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We present a simple model for describing the diffusion of an infectious disease on a population of
individuals. The dynamics is governed by a single functional delay differential equation, which, in
the case of a large population, can be solved exactly. This delay model can be put in relation with
the so-called SIR model, commonly used in epidemiology, which, instead, is formulated in terms of
a set of three ordinary differential equations. We apply our model to describe the outbreak of the
new virus COVID-19 in Italy, taking into account the containment measures implemented by the
government in order to mitigate the spreading of the virus and the social costs for the population.

INTRODUCTION

In a very few months a viral infection called Covid-19 (Coronavirus disease 19) originated in China, breaking through
the borders of all the countries, rapidly spread all over the globalized world. Italy is one of the hardest hit countries
suffering from the very dramatic consequences of this disease. The outbreak of the virus, the new coronavirus which
caused the infection, seems out of our control. In the absence of a therapy and a vaccine, social distancing measures
and a strict lockdown appear to be the most effective means to contain the growth of the infection. We should remind
that there are places in the world where often infectious diseases, also those already defeated in the so-called more
developed countries, can still cause very severe consequences among the local populations.

Even if we cannot answer the question why a virus starts spreading and which is its origin, we can still wonder how
it diffuses. The aim of this work is, therefore, to provide a simple handy model for epidemic spreading, which could
depend only on the couple of parameters which generally characterize an infectious disease: the infection rate and
the infectiousness (or recovery) time. Both these quantities can be taken from the experience, therefore, we do not
need further parameters to fit the data which could cause artificial predictions. We will show that the model we are
presenting have the same predictive power of one of the most widely used technique in epidemiology, the SIR model
[1–3]. This latter model requires the presence of a fictitious recovery rate related to the number of recovered persons,
without considering that the new cases of recovery (and fatality) come from infected cases occurring a period of time
earlier. The model we are considering, instead, is based on the fact that the closed cases comes from the infected
ones after an average delay recovery time, therefore, contrary to the SIR model, formulated in terms of a set of three
ordinary differential equations, it is described by just a single equation, a functional retarded differential equation.
In this work we also derive the exact analytical solution of this equation in the limit of large population number.
Moreover, the definition of the so-called reproduction number R0 (a parameter determining whether a infectious
disease can spread or not) comes out naturally in our delay model.

We finally apply this technique to give a quantitative description of the diffusion of Covid-19 in Italy, showing some
possible scenarios based on the actual situation. Of course it is quite hard to give a reliable forecast on the fate of
the epidemic spreading because it heavily depends on individual and social behaviors and on the effectiveness of the
containment measures already implemented, or that will be taken, by the government. At the time being, even if the
situation in Italy is improving, it seems that more efforts are needed in order to change course and stop the spreading
of the disease. Further measures might be useful, like, for instance, i) running more diagnostic tests, at least, on all
the doctors and medical workers who are in contact with many patients, ii) improving the food distribution to avoid
the crowding in the food shops and to ensure subsistence goods also to those who need, iii) providing medical devices
like surgical masks to all the population.

As last remark, we remind that the outbreak of Covid-19 has been declared a pandemic by the World Health
Organization. Many countries are already heavily overwhelmed by this infection and by the risk for the public health,
therefore, in a networked world we all have to behave and operate with an improved spirit of cooperation. The bitter
lesson imparted by this tough situation is that we cannot save ourselves alone.

THE MODEL

Let us first consider the case in which a population of individuals, subjected to an infection, is not too large or the
infection is such that the recovery time for an infected person is sufficiently long. In this conditions one can expect
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that the epidemic diffusion is governed by the logistic equation

dF (t)

dt
= r F (t)

(
1− F (t)

p

)
(1)

whose solution is simply given by

F (t) =
pFo e

rt

p+ Fo (ert − 1)
(2)

where Fo = F (t = 0) is the number of initial infected persons, r the rate of the infection, namely the number of
new infections from one infected person in unit of time (the number of new infections a day), and p the number of
individuals of the population involved. The dynamics goes on until all the population p is infected. This model has
not any predictable power, however, if we have enough data about the diffusion of the epidemic disease, specially in
the first stage of the spreading, in order to get a rough forecast of what can happen in the near future, one could use
Eq. (1) to fit the data with Fo, r and p as free parameters.
The main issue of Eq. (1) is that it does not contain the mechanism of reduction of the spreading and the desired end
of an epidemic disease. We have therefore to take into account the number of closed cases (persons who recovered or
died), which do not contribute to the infection anymore. The model we are going to consider includes, therefore, the
total number of infected, F (t), and the total number of recovered and deceased persons, R(t), so that Eq. (2) becomes

dF (t)

dt
= r

(
F (t)−R(t)

