1	Ad hoc laboratory-based surveillance of SARS-CoV-2 by real-time RT-PCR using			
2	minipools of RNA prepared from routine respiratory samples			
3				
4	Anna M. Eis-Hübinger ¹ , Mario Hönemann ² , Jürgen J. Wenzel ³ , Annemarie Berger ⁴ , Marek			
5	Widra ⁴ , Barbara Schmidt ³ , Souhaib Aldabbagh ¹ , Benjamin Marx ¹ , Hendrik Streeck ¹ , Sandra			
6	Ciesek ⁴ , Uwe. G. Liebert ² , Daniela Huzly ⁵ , Hartmut Hengel ⁵ , Marcus Panning ⁵			
7				
8	1 Institute of Virology, University of Bonn, Faculty of Medicine, Bonn, Germany			
9	2 Institute of Virology, University of Leipzig, Leipzig, Germany			
10	3 Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital,			
11	Regensburg, Germany			
12	4 Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main,			
13	Frankfurt, Germany			
14	5 Institute of Virology, University Medical Center Freiburg, Faculty of Medicine, University			
15	of Freiburg, Freiburg, Germany.			
16				
17	Running Title: SARS-CoV-2 laboratory-based surveillance			
18				
19	Address for correspondence: Marcus Panning, Institute of Virology, University Medical			
20	Centre Freiburg, Hermann-Herder-Str. 11, 79104 Freiburg, Germany; email:			
21	marcus.panning@uniklinik-freiburg.de, Fon: +49 761 203 6610, Fax: +49 761 203 6603			
22				

23 Keywords: SARS-CoV-2, RT-PCR, minipools, surveillance, laboratory

24 Abstract (50 words)

25	We report a laboratory-based surveillance for SARS-CoV-2 using minipools of respiratory
26	samples submitted for routine diagnostics. We tested a total of 70 minipools resembling 700
27	samples shortly before the upsurge of cases in Germany. We identified one SARS-CoV-2
28	positive patient. Our approach proved its concept, is easily adaptable and resource-saving.
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	

44 **Text (word count 1,158)**

45	As of 11 March 2020, WHO declared COVID-19 a pandemic (1). Early case detection
46	is crucial to contain the pandemic and symptom-based case definitions have been set up in
47	many countries worldwide. However, there is evidence that transmission chains can be
48	initiated by asymptomatic cases or only mildly diseased COVID-19 patients (2). These cases
49	will be missed by currently recommended symptom-based case definitions and may lead to
50	unrecognized local spread, which has been seen in Italy, Iran and more recently in parts of the
51	US. One of the biggest challenges and unresolved issues for public health is the rapid
52	identification of SARS-CoV-2 transmission chains within the general population and
53	ultimately in hospitals.
54	Here we propose an <i>ad hoc</i> laboratory-based surveillance approach for SARS-CoV-2 which
55	might help to identify unrecognized spread in an efficient, resource-saving and cost effective
56	manner. It is based upon minipool (MP) testing of nucleic acid preparations of respiratory
57	samples submitted to laboratories for routine diagnostics.
5 0	
38	The study
59	The workflow comprises individual nucleic acid (NA) extraction of respiratory
60	samples, pooling of extracted NA samples in batches of 10 and SARS-CoV-2 specific real-
61	time RT-PCR. In a first step, we analyzed the impact of minipool (MP) testing in batches of
62	10 samples per pool. Nucleic acid was extracted from 200 µl respiratory specimen
63	(pharyngeal swabs in viral transport medium, sputum, broncho-alveolar lavage fluid) using
64	the MinElute Virus kit (Qiagen, Hilden, Germany) on the QIAcube system as recommended.
65	Elution was done in a volume of 100 μ l. For setting up MP, 5 μ l of each individual NA
66	preparation was combined in pools of 10 (dilution factor of 10). We retrieved 40 left-over NA
67	preparations of respiratory samples representing a variety of non-SARS-CoV-2 viruses from

68	our local biobank in Freiburg and set up MP. We tested four MP using the same RT-PCR as
69	for individual patient testing as described (3). We were able to detect all viral pathogens
70	which tested positive in individual RT-PCR (Table 1). To exclude possible unspecific
71	reactions of the MP procedure these MP were also tested using the SARS-CoV-2 specific
72	real-time RT-PCR as described below and no unspecific reactions were observed.
73	To determine the analytical sensitivity of the MP approach, we used in vitro-
74	transcribed RNA standards for the E gene obtained by the European virus archive global
75	(EVAg), https://www.european-virus-archive.com, and the SARS-CoV-2 E gene RT-PCR
76	assay as described (4). RT-PCR was done on an ABI 7500 instrument (Applied Biosystems,
77	Weiterstadt, Germany). We spiked different in vitro-transcribed RNA concentrations in stored
78	NA preparations of respiratory samples from 2019 and established MP. Replicate testing was
79	done to determine the limit of detection (LOD) as described (4). The LOD for the MP
80	approach was 48 copies per reaction (95% confidence interval: 33 – 184) (Figure 1). We used
81	NA preparations from three actual SARS-CoV-2 cases in Freiburg (containing $4x10^4$
82	copies/ml; $3.2x10^7$ copies/ml; $1.6x10^7$ copies/ml, respectively) and set up three MP each
83	containing one SARS-CoV-2 positive NA preparation and retested these samples. Except for
84	the MP containing the low concentrated sample both other MP tested positive.
85	Finally, we prospectively analyzed 42 MP comprising 420 samples using the SARS-
86	CoV-2 E gene assay. We used all available NA samples which had been sent for routine
87	diagnostics to the Institute of Virology in Freiburg excluding samples with a specific request
88	for SARS-CoV-2 diagnostics from 17.02.2020 to 10.03.2020 (Figure 2). One out of 42 MP
89	tested positive. The MP was resolved and individual testing confirmed SARS-CoV-2
90	infection in one individual patient.
91	We distributed the workflow within an informal network of 5 German laboratories

