed with the vector pET22b 
was lysed as described above, and the eluate was used as a negative control for the purified N 40 
protein.Purified SARS-CoV-2 N-His was obtained from General Biosystems (Anhui) Co. Ltd.  
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Purification and renaturation of MASP-2 

Recombinant protein expression and renaturation were performed as described (24, 41). 
In brief, pET22b-MASP-2 was transformed into the expression host strain BL21 (DE3). After 
induction with 1 mM IPTG, cells were harvested and sonicated. The inclusion bodies were 
solubilized in 6 M GuHCl, 0.1 M Tris-HCl (pH 8.3), and 100 mM DTT at room temperature; the 5 
solubilized proteins were then diluted into refolding buffers containing 50 mM Tris-HCl, 3 mM 
reduced glutathione (Sigma), 1 mM oxidized glutathione (Sigma), 5 mM EDTA, and 0.5 M 
arginine. The protein samples were then cooled to 4°C. The renatured protein was dialyzed 
against 20 mM Tris, 140 mM NaCl, pH 7.4 at 4°C, concentrated with PEG8000, aliquoted, and 
stored at -70°C. 10 

To obtain high-activity MASP-2, Flag-tagged MASP-2 was expressed in 293T cells, 
precipitated with anti-FLAG magnetic beads, and eluted with Flag peptide (Sigma). The 
concentration of MASP-2 was assessed using a BCA kit and immunoblot analysis, with the 
purified prokaryotic-expressed MASP-2 as a standard control. 

MASP-2 auto-activation and C4 cleavage assay 15 

Purified MASP-2 (8 nM) was incubated at 37°C in 20 mM Tris-HCl (pH 7.4), 150 mM 
NaCl, and 2 mM CaCl2 with purified C4 (Calbiochem), recombined MBL (Calbiochem), 
mannan (Sigma), and SARS-CoV N protein at concentrations of 50 nM, 30 nM, 15 ng/ml, and 
10 nM, respectively. The cleavage was followed by SDS-PAGE under reducing conditions, and 
the C4alpha’ fragments, which are left by C4a release after C4 cleavage and can indicate C4 20 
activation, and MASP-2 were detected by immunoblot analysis with anti-C4alpha chain antibody 
(Santa Cruz) or anti-Flag antibody (Sigma). C4b containing C4alpha’ but not C4a was used to 
indicate C4alpha’ band position.  

Complement deposition assay 

The C4b deposition assay was performed using a human MBL/MASP-2 assay kit (Hycult 25 
biotech) (42). In brief, diluted serum was incubated in mannan-coated plates with high salt 
binding buffer overnight at 4°C and removed by washing, and the MBL-MASP-2 complex was 
captured. Purified C4 and N protein were added and incubated for 1.5 hr, and the deposited C4b 
was detected following standard protocols. The functional activity of LP and AP was assessed by 
ELISA as previously described (43). Nunc Maxisorb plates were coated with 10 μg mannan per 30 
well in 100 mM Na2CO3/NaHCO3 (pH 9.6) at room temperature overnight. After each step, 
plates were washed three times with PBST (300 μl/well). Residual binding sites were blocked by 
incubation with 10 mM Tris-HCl (pH 7.4), 150 mM NaCl, and 2% HSA for 2-3 hr at room 
temperature. Serum samples were diluted 1:80 in 10 mM Tris-HCl (pH 7.4) containing 150 mM 
NaCl, 0.5 mM MgCl2, 0.05% Tween-20, and 0.1% gelatin with or without 2 mM CaCl2 and N 35 
protein. All samples and buffers were prepared on ice. The plates were then sequentially 
incubated for 1 hr at 4°C and for 1.5 hr at 37°C followed by washing. All incubation volumes 
were 100 μl. Complement binding was detected using antibodies followed by washing. Detection 
of C4, activated C3, and C5b-9 was performed using anti-C4α chain antibody (Santa Cruz), anti-
activated C3 antibody (Santa Cruz), and anti-C5b-9 antibody (Calbiochem), respectively. 40 
Antibody binding was detected using HRP-conjugated sheep anti-mouse antibody or donkey 
anti-rabbit antibody (R&D). Enzyme activity of HRP was detected using TMB incubation for 30-
60 min RT, and the reaction was stopped with 2 M H2SO4. The OD was measured at 450 nm 
using a microplate reader. 
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MASP-2:MBL binding assay  

