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Abstract:

Taiwan experienced two waves of imported cases of coronavirus disease 2019 (COVID-19), first
from Chinain January to late February, followed by those from other countries starting in early
March. Additionally, several cases could not be traced to any imported cases and were suspected
as sporadic local transmission. Twelve full viral genomes were determined in this study by
[llumina sequencing either from virusisolates or directly from specimens, among which 5
originated from clustered infections. Phylogenetic tree analysis reveal ed that these sequences
were in different clades, indicating that no mgjor strain has been circulating in Taiwan. A
deletion in open reading frame 8 was found in one isolate. Only a 4-nucleotide difference was

observed among the 5 genomes from clustered infections.
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I ntroduction

A novel coronavirus emerged from Wuhan, Hubei province in Chinain December 2019
(1). Thisvirus has been designated as severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), and the disease is named as coronavirus disease 2019 (COVID-19). The World Health
Organization declared this disease a Public Health Emergency of International Concern on
January 30, 2020. As of March 26, 2020, the outbreak of COVID-19 hasresulted in 462,684
confirmed cases and 20,834 deaths worldwide (2), and 252 confirmed cases and two deaths were
reported in Taiwan (3).

There have been two waves of COVID-19 casesin Taiwan. The first occurred from late
January to the end of February, with most cases imported from China, either by Chinese tourists
or Taiwanese businessmen returning for Chinese New Y ear. This wave was smaller than the
second wave. The second wave started in early March, during which the disease occurred largely
in Taiwanese tourists, business travelers, or students returning from other countries. Although
most of these cases were traced to their foreign origins, some small and clustered infections were
suspected to have been acquired by local transmission.

In this study, we performed virus culture and full-genome sequencing of isolates or
clinical specimens of SARS-CoV-2. We compared the genomes obtained from Taiwanese
samples to those of other strainsin a database to understand their evolutionary trajectory. An
open reading frame 8 (ORF8) deletion was found in one strain. Moreover, we assessed the
number of nucleotide substitutions that may have accumulated in clustered infections during a
short period of time.

Methods

Specimen Collection
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Infection of patients by COVID-19 was confirmed by real-time reverse-transcriptase
polymerase chain-reaction (RT-PCR) according to the guidelines of the Taiwan Centers for
Disease Control (CDC; https://www.cdc.gov.tw/En), and all nasopharyngeal (NP), throat (TH)
swab, and sputum (SP) samples were maintained in universal transport medium for further

anaysis.

Cdll Cultureand Virus | solation

Vero-E6 (ATCC, Manassas, VA, USA) and MK-2 (ATCC) cellswere maintained in
Modified Eagle Medium (MEM, Thermo Fisher Scientific, Waltham, MA, USA) supplemented
with 10% fetal bovine serum and 1x penicillin-streptomycin at 37°C in the presence of 5% CO,.
Toisolate the virus, all procedures following the laboratory biosafety guidelines of the Taiwan
CDC were conducted in abiosafety Level-3 facility. Cells grown to 80-90% confluency inaT-
25 flask were inoculated with 500 uL of virus solution, which was prepared by diluting 100 uL
of specimen samples with 1.5 mL of sample pretreatment medium consisting of MEM and 2x
penicillin-streptomycin solution, followed by incubation at 37°C for 1 h. The absorption was
performed at 37°C for 1 h, then cells were refreshed with 5 mL virus culture medium composed
of MEM, 2% fetal bovine serum, and 1x penicillin-streptomycin solution and maintained at
37°C. Infected cells were observed daily to determine their cytopathic effect. Additionally, RT-
PCR analysis using the RNA extracted from part of the culture supernatant every two days after
inoculation was performed to monitor viral growth. We continuously observed the infected cells
until cytopathic effects occurred in more than 75% of the cells, after which the culture
supernatant was harvested.