92 (Table 2). All sites are tertiary care centers with a total of 1.600 (site A), 1.300 (site B), 1.400

93	(site C), 840 beds (site D), and 1.500 (site E), respectively. Invited laboratories rapidly
94	adopted the MP screening strategy and a total of 70 MP were tested from 17.02.2020-
95	10.03.2020 (Figure 2). At sites B to E all MP tested SARS-CoV-2 negative. Of note, site B
96	provided another 4 MP artificially spiked with SARS-CoV-2 positive NA samples from actual
97	cases to further validate the procedure. The Ct-values of SARS-CoV-2 RT-PCR in individual
98	patient samples were 26, 26, 15, and 35, respectively. All artificially spiked MP tested SARS-
99	CoV-2 positive and Ct-values were 29, 29, 18, and 38 indicating a dilution factor of 10 as
100	expected.

101 Conclusions

102 We report a diagnostic workflow for the laboratory-based surveillance of SARS-CoV-103 2 in a rapid and cost effective manner. Shortly after the identification of SARS-CoV-2 104 specific real-time RT-PCR protocols were set up and have been distributed worldwide (4, 5). 105 The availability of rapid and reliable diagnostics for early case detection is instrumental in an 106 outbreak scenario (6). From a public health perspective an easy to establish and cost effective 107 laboratory-based screening strategy may assist in rapid case detection and ultimately in a 108 better understanding of this epidemic (7). Technically, this can be done in parallel using 109 samples from routine diagnostics which are subsequently tested for SARS-CoV-2 RNA (8). 110 However, with the circulation of influenza cases across Europe merging with the upsurge of 111 SARS-CoV-2 many laboratories may lack the capacity and resources to perform additional 112 single patient sample testing for SARS-CoV-2. In addition, a shortage of PCR reagents has 113 become an issue of concern as huge numbers of additional SARS-CoV-2 molecular tests are 114 performed globally in a relatively short period of time. To minimize work load, resources and 115 costs a pooling approach of nucleic acid extractions might be considered. We used the assay 116 described by Corman et al. and were able to demonstrate an almost exactly 10-fold higher 117 LOD which is due to MP related dilution factor of 10 (4). Data from China showed SARS-

CoV-2 RNA concentrations in the range of 1.5×10^4 to 1.5×10^7 copies per milliliter giving rise 118 119 to the notion that the MP procedure will be sensitive enough for most clinical samples (9). 120 However, at the moment there is a lack of comprehensive information on viral RNA 121 concentrations in mildly diseased or asymptomatic cases. Critically, we were not able to 122 detect one low concentrated samples diluted into a MP, which was close to the LOD of the 123 pooling procedure. 124 Networks are paramount for an efficient response to emerging infections and we aimed to 125 provide an easy to implement workflow (4, 10). We set up an informal network and were able 126 to test a total of 70 MP covering different geographic regions of Germany. In perspective, this 127 approach can be set up rather easily e. g. by public health laboratories, can be done on a daily 128 basis and at reduced costs compared to individual patient testing. It could allow for 129 longitudinally monitoring the effectiveness of contact reduction measures at the population 130 level and early detection of epidemic waves. 131 In light of an evolving SARS-CoV-2 epidemic and the possibility of unrecognized spread 132 within the population we propose a rapid and straightforward screening strategy for SARS-133 CoV-2. This approach proved its principle and might assist public health laboratories in 134 Europe and elsewhere to rapidly detect SARS-CoV-2 cases which might otherwise remain 135 undetected. 136 137 138 139 140 141 142

143 Acknowledgement

- 144 We are grateful to Claudia Ehret, Monika Häffner, Verena Schillinger and the team in
- 145 Freiburg and the entire molecular diagnostic teams in Bonn, Frankfurt, Leipzig, and
- 146 Regensburg for expert technical assistance.
- 147

148 **Ethical considerations**

- 149 All samples have been submitted for routine patient care and diagnostics. Ethical approval for
- this study was not required since all activities are according to legal provisions defined by the
- 151 German Infection Protection Act (IfSG). Written informed consent has been obtained by each
- 152 patient. All data used in the current study was anonymized prior to being obtained by the
- authors.
- 154