Binding of MASP-2 to MBL was assessed by ELISA. As mentioned above, Nunc 
Maxisorb plates were coated with 10 μg mannan per well in 100 mM Na2CO3/NaHCO3 (pH 9.6) 
at room temperature overnight and blocked with 2% HSA. MBL protein (1 μg/ml) was incubated 
in 10 mM Tris-HCl (pH 7.4), 150 mM NaCl, 5 mM CaCl2, 100 μg/ml HSA, and 0.5‰ TritonX-5 
100 at 4°C for 2 hr. Purified MASP-2 and N (or control) proteins were added to the wells at 
different times to obtain final concentrations of 0.2 mg/ml and 200 ng/ml, respectively. The 
plates were washed after 32 hr of incubation at 4°C, and the binding of MASP-2 were detected 
with anti-MASP-2 antibody followed by HRP-conjugated rabbit anti-goat antibody. The enzyme 
activity of HRP was detected using TMB incubation for 30-60 min at RT, and the reaction was 10 
stopped with 2 M H2SO4. The OD was measured at 450 nm using a microplate reader. 

Opsonocytophagic assay 

Mouse cells isolated from peritoneal cavity were washed and inoculated with RPMI 1640 
Media (10% FBS) in 96-well plates for 2 hr at 37℃. Serum was diluted by 0.781%, 1.562%, 
3.125%, 6.25%, 12.5%, 25%, 50% and 100% with 1×PBS, 1mM CaCl2, and 2mM MgCl2. 15 
Diluted serum, SARS-CoV N protein (100ng/ml) and  E. coli (the ratio to cells was 10:1) were 
added to each well and incubated for 30 minutes at 37℃. The eluate from pET22b-transformed 
E. coli was used as a negative control for purified N protein to exclude effects due to bacterial 
components that may active complement. The reaction was stop and cells were fixed with 10% 
neutral formalin. Complement C3c depositon was detected with FITC-C3c antibody, and the 20 
stained cells were counted. The points represent the mean values from two repeated wells. Error 
bars, mean±S.D. *P<0.05 and **P<0.01 by unpaired two-tailed Student’s t-test.  

Animal experiments 

Groups of BALB/c mice were provided from the experimental animal center of the 
Academy of Military Medical Sciences. Masp2-/- (KO) mice and littermate control wild type (WT) 25 
mice were provided from Cyagen Biosciences Inc. All mice were maintained in the experimental 
animal center of the Academy of Military Medical Sciences (China). Mice (8-10/group) were 
infected three times (day 1, 2, 3) with 1×108-9 PFU Ad-N/Ad-null (Beijing BAC Biological 
Technologies) or a saline control via the tail vein, and LPS (5 mg/kg) was given via the tail vein 
on the 5-6th day. Anti-MASP-2 monoclonal antibody (200 μg/kg, HBT), anti-N monoclonal 30 
antibody (200 μg/kg, Sino Biolgical) or C1INH (4 mg/kg, Calbiochem) was injected via the tail 
vein 30 min before LPS injection. This study was performed with the approval of the ethics 
committee at the Beijing Institute of Biotechnology and conformed to the relevant regulatory 
standards. 