)(
1− F (t)

p

)
(3)

In principle also R(t) can follow another dynamical equation, however, generally, there is an average time of recovering
δt so that the number of total cases at some time t becomes closed cases at later time t+ δt, namely

F (t− δt) ' R(t) (4)

This seems to be the case also for the new coronavirus spreading, by looking at some reported data for Covid-19 in
Italy, shown in Fig. 1 (see also Ref. [4]). Eq. (4) allows us to write Eq. (3) in terms of only the function F (t). If
we consider the case where the population p is very large, as long as F (t) � p, we can neglect the logistic term,(
1− F (t)

p

)
' 1, so to have

dF (t)

dt
= r

(
F (t)− F (t− δt)Θ(t− δt)

)
(5)

where Θ is the Heaviside theta function. Eq. (5) is a functional retarded differential equation.

Exact solution

Writing the time t as t = n δt+ t′, where n = b tδtc is the integer part of t/δt, the solution of Eq. (5) is given by

F (t) = F (nδt+ t′) = Fo

n∏
`=1

A`(δt)An+1(t′) (6)

where the functions A` fulfill the following iterative equation

A`(t) = ert
(

1− r A`−1(δt)−1
∫ t

0

dt′e−rt
′
A`−1(t′)

)
(7)

with A0(t) = 0 for any t < δt and A0(δt) = 1, so that, for ` = 1, we recover A1(t) = ert. The full exact solution is,
therefore, obtained by solving a cascade of n local integrals. The proof of Eqs. (6) and (7) is given in Appendix A.
At time t = n δt, from Eq. (7), performing the chain of integrals, and putting the results in Eq. (6), we get the
following exact result,

F (nδt) = Fo

n−1∑
`=0

(−1)`

`!

(
(n− `) rδt

)`
e(n−`)rδt (8)
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We notice that, surprisingly, Eq. (8) depends only on (r δt), which is called basic reproduction number R0 (see below).
For instance, for n = 1 and n = 2, namely up to twice the infectiousness period, the total number of cases is simply

F (nδt) = Fo

(
er nδt − r(n− 1)δt er(n−1)δt

)
. (9)

From Eq. (6) and Eq. (7), we can notice that the function F (t) depends on its past, therefore, it seems governed by
a non-Makovian dynamics. Once we have the total number of infections F (t), we can also calculate the number of
persons who are still infected, at a given time t, which is defined by

I(t) = F (t)−R(t) (10)

In our model I(t) = F (t)− F (t− δt)Θ(t− δt). Before to proceed, a comment on the comparison with another model
is in order. The so-called SIR model is one of the most used techniques for describing the spreading in time of an
infection disease. According to this model the population is divided into three parts represented by the number of
susceptible S(t), infected I(t) and recovered R(t) individuals which vary over time (see Appendix B). This model,
is almost equivalent to our simpler model, Eq. (3)-(4). However a criticism which can be raised against the SIR
model is related to the fact that, being formulated in terms of ordinary differential equations, the model requires the
presence of an effective recovery (and fatality) rate which might not correspond to the actual rate since the new cases
of recovery (and fatality) come from infected cases occurring a few days earlier. For that reason, instead of writing
the problem in terms of ordinary differential equations one has to do it in terms of functional differential equations.

Basic reproduction number

Let us consider Eq. (5), for t > δt, in the following form

dF (t)

dt
= R0

F (t)− F (t− δt)
δt

(11)

where we introduce and identify R0 as the so-called basic reproduction number

R0 = r δt (12)

which is a widely used parameter for predicting whether the infectious disease will spread into a population or turns
off, and represents the average number of cases originated by a single infectious case during the infectiousness period.
Eq. (11) implies that the first derivative of F (t) is equal to its increment in a time interval δt, divided by δt, namely
F (t) is linear in t if the rate is equal to the critical value

r = rc ≡
1

δt
⇒ R0 = 1 (13)

For r > rc (R0 > 1), the function F (t) increases more than linearly, while for r < rc (R0 < 1), F (t) goes slower than
linearly. If we let r vary in time, when r = rc (R0 = 1) the function F (t) has an inflection point, where it changes
from being concave to convex or vice versa. Making a comparison with the SIR model, where R0 = r/β, one can
identify β, the fictitious recovery rate (see Appendix B) with the inverse of the recovery time β ∼ 1/δt.