155 Data availability

- 156 The data that support the findings of this study are available from the corresponding
- 157 author upon reasonable request.
- 158
- 159
- 160
- 161
- 162
- 163
- 164

165

166

- 167
- 168

169 **References**

- World Health Organization. Director-General's opening remarks at the media briefing
 on COVID-19 11 March 2020.
- 172 2. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial undocumented
- 173 infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2). Science.
- 174 2020.
- Huzly D, Korn K, Bierbaum S, Eberle B, Falcone V, Knoll A, et al. Influenza A virus
 drift variants reduced the detection sensitivity of a commercial multiplex nucleic acid
 amplification assay in the season 2014/15. Arch Virol. 2016;161(9):2417-23.
- 178 4. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection
- 179 of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3).
- 180 5. Reusken C, Broberg EK, Haagmans B, Meijer A, Corman VM, Papa A, et al.
- 181 Laboratory readiness and response for novel coronavirus (2019-nCoV) in expert laboratories
- in 30 EU/EEA countries, January 2020. Euro Surveill. 2020;25(6).
- 183 6. Johnson HC, Gossner CM, Colzani E, Kinsman J, Alexakis L, Beauté J, et al. Potential
- scenarios for the progression of a COVID-19 epidemic in the European Union and the
- 185 European Economic Area, March 2020. Euro Surveill. 2020;25(9).
- 186 7. Lipsitch M, Swerdlow DL, Finelli L. Defining the Epidemiology of Covid-19 187 Studies Needed. N Engl J Med. 2020.
- 188 8. Bordi L, Nicastri E, Scorzolini L, Di Caro A, Capobianchi MR, Castilletti C, et al.
- 189 Differential diagnosis of illness in patients under investigation for the novel coronavirus
- 190 (SARS-CoV-2), Italy, February 2020. Euro Surveill. 2020;25(8).
- 191 9. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 Viral Load
- 192 in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020.
- 193 10. Panning M, Eickmann M, Landt O, Monazahian M, Olschlager S, Baumgarte S, et al.
- 194 Detection of influenza A(H1N1)v virus by real-time RT-PCR. Euro Surveill. 2009;14(36).

195 **Table 1**: Detection of respiratory viruses in samples using individual RT-PCR and in four

196 minipools of 10 individual samples (A1 – A4), Freiburg, Germany, December 2019.

Patient sample	Pathogen	Ct-value (Individual patient analysis)	Minipool	Pathogen	Ct-value (Minipool analysis)
1	Influenza B virus	29		Influenza B virus	25
2	negative			negative	
3	negative			negative	
4	negative			negative	
5	negative			negative	
6	negative		AI	negative	
7	negative			negative	
8	negative			negative	
9	negative			negative	
10	negative			negative	
11	negative			negative	
12	RSV	25		RSV	29
13	negative			negative	
14	negative			negative	
15	Influenza A virus	33	A.2	Influenza A virus	34
16	negative		AZ	negative	
17	negative			negative	
18	negative			negative	
19	negative			negative	
20	negative			negative	
21	negative			negative	
22	Rhinovirus, HMPV	24, 25		Rhinovirus, HMPV	31, 30
23	negative			negative	
24	Adenovirus	25		Adenovirus	29
25	negative		4.2	negative	
26	negative		AS	negative	
27	negative			negative	
28	RSV	32		RSV	35
29	Negative			negative	
30	negative			negative	
31	negative			negative	
32	RSV	34		RSV	>35
33	Influenza A virus	37		Influenza A virus	33
34	negative			negative	
35	Influenza A virus	32		Influenza A virus	29
36	negative		A4	negative	
37	negative			negative	
38	negative			negative	
39	negative			negative	
40	HMPV	32		HMPV	34

197 **Table 2:** Number of minipools tested for SARS-CoV-2 RNA at five different sites, Germany,

198 February – March 2020 (n=60).

	Laboratory site	Minipools tested (n=)	Individual samples	SARS-CoV-2 RT-PCR
	A (Froiburg)	12	420	
	A (Treiburg)	42	420	1
		o o	100	0
	C (Leipzig)	9	90	0
	D (Regensburg)	8	80	0
	E (Frankfurt)	5	70	0
	Total	70	700	0
199				
1))				
200				
200				
• • • •				
201				
202				
202				
203				
203				
204				
204				
• • •				
205				
206				
207				
207				
200				
200				
200				
209				
210				
211				
212				
<i>L</i> I <i>L</i>				
010				
213				

214 Legends to the figures

- 215 Figure 1: Probit analysis of SARS-CoV-2 RNA detection rate (y axes) in relation to viral
- 216 RNA concentration at different copy numbers per reaction (x axes).

218 **Figure 2:** Number of minipools tested by date at five sites in Germany, February-March

220 *: First SARS-CoV-2 RNA positive minipool detected