Immunohistochemistry 35 

Postmortem autopsy from the 4 patients died in Huoshenshan hospital was carried out by 
Dr. Xiuwu Bian under the approval of the hospital ethic committee and the family member of the 
death. The detailed results will be published elsewhere.  Paraformaldehyde-fixed lung tissues 
was used for paraffin tissue sections and immunohistochemical staining with MBL (Santa Cruz), 
MASP-2 (Santa Cruz), C4α chain (Santa Cruz), C3 (Santa Cruz) or C5b-9 (Calbiochem) 40 
antibodies as described in the instruction manual. 
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Detection of C5a in COVID-19 patients 

Sera from mild or severe COVID-19 patients were collected under the approval of 
hospital ethic committee. Server patients were defined as fever or suspected respiratory infection, 
plus one of respiratory rate >30 breaths/min, severe respiratory distress, or SpO2 <90% on room 
air. Patients with pneumonia and no signs of severe pneumonia are defined as mild cases. Sera 5 

from 12 mild patients (6 males and 6 females), with an average of 5612.1 years old and an 
average 26.39.1 days of illness, and sera from 18 severe patients (7 males and 11 females), with 
an average of 72.410.1 years old and an average 40.1512.74 days of illness, were assayed. 
Sera from healthy people for physical were collected from the clinical laboratory. Serum C5a 
level was detected by double antibody sandwich ELISA (R&D Systems). 10 

Anti-C5a antibody therapy 

BDB-001 is a mouse-human chimeric (IgG4) antibody against human C5a. It was 
manufactured from IFX-1 cell line by Staidson in accordance with the Good Manufacture 
Practices. The IFX-1 cell line has originally been developed by InflaRx GmbH, Germany and 
was licensed to Beijing Deferengrei Biotech Co., Ltd., a wholly owned subsidiary of Staidson 15 
Biopharmaceutical Co., Ltd. The injection was approved by National Medical Product 
Administration (NMPA) of China for phase I clinical trial in healthy subjects in 2018. After the 
SARS-CoV-2 coronavirus induced pneumonia (COVID-19) outbreak, the antibody was 
approved by NMPA for phase II clinical trials for the treatment of COVID-19 on February 7, 
2020 (2020L00003). Administration of the antibody to human was also approved by the Ethics 20 
Committee in Wuhan Huoshenshan Hospital. 300 mg anti-C5a antibody in 250 ml saline was 
administrated i.v. on day 1, 2, 3, 5, 7, 9, 11 and 13. Arterial blood gas (ABG) test, C reaction 
protein (CRP), blood routine (blood RT) and Hepatic function were regularly determined. SaO2, 
blood pressure, heart beat were monitored as required. 

Statistics 25 

The data were presented as the mean ±SD or the mean ±SEM and analyzed using the 
two-tailed Student t test or ANOVA. Survival curves were analyzed by Log-rank test, Gehan-
Breslow-Wilcoxon test or parametric regression model. Differences were considered significant 
at *P <0.05, **P <0.01, or ***P<0.001 as indicated. 

