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Abstract

We present a simple analytical model to describe the fast increase
of deaths produced by the corona virus (COVID-19) infections. The
’D’ (deaths) model comes from a simplified version of the SIR (susceptible-
infected-recovered) model known as SI model. It assumes that there
is no recovery. In that case the dynamical equations can be solved
analytically and the result is extended to describe the D-function that
depends on three parameters that we can fit to the data. Results for
the data from Spain, Italy and China are presented. The model is
validated by comparing with the data of deaths in China, which are
well described. This allows to make predictions for the development
of the disease in Spain and Italy.

1 Introduction

The SIR (susceptible-infected-recovered) model, developed by Ross, Hamer,
and others [1], is widely used among the many epidemiological models as a
first approach to virus spreading, with applications to many other sociological
situations [2]. It consists of a system of three coupled non-linear ordinary
differential equations [3] involving three time-dependent functions:
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• Infected individuals, I(t).

• Susceptible individuals, S(t).

• Recovered individuals, R(t).

The resulting dynamical system is the following

dS

dt
= −λSI (1)

dI

dt
= λSI − βI (2)

dR

dt
= βI (3)

S(t) + I(t) +R(t) = N (4)

where λ > 0 is the corona virus transmission rate, β > 0 is the recovery rate,
and N is the total population size. The system is reduced to two coupled
differential equations, which does not possess an explicit formula solution,
but can be solved numerically. The SIR model is usually parametrized using
actual infection data and the solution of the I(t) function can be compared
with actual infection data, to predict the evolution of the disease.

In this paper we make drastic assumptions in order to obtain an analytical
formula to describe the evolution of deaths by corona virus. This can be
useful as a fast method to foresee the global behavior as a first approach
before applying more sophisticated methods. We shall see that the resulting
’D’ (deaths) model, that derivates from the SI model (no recovery), and is
extended to deaths, describes well enough the data of the current corona
virus pandemic in the countries China, Spain and Italy, where the pandemic
is stronger.

2 The D model

The first basic assumption of the model is that there is no recovery from
corona virus, at least during the pandemic time interval. This drastic as-
sumption could be reasonable if the spreading time of the pandemic is much
faster than the recovery time, or β ≪ λ.
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Under this simple assumption R(t) = 0, and the SIR equations reduce to
the single equation of the well known SI model

dI

dt
= λ(N − I(t))I(t). (5)

Therefore the infection rate is proportional to the infected, I and to the
non-infected N − I or susceptible individuals.

This equation is easily solved in the following way. Dividing by (N − I)I
and multiplying by dt,

dI

(N − I)I
= λdt (6)

or
(

1

N − I
+

1

I

)

dI = λNdt (7)

Integrating over t = 0 and t we obtain

ln
I

N − I
− ln

I0
N − I0

= λN(t− t0) (8)

Where I0 = I(t0). Taking the exponential on both sides

I

N − I
=

I0
N − I0

eλN(t−t0) (9)

Finally, solving this algebraic equation we obtain the solution I(t)

I(t) =
NI0e

λN(t−t0)

N − I0 + I0eλN(t−t0)
(10)

We write this equation in the form

I(t) =
I0 e

(t−t0)/b

1− C + C e(t−t0)/b
(11)

Where we have defined the constants

b =
1

λN
, C =

I0
N

(12)

The parameter b is the characteristic evolution time of the initial exponential
increase of the pandemic. The constant C is the initial infestation rate (with

3



respect to the total population). Assuming that initially C ≪ 1, this constant
can be neglected in the denominator, obtaining

I(t) =
I0 e

(t−t0)/b

1 + C e(t−t0)/b
(13)

Now to predict the number of deaths in the D model we assume that the
number of deaths at some time t is proportional to the infestation at some
former time τ , that is,

D(t) = mI(t− τ) (14)

Where m is the mortality or death rate, and τ is the mortality time.
With this assumption we can finally write the D model equation as

D(t) =
ae(t−t0)/b

1 + c e(t−t0)/b
(15)

where a = mI0 e
−τ/b, and c = C e−τ/b. This is the final equation for the

model. This simple function has three parameters, a, b, c, which we fit to the
data. Note that the rest of the parameters, m, τ , I0 and N are not needed
in our model because they are included inside the fitted parameters a, b, c.