Whole-Genome Sequencing
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101 RNA was extracted either from the culture supernatant or directly from the specimens
102  using aQIAmp viral RNA mini Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
103  instructions, except that the carrier RNA was replaced with linear acrylamide (Thermo Fisher
104  Scientific) asthe co-precipitant. The amount of viral RNA was evaluated by quantitative RT-
105  PCR to examinethe Ct value of the viral E gene. For RNAs showing a high Ct value, we used
106  the Ovation RNA-Seq System V2 (Nugen Technologies, San Carlos, CA, USA) to synthesize
107  cDNA which was further processed into alibrary using the Celero DNA-Seq System (Nugen
108  Technologies). Other samples with lower Ct values were used for library preparation by using
109  the Trio RNA-Seq kit (Nugen Technologies). Sequencing was performed on an Illumina MiSeq
110  System (San Diego, CA, USA) with paired-end reads. More than 0.75 and 2.5 Gb of raw data

111  were generated for samples from viral isolates and clinical specimens, respectively.

112 Next-generation Sequencing Data Analysis Pipeline

113 We first trimmed the raw data by removing low-quality and short reads using

114  Trimmomatic (version 0.39) (4). Next, quality reads were mapped to the human reference

115  genome to remove host sequences using HISATZ2 (version 2.1.0) (5). SPAdes (version 3.14.0) (6)
116  was used to perform de novo assembly for constructing contig sequences. Fourth, the BLASTN
117  tool was used to search the assembled contigs against the nucleotide sequence (NT) database of
118  the National Center for Biotechnology Information (NCBI). Viral candidates were identified

119  using thereported top BLASTN hits for each of the queried contig sequences. Finally, we used
120  aniterative mapping approach (7) to increase the read depth and coverage of quality contigsto

121 obtain the whole genome.

122 Phylogenetic and Sequence Analysis
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123 Twelve whole genomes were assembled by using our pipeline, including three genomes
124  from specimens and nine genomes from isolates, which were deposited in the Global Initiative

125  on Sharing All Influenza Data (GISAID, https://www.gisaid.org/) with accession numbers

126  EPI_ISL_411915 EPI_ISL_417518, EPI_ISL_415741-3, and EP_ISL_417519-25, according
127 to CGMH-CGU No. 1-12. We further downloaded all complete and high-coverage genomes

128  from GISAID as of March 14, 2020, and obtained 335 sequences after removing those with

129  sequences gaps or ambiguous nucleotides. One reference strain (accession number MN908947.3)
130  was downloaded from GenBank (NCBI). In total 348 sequences were aligned usng MAFFT

131 (version 7.427) (8) for further analyses. The phylogenetic tree was inferred using RAXML

132 (version 8.2.12) (9) under the GTRGAMMA model with a bootstrap value of 1000 to investigate

133 the genomic relationships.

134  Results

135  Phylogenetic Tree of Taiwanese and Global Strains

136 Twelve complete genomes from three specimens (CGMH-CGU No. 1, 7, and 8) and nine
137  isolates (No. 2—6 and 9-12) were uploaded to GISAID. Table 1 shows their next-generation

138  sequencing (NGS) coverage and depth. All average depths were greater than 10,000, except for
139 CGMH-CGU-04 and -08 which showed values of 446.0 and 53.0, respectively. Table 1 also

140  includestwo earlier strains, hCoV-19/Taiwan/2/2020 and hCoV-19/Taiwan/3/2020, previously

141 submitted by Taiwan CDC.

142 The phylogenetic tree revealed that the SARS-CoV-2 viral genomes from Taiwan
143 (highlighted) werein different clades (Figure 1). Viral genomes of No. 3—7 were from clustered

144  infections, together with No. 8 (a case originating from the United Kingdom), and some from
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145  Australia (AUS) and New Zealand (NZ) in the yellow clade. Three patientswith AUS/NZ
146  infectionshad atravel history to Iran. Thisfigure also shows eight additional Taiwanese isolates
147  (highlighted), which appeared in distinct lineages, indicating that no single dominant strain has

148  been circulating in Taiwan.