COVID-19 IN ITALY

Let us consider the modified version of the delay model in Eqs. (3)-(4), where the infection rate r varies in time

dF (t)

dt
= r(t)

(
F (t)− F (t− δt)Θ(t− δt)

)(
1− F (t)

p

)
(14)

as the effect of some containment measures taken in order to reduce the impact of an infection on the population. As
an example, let us suppose that r(t) is modified by social distancing measures, lockdown and the shutdown of many
work activities, as in it is happening in Italy (and in many other countries) to mitigate and reduce the spreading of
the new coronavirus, Covid-19, after two main decrees imposed by the Italian Prime Minister ordering the lockdown
of the whole national territory, taken on March 11-th (lockdown and shutdown of many stores) and March 22-th 2020
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FIG. 1: Total number of confirmed cases of Covid-19 in Italy, F (t) (red dots), reported in Ref. [5], since 21th February to
22th March 2020, compared with the closed cases, R(t) (blue dots), in the same period of time. If the numbers of closed cases
are shifted in time by δt ' 11 days (blue circles) they fairly overlap with the total numbers of cases.

(shutdown of many factories and strengthening of social distancing measures), after some other measures taken right
before for local regions (e.g. the decree of March 8-th for the lockdown of Lombardy and other areas). As a result, we
can imagine that r(t) decreases smoothly after those dates taking into account the adaptation time for the individuals
to the new social behaviors and the period needed to complete the last activities before the blockade of the factories.
Let us suppose, therefore, that r(t) can change in time according to a smooth step function as in Eq. (15),

r(t) =

(
r1 − r2

1 + e(t−t1)/τ1
+ r2 − r3

)
1

1 + e(t−t2)/τ2
+ r3 (15)

where t1 and t2 are the times where the steps are located, τ1 and τ2 make the function to be smooth, r1 is the initial
observed infection rate which causes the starting exponential growth of the epidemic disease, r2 the intermediate rate,
which fits with the data, supposed to be reached after the first decree of lockdown, and r3 the supposed asymptotic
infection rate after the second decree of lockdown. Fixing the average of recovery and fatality rate δt, the basic
reproduction number is also a function of time according to R0 = r(t)δt, with a profile shown in Fig. 2.

 0

 0.5

 1

 1.5

 2

 2.5

 3

24/2 29/2 5/3 10/3 15/3 20/3 25/3 30/3

R
0

1

2

3

FIG. 2: Basic reproduction number R0 = r(t)δt, as a function of time, based on the profile for the infection rate described by
Eq. (15). We take δt about 11 or 12 days [4], t1 between March 13th and 14th 2020, t2 on March 26th, τ1 ∼ 2 days, τ1 ∼ 1 day.
The starting value is R0 = r1δt ' 2.65 and the intermediate value is R0 = r2δt ' 1.45. We choose three different final values,
R0 = r3δt = 1.3, 1.0, 0.7, depending on the effect of the last decree law and the future social behavior. These three cases are
labeled by the numbers 1, 2, 3. The vertical dotted lines point the dates of the main laws for the containment measures (March
11th and March 22th 2020).

Solving numerically Eq. (14) with r(t) given by Eq. (15), by the set of parameters producing the profile depicted
in Fig. 2, we get, for the three different final values of R0 taken as examples, the hypothetical curves of epidemic
growth shown in Fig. 3. We plot the total number of cases F (t) (the magenta points are the official reported data
and the blue curve the theoretical expectation) and the total number of persons still infected, I(t) (green points, the
official reported data, and red curve, the expected behavior). The dotted gray line represents I(t) if the containment
measures had not been taken. Note that, while F (t) has to be an increasing monotonic function, I(t) can decrease