3 Results

In this section we fit the three parameters, a, b, c of our model, Eq. (15),
to real data for three countries, China, Spain and Italy. The data are taken
from ref. [4]

In Fig, 1 we show our fit of the D-model to the death data of China. In
this country the evolution has been apparently controlled and the D function
has already arrived to the plateau zone, with few increments over time, or
fluctuations that are beyond the model assumptions. We see that the pan-
demic lasted for about two months to reach the top end of the curve. Fig.
1 shows that the model describes well the COVID-19 evolution of deaths,
despite our crude assumptions. This validation allows us to trust its applica-
bility in other cases where the pandemic is still in its initial phase, to make
predictions.

In Fig, 2 we show our fit of the D-model to the death data of Spain. The
data start on March, 8 2020 (day 1). In this country the evolution has been
strong and up to day 22 (March 29 2020) they have exceeded the deaths
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a = 70.3, b = 6.35 days, c = 0.022
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Figure 1: Fit of the D-model to the deaths by corona virus in China. Data
are from [4].

a = 28.6, b = 3.5 days, c = 0.0025
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Figure 2: Fit of the D-model to the deaths by corona virus in Spain. Data
are from [4].
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a = 28.6, b = 3.5 days, c = 0.0025
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Figure 3: Prediction of the D-model to the COVID-19 pandemic in Spain.
Data are from [4].

a = 31.2, b = 4.6days, c = 0.0024
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Figure 4: Prediction of the D-model to the COVID-19 pandemic in Italy.
Data are from [4].
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in china, reaching almost 7000 deaths. In Fig. 2 we see that the D-model
describes quite well this evolution region up to day 22 of the pandemic.

In fig.3 we show our prediction for the next weeks in Spain, using the fit
to the first 22 days. According to the figure we reached the mid point of the
curve on day 21. It is expected that Spain will reach the top plateau of the
curve in 18 days, that is in mid April.

Finally in Fig. 4 we show our fit and prediction to the Italy data. The
parameters are similar to the case of Spain with about 20 days to the top of
the curve.

4 Final remarks

To conclude we have seen that the D-model for COVID-19 pandemic, derived
form the SI model, describes well the current data of China, Spain and Italy
with only three parameters.

The assumption made here, that the recovered individual do not influence
the increase of the infected, could further indicate that the total population
N is not a constant as assumed in the SIR model, but it increases over time
as more people are exposed, for example, in villages that until now had been
isolated from the sources of infection in big cities.

The D model is simple enough to provide fast estimations of pandemic
evolution in other countries, and could be useful for the control of the disease.

5 Acknowledgements

The author thanks useful comments from Nico Orce and from the WhatsApp
group Covid-19.

This work is supported by Spanish Ministerio de Economia y Competitivi-
dad and European FEDER funds (grant FIS2017-85053-C2-1-P) and Junta
de Andalucia (grant FQM-225).

References

[1] R. M. Anderson, Discussion: the Kermack-McKendrick epidemic thresh-
old theorem. Bulletin of mathematical biology, 53(1): 132, 1991.

7



[2] H.S. Rodrigues, Application of SIR epidemiological model: new trends,
arXiv:1611.02565 (2016)

[3] H. Weiss, The SIR model and the Foundations of Public Health, MA-
Terials MATematics Volum 2013, treball no. 3, 17 pp.

[4] https://www.worldometers.info/coronavirus/

8

http://arxiv.org/abs/1611.02565

	1 Introduction
	2 The D model
	3 Results
	4 Final remarks
	5 Acknowledgements