149 The two earliest sequencesin this yellow clade were dated to mid-January from Wuhan
150  and Shangdong, which may have been the origin of the yellow clade. CGMH-CGU-03 had no
151  travel history and the specimen was collected nearly 6 weeks after the two Chinese isolates were
152  collected. All other virusesin this clade were also dated after February 26. Separated by thislong
153  duration from the two Chinese strainsin mid-January, it is unlikely the later strains were directly
154  linked to the Wuhan strains. Although some AUS/NZ casesin this clade had atravel history to

155 Iran, the transmission route of these five Talwanese cases remains unclear.

156  ORF8 Deletion Revealed by NGS Data Analysis

157 Figure 2A shows the NGS coverage and depth of CGMH-CGU-01. This strain was

158  identical to the WuHan-1 strain (accession number MN908947.3). The most divergent strain

159  among the 14 Taiwanese sequences was CGMH-CGU-04 which showed nine nucleotide changes
160  (resulting in five amino acid changes) in the coding region compared to CGMH-CGU-01.

161  Notably, we detected a deletion in a 382-nucleotide (nt) sequence at genomic positions 27,848—
162 28,229 in CGMH-CGU-02. Figure 2B shows the coverage and depth of this strain. According to
163  thereference strain (WuHan-1), the genomic position of ORF8 was 27,894-28,259 (Figure 2C).
164  This 382-nt deletion begins upstream of ORF8 to nearly the end of ORF8. We further performed
165  NGS using a specimen isolated from the same patient. Reads yielding this 382-nt deletion were

166  confirmed in original specimen, although only the partial genome was assembled (Table 1).
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167  Within Four Nucleotide Changes among Virus | solates from Clustered Patients

168 COVID-19 has been reported to be transmitted through close contact among confirmed
169  cases. Regardless of whether individuals are symptomatic, their family members and co-workers
170  areat risk of becoming infected. Viral genomes No. 4—7 were from patients who had contact

171 with anindex patient (CGMH-CGU-03). To identify the number of nucleotides changed in the
172 vira genome during clustered infections, we determined the viral full genomes either from viral
173 isolates (No. 3-6) or specimens (No. 7) of these 5 cases. Although the genomes of samples No.
174 3,5, and 6 wereidentical, they differed from that of No. 4 at 3 ORF1ab nucleotide positions

175  A4788G, C10809T, and G21055A; the third position showed a synonymous change with a

176  G7019S amino acid substitution (Figure 3). Number 7 showed only one nucleotide difference
177 from No. 3, 5, and 6. These results suggest that only 4 nucleotide changes occurred in the viral

178  genome among cases in clustered infections.

179  Discussion

180 Twelve full viral genomes were resolved in this study either from virusisolates or

181  directly from specimens. Phylogenetic tree analysis showed that these sequences werein

182  different clades, indicating that no mgjor strain is currently circulating in Taiwan. A deletionin
183  ORF8 was found in oneisolate, which has also been detected in patientsin Singapore (10). Four

184  or fewer nucleotide differences were observed in the 5 genomes from clustered infections.

185 We detected a 382-nt deletion covering nearly the entire open reading frame 8 of the
186 CGMH-CGU-2 isolate obtained from a patient who returned from Wuhan in January. A similar

187  observation was reported for eight hospitalized patients in Singapore. During the SARS-CoV
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188  outbreak in 2003, deletions in ORF8 were observed, which were associated with a reduced

189  ahility for virusreplication in human cells (11).