5

because of the number of closed cases (number of recovered persons and victims), see Eq. (10). As one can see from
Fig. 3, only when R0 < 1 we can hope for a stop of the epidemic spreading avoiding that a large part of the population
gets infected. For R0 ' 1, F (t) increases linearly while I(t) is almost constant, meaning that the number of new
infections is always equal to the number of closed cases. This stationary condition can last for a very long time. If we
were now in this situation, we should make further collective efforts and take further restrictions in order to reduce
the reproduction number. In Fig. 3d (last plot) we draw the long-term expected evolution, over this year, of the
infection for those three different values of R0.
However, a reliable forecast has to take into account the fact that the official data of infectious cases are made by
counting mostly the symptomatic cases, probably discarding other infectious cases which could transfer the virus even
without or with mild symptoms. Moreover, the data of both the total number of infected persons and that of the
recovered ones could be affected by the procedure, the realization times and the number of the diagnostic tests.
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FIG. 3: Total number of infected persons over time F (t) (magenta points) and total number of persons still infected I(t) (green
points), from official data for Covid-19 in Italy [5], where p = 6 · 107, from 29th February to 27th March. The blue line is F (t)
obtained solving Eq. (14) with Eq. (15), for the three cases shown in Fig. 2: (1) for R0 = 1.3, (2) for R0 = 1.0, (3) for R0 = 0.7.
In the last plot, the forecast for I(t) for the three different cases. The gray dotted line is I(t) for constant r(t) = r1, namely
without any containment measures.

CONCLUSIONS

We present a simple model for describing epidemic spreading, based on the fact that the closed cases come from
infected ones at early time. This observation allows us to formulate the problem in terms of a single functional differ-
ential equation depending on two well defined clinically relevant parameters: the infection rate and the infectiousness
time. We provide the exact analytical solution for such an equation, in the limit of large population number, finding
that it depends exclusively on the basic reproduction number R0 = rδt, see Eq. (8).
We apply our model to the case of the spreading of Covid-19 in Italy, allowing the infection rate to vary in time, as
a result of some containment measures implemented by the government in order to mitigate the consequences of the
infection on the population. We show some possible scenarios based on the actual situation, finding that the basic
reproduction number should be suppressed well below 1 in order to rapidly recover the initial condition. By a rough
estimation, in order to have a decline of the infection as fast as its growth, containment measures or possible therapies
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should be so effective to reduce the basic reproduction number and reach the final value R0f such that R0f
<∼

R0i

2R0i−1 ,
starting from an initial value R0 i. In the case of Covid-19 in Italy, the initial value was R0i ' 2.6, so the final value
should be R0f ' 0.6 in order to rapidly, within one or two months (from the end of March), and almost totally
suppress the infection. This means that, on average (considering also the workers which guarantee necessary goods
and public health), the number of contacts should be reduced by a factor of four or even more.

Note added : A the time of writing, the spreading of Covid-19 in Italy is consistent with a current basic reproduction
number reduced to R0 ≈ 0.8. If the situation will not change in the next future, for better or worse, this could imply a
still too slow decline of the infection, as shown in Fig. 4, therefore more efforts in terms of social distancing measures
and individual responsibility are needed in order to speed up the shutdown of the epidemic disease.
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FIG. 4: Total number of infectious cases F (t) in Italy up to 5th April 2020 by official data (magenta points) and the expected
theoretical curve (blue line) if the final R0 is 0.8, as reported in the inset, and if it remains the same in the next months. The
gray dotted lines are the expected curves for F (t) if the first and the second containment measures (on 8-11th March and 22th
March) had not been taken. In the inset: Basic reproduction number R0 as a function of time (red line, the gray dotted lines
correspond to R0 in the absence of the first and the second containment measures).

Appendix A: Solution of the retarded differential equation

For t ≤ δt, the solution of Eq. (5) is F (t) = Foe
rt. Let us consider t = δt+ dt with infinitesimal dt, from Eq. (5)

F (δt+ dt) = F (δt) + dt r (F (δt) + F (0)) = F (δt) (1 + r dt)− For dt = Foe
rδt(1 + r dt)− For dt (16)

Using this result we can calculate

F (δt+ 2dt) = F (δt+ dt) + dt r (F (δt+ dt) + F (dt)) = Foe
rδt(1 + r dt)2 − For dt

[
(1 + r) + erdt

]
(17)

Analogously, from that, we can proceed calculating

F (δt+3dt) = F (δt+2dt)+dt r (F (δt+ 2dt) + F (2dt)) = Foe
rδt(1+r dt)3−For dt

[
(1 + r dt)2 + erdt(1 + r dt) + e2rdt

]
(18)

and going on by adding infinitesimal time steps, we find iteratively that

F (δt+mdt) = Foe
rδt(1 + r dt)m − For dt

m−1∑
j=0

ejrdt(1 + r dt)m−j−1 ≡ FoA1(δt)A2(mdt) (19)