 30 
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Fig. 1. The N proteins of SARS-CoV, MERS-CoV and SARS-CoV-2 bind to MASP-2. (A) 
Lysates of 293T cells transfected with indicated plasmids were subjected to anti-Flag 
immunoprecipitation in the presence of 2 mM CaCl2 or 1 mM EDTA, and analyzed by 
immunoblotting. IgG immnuoprecipitates were used as a negative control. (B) Lysates of 293T 5 
cells transfected with indicated plasmids were mixed with human serum (HS) and mouse serum 
(MS) and subjected to immunoprecipitation with anti-Flag agarose beads. The absorbates were 
probed with indicated antibodies. Purified recombinant MASP-2 was loaded as a marker. (C)-(E) 
Lysates of 293T cells transfected with indicated plasmids were subjected to anti-Flag 
immunoprecipitation in the presence of 2 mM CaCl2 and analyzed by immunoblotting. 10 
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Fig. 2. The N proteins induce MASP-2 auto-activation and C4 cleavage. (A) Lysates from cells 
expressing indicated proteins were mixed with purified N or MBL and subjected to anti-Flag 
immunoprecipitation and analyzed by immunoblotting. (B) Purified MASP-2-Flag was incubated 
with/without N, MBL, and mannan at 37°C for 12 hr. Cleaved MASP-2 was probed with an anti-5 
Flag antibody. (C) Purified MASP-2 and N proteins with/without anti-N monoclonal antibody 
were incubated with pre-conjugated MBL in mannan-coated plates at 4°C. Binding of MASP-2 
was detected with an anti-MASP-2 antibody. (D) C4 was incubated with indicated components at 
37°C for 0, 2, 6, 12 and 24 hr. C4 and a cleaved C4alpha’ fragment were detected with anti-
C4alpha chain antibody. (E) C4 was incubated with indicated components at 37°C for 1 hr. C4 10 
cleavage was detected as mentioned above. Ab, anti-MASP-2 antibody. (F)-(H) C4b deposition 
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in relation to the concentration of N proteins of SARS-CoV, HCoV-229E, SARS-CoV-2, and 
MERS-CoV.  
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Fig. 3. N proteins potentiate LPS-induced pneumonia in mice. (A) BALB/c mice (10 mice/group) 
were infected with 1×109 PFU Ad-SARS N/Ad-null or a saline control, and LPS (5 mg/kg) was 
given on the 6th days post infection (d.p.i.). Antibodies (200 μg/kg) or C1INH (4 mg/kg) was 
injected 30 min before LPS injection. The fatality of mice was noted. (B) Lung paraffin sections 
were analyzed by HE staining. (C) Mice were infected with 1×108 PFU Ad-SARS N/Ad-null, 5 
and LPS (5 mg/kg) was given by on 6 d.p.i. Mice were sacrificed after LPS challenged for 6 hr. 
Frozen lung sections were stained with anti-C4b antibody. (D) SARS-CoV N and MASP-2 
complex formation in frozen lung sections was measured by in situ PLA, as indicated by the red 
signals. Deposited C3 fragments were stained with FITC-labeled anti-C3c antibodies (green). 
Scale bar, 50 μm. (E) Mice were pre-infected with 1×109 PFU Ad-MERS N/Ad-null and treated 10 
with LPS, anti-MASP-2 antibody or C1INH as mentioned above. The mice survival curve was 
plotted. (F) Masp2-/- and Masp2+/+ C57BL/6N mice were infected N-expressing adenovirus and 
injected with LPS as mentioned above. The mice survival curve was plotted. 
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Fig. 4. Complements activation in COVID-19 patients. (A-E) Paraformaldehyde-fixed lung 
tissues from postmortem autopsy was used for paraffin tissue sections and IHC staining with 
indicated antibodies. Microphotography was carried out by Olympus BX52 microscope under a 
10× objective. (F) Serum C5a from healthy people, mild or severe COVID-19 patients were 5 
analyzed by ELISA.  
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Fig. 5. Treatment of COVID-19 patients with anti-C5a antibody. (A) Timeline of illness onset, 
SARS-CoV-2 RNA detection and hospitalization of the two patients. (B) Flow rate, fraction of 
inspiration (FiO2) of high-flow nasal oxygen, percutaneous oxygen saturation (SpO2) and 5 
oxygenation index (PaO2/FiO2) or SpO2/FiO2 in patient #1 (Left) and patient #2 (Right). (C) 
Body temperature (TEMP), C reactive protein (CRP) level and blood lymphocyte number (LYM) 
changes in patient #1 (Left) and patient #2 (Right). (D) Hepatic function changes in patient #1 
(Left) and patient #2 (Right). ALT: alanine aminotransferase; AST: aspartate aminotransferase; 
TP: total protein; ALB: albumin. 10 
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Fig. 6. Schematic representation of MBL pathway over-activated by N protein of SARS/ MERS- 
CoV or SARS-CoV-2. (A) Virus binds to cell surface and S protein actives MBL. (B) Virus 
enters cells and expresses viral proteins including N protein. (C) N proteins release by secretion 
or after cells and virus lysis. (D) The extracellular soluble N protein dimmers interact with 5 
MASP-2, induce MASP-2 auto-activation and binding to MBL. (E) The accelerated activation of 
MASP-2 induces downstream complements cascades over-activation of the MBL pathway, and 
promotes cell lysis and N protein releases by secretion or complement mediated cytotoxicity, 
which may result in uncontrolled tissue damage and inflammation. 
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