190 RNA viruses show variationsin their genomes due to nucleotide substitutions generated
191 by thelow fidelity of RNA-dependent RNA polymerase during replication. The genome

192  variation of these virusesis thought to facilitate successful adaption to the environment of

193  various hosts. However, previous studies showed that the mutation rates of RNA virusesvary in
194  different viruses and depend on the viral transmission modes (12). Sequence analysis of SARS-
195 CoV-2isolated from 5 patients from February 26 to March 9, 2020 in CGMH Taiwan reveaed
196  only 4 mutationsin their 29,903-nt genomic RNA. This suggests that the nucleotide substitution
197 rateiscontrolled during viral RNA replication. The ngp14 exoribonuclease encoded by severa
198  coronaviruses plays arolein proofreading during genome replication (13, 14); further studies are

199  required to investigate the function of SARS-CoV-2 nspl4 in replication fidelity.

200 Timely sharing full genomes of SASR-CoV-2 from different locationsis important for
201 monitoring genetic changes in the virus which may be associated with viral spreading and

202 clinical manifestations. We determined the sequences of SARS-CoV-2 in Taiwan in different
203  clades. Moreover, four or fewer nucleotide changesin viral genomes from five casesin clustered
204  infectionsindicated that sequencing isa useful tool for tracing the source of infection for this

205  typeof RNA virus.
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252  Table 1. Specimen collection, culture, and sequencing
Coverage and
CGMH-CGU Collection Viral culture Source” (Ct value of E avg. depth of
ID/Strain name” date (day) gene) SARS-CoV-2
1 2020-01-25 - SP (17.01) 99.9%; 1157.4
2 2020-02-04 14 MK2 (10.0) 100.0%; 4735.8
2 2020-02-04 - NP (29.07) 80.0%; 3.3
3 2020-02-26 10 MK2 (14.25) 100.0%; 18,299.0
4 2020-02-27 4 Vero E6 (26.15) 99.2%; 446.0
5 2020-02-27 4 MK2 (12.78) 100.0%; 26,521.5
6 2020-03-05 5 MK2 (12.82) 100.0%; 13,029.9
7 2020-03-09 - SP (22.98) 99.9%; 53.0
8 2020-03-10 - NP (23.18) 100.0%; 10,412.2
9 2020-03-13 3 MK2 (10.89) 100.0%; 30,044.7
10 2020-03-13 3 MK2 (10.45) 100.0%; 29,614.0
11 2020-03-14 3 Vero E6 (11.08) 100.0%; 24,326.9
12 2020-03-14 3 MK2 (10.11) 100.0%; 34,422.0
TW/2 2020-01-23 - - -
TW/3 2020-01-24 - - -
253
254 " Sources from sputum (SP), nasopharyngeal swab (NP), and throat swab (TH) specimens, or
255  supernatant on MK2 and Vero EG6 cdlls
256 Twelve GISAID accession numbers of CGMH-CGU No. 1-12 are EPl_ISL_411915,

257

EPI_ISL_417518, EPI_ISL_415741-3, and EPI_ISL_417519 —25. The other two Taiwanese
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258  strains (TW/2 and TW/3) were previously submitted to GISAID by Taiwan CDC, with accession

259 numbers (EPI_ISL_406031 and EPI_ISL_411926, respectively).

260
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261  Figurelegends

262  Figure 1. Phylogenetic tree of Taiwanese and global strains. Phylogeny was inferred using a
263  maximum likelihood approach. Taiwanese strains are highlighted. Strainsisolated from different
264  locations and clades with specific variations are marked in different colors. Significant bootstrap

265  support values greater than 70% are shown.

266  Figure 2. ORF8 deletion in SARS-CoV-2 genome. A and B) NGS depths of CGMH-CGU-01
267 and CGMH-CGU-02 and C) genomic regions of ORF8 and ORF8 deletion according to the

268  reference strain are shown.

269  Figure 3. Nucleotide and amino acid variationsin SARS-CoV-2 genomes. Compared to

270 CGMH-CGU-01 (identical to the reference strain), nucleotide and amino acid variations in the
271 SARS-CoV-2 genomes from Taiwanese strains are shown. Synonymous and nonsynonymous
272 mutations were marked by blue and red color, respectively. Amino acid changes were annotated

273 in parentheses. ORF8 deletion was marked in gray.

274
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