= F (δt)A2(mdt) (20)

with A1(δt) = erδt and defining

A2(mdt) = (1 + r dt)m − e−rδtr dt
m−1∑
j=0

ejrdt(1 + r dt)m−j−1. (21)
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In particular, for mdt = δt, we have an expression for F (2δt) in terms of the function at early time, F (2δt) =
F (δt)A2(δt). We can now start again with the iteration

F (2δt+ dt) = F (2δt)(1 + r dt)− r dtF (δt) = F (δt)A2(δt) (1 + r dt)− r dtF (δt) (22)

One can proceed in the same way as before getting

F (2δt+mdt) = F (δt)

(1 + r dt)mA2(δt)− r dt
m−1∑
j=0

A2(j dt)(1 + r dt)m−j−1

 (23)

which can be written as

F (2δt+mdt) = F (δt)A2(δt)A3(mdt) = F (2δt)A3(mdt) (24)

where

A3(mdt) = (1 + r dt)m −A2(δt)−1r dt

m−1∑
j=0

A2(j dt)(1 + r dt)m−j−1. (25)

We can notice that at any step δt we can perform the same calculation since we can factorize the function F as

F (n δt+mdt) = F (n δt)An+1(mdt) (26)

where, therefore, F (n δt) = Fo
∏n
`=1A`(δt) and

A`(mdt) = (1 + r dt)m

1−A`−1(δt)−1r dt

m−1∑
j=0

A`−1(j dt)

(1 + r dt)j+1

 . (27)

In the continuum limit, dt→ 0 and m→∞, keeping finite the time interval mdt = t, reminding that

lim
m→∞

(
1 +

rt

m

)m
= ert (28)

we finally obtain the result reported Eq. (7).

Appendix B: Comparison with the SIR model

The most commonly used model for epidemic spreading is the so-called SIR model, which describes the dynamics
of the number of susceptible, S(t), infected, I(t) and recovered, R(t) persons, according to the following differential
equations

dS(t)

dt
= −αS(t)

p
I(t) (29)

dI(t)

dt
= α

S(t)

p
I(t)− βI(t) (30)

dR(t)

dt
= βI(t) (31)

with generally the initial condition S(0) ' p. The free parameters α, the infection rate and β, the recovery rate, can
be fixed by fitting the data sets. Defining

F (t) = I(t) +R(t) (32)

and summing Eqs. (30)-(31) we get

dF (t)

dt
= α

S(t)

p
I(t) = α

S(t)

p
(F (t)−R(t)) . (33)
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Summing the three Eqs. (30)-(31) one gets, for any time t,

d

dt

(
S(t) + I(t) +R(t)

)
= 0 (34)

namely that, the sum of the three functions is constant and equal to the population p for any t, since at the beginning
S(0) + I(0) = p, therefore,

S(t)

p
= 1− F (t)

p
(35)

which is nothing but the logistic term so that Eq. (33) is exactly equal to Eq. (3), where α = r. This implies that one
equation among Eqs. (29)-(31) is redundant, therefore, instead of considering three equations one can take just two.
For instance, we can choose to express the time evolution in terms of F (t) and R(t),

dF (t)

dt
= α

(
F (t)−R(t)

)(
1− F (t)

p

)
(36)

dR(t)

dt
= β

(
F (t)−R(t)

)
(37)

In particular, as long as F (t)� p so that (1− F (t)/p) ≈ 1, we have

dI(t)

dt
= (α− β) I(t) (38)

meaning that only if α is smaller than β, α < β, the infection shuts down. One can introduce the so-called basic
reproduction number R0 which predicts whether the infectious disease will spread into a population or die out, and
represents the average number of cases originated by a single infectious case in a totally susceptible population during
the infectiousness period. This quantity is defined as

R0 =
α

β
(39)

From Eq. (38) one can see that, for R0 < 1, the infection turns off. In conclusion, the difference between the delay
model described by Eqs. (3) and (4) and the SIR model, is that the number of closed cases R(t) is locked to be equal
to the total cases at early time F (t − δt), before an average recovery period δt. In this case the basic reproduction
number is defined by R0 = α δt.
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