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COVID-19, ACE2, and the cardiovascular consequences
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South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the
cardiovascular consequences. Am J Physiol Heart Circ Physiol 318:
H1084–H1090, 2020. First published March 31, 2020; doi:10.1152/
ajpheart.00217.2020.—The novel SARS coronavirus SARS-CoV-2
pandemic may be particularly deleterious to patients with underlying
cardiovascular disease (CVD). The mechanism for SARS-CoV-2
infection is the requisite binding of the virus to the membrane-bound
form of angiotensin-converting enzyme 2 (ACE2) and internalization
of the complex by the host cell. Recognition that ACE2 is the
coreceptor for the coronavirus has prompted new therapeutic ap-
proaches to block the enzyme or reduce its expression to prevent the
cellular entry and SARS-CoV-2 infection in tissues that express
ACE2 including lung, heart, kidney, brain, and gut. ACE2, however,
is a key enzymatic component of the renin-angiotensin-aldosterone
system (RAAS); ACE2 degrades ANG II, a peptide with multiple
actions that promote CVD, and generates Ang-(1–7), which antago-
nizes the effects of ANG II. Moreover, experimental evidence sug-
gests that RAAS blockade by ACE inhibitors, ANG II type 1 receptor
antagonists, and mineralocorticoid antagonists, as well as statins,
enhance ACE2 which, in part, contributes to the benefit of these
regimens. In lieu of the fact that many older patients with hyperten-
sion or other CVDs are routinely treated with RAAS blockers and
statins, new clinical concerns have developed regarding whether these
patients are at greater risk for SARS-CoV-2 infection, whether RAAS
and statin therapy should be discontinued, and the potential conse-
quences of RAAS blockade to COVID-19-related pathologies such as
acute and chronic respiratory disease. The current perspective criti-
cally examines the evidence for ACE2 regulation by RAAS blockade
and statins, the cardiovascular benefits of ACE2, and whether ACE2
blockade is a viable approach to attenuate COVID-19.
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The rapid and progressive spread of the novel SARS corona-
virus SARS-CoV-2 pandemic that causes coronavirus-induced
disease (COVID-19) has profoundly affected the health of
thousands of individuals, strained national health care systems,
and significantly impacted global economic stability. The char-
acteristics of SARS-CoV-2 that particularly distinguish this
disease from influenza are a higher transmission rate combined
with a greater risk of mortality from COVID-19 primarily due
to acute respiratory distress syndrome (ARDS) (16). While the
major cause of mortality from COVID-19, particularly in older
adults and those with compromised immune systems, is respi-
ratory failure, a number of patients exhibit cardiovascular-
related pathologies including congestive heart failure (CHF)
and brain medullary cardiorespiratory dysfunction (6, 16, 32,
33, 55, 60). The cardiovascular complications and the focus on
ACE2 as the coreceptor for SARS-CoV-2, as well as the

apparent confusion in the literature between the ACE and
ACE2 components of the renin-angiotensin-aldosterone sys-
tem (RAAS), has prompted the current perspective.

Viral infections are dependent on cellular entry of the virus
that uses the cellular machinery of the host to replicate multiple
viral copies which are subsequently shed by the host cell.
Coronaviruses such as SARS-CoV-2 and SARS-CoV-1 are
now known to use the host protein angiotensin-converting
enzyme-2 (ACE2, EC 3.4.17.23) as a coreceptor to gain intra-
cellular entry into the lungs and brain (17, 30, 52, 53, 62).
ACE2 is a membrane-bound peptidase with the majority of the
protein that comprises the NH2-terminal peptide domain in-
cluding the catalytic site oriented extracellularly (3.4). ACE2 is
expressed in essentially all tissues, with greatest activity in the
ileum and kidney followed by adipose tissue, heart, brain stem,
lung, vasculature, stomach, liver, and nasal and oral mucosa
based on activity data in the mouse that generally parallel
ACE2 mRNA levels in humans (13, 53, 62), although discrep-
ancies between mRNA levels and ACE2 activity or protein
expression are evident (10, 11, 47). ACE2 has access to
peptides in the circulation (both maternal and fetal), renal
tubular fluid, cerebrospinal fluid, interstitial fluid, and bron-
chial fluid. Consensus of evidence from various studies favors
a primary role of ACE2 to efficiently degrade ANG II to
Ang-(1–7). ACE2 is not an aminopeptidase as recently de-
scribed by Zheng et al. (60) as its catalytic action that removes
the COOH-terminal phenylalanine residue of ANG II charac-
terizes ACE2 as a carboxypeptidase. This single catalytic event
reduces ANG II, the major effector of the RAAS that promotes
hypertension (HTN) in part by attenuating baroreceptor sensi-
tivity (BRS) for control of heart rate and promoting vasocon-
striction, sodium retention, oxidative stress, inflammation, and
fibrosis, as well as increases the bioactive peptide Ang-(1–7)
that opposes the ANG II-ANG II type 1 (AT1) receptor axis
through its anti-inflammatory and antifibrotic actions, as well
as enhancing BRS (Fig. 1). Thus, the ACE2 peptidase pathway
constitutes a key inflexion point in the processing pathway of
the RAAS. Consequently, the loss of ACE2 may shift the
system to an overall higher ANG II and lower Ang-(1–7) tone
(4, 5, 39). In contrast, ACE forms ANG II and degrades
Ang-(1–7), which produces the opposite processing of ACE2
and promotes an increase in blood pressure, inflammation, and
fibrosis (Fig. 1). ACE2 hydrolyzes other peptides including
apelin and des-arginine bradykinin (des-Arg1-BK): apelin ex-
hibits cardioprotective actions (48), while des-Arg1-BK pro-
motes inflammation via stimulation of the B1 receptor (44).
The extent that these peptides functionally contribute to the
effects of altered ACE2 activity is not well established, al-
though increased levels of des-Arg1-BK enhancing pulmonary
inflammation would be deleterious (44).Correspondence: M. C. Chappell (e-mail: mchappel@wakehealth.edu).
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As to the mechanism for the intracellular entry by SARS-
CoV-2 and SARS-CoV, the viral coat expresses a protein
termed SPIKE (S protein) that contains a receptor-binding
region that binds to the extracellular domain of ACE2 with
high affinity of 15 nM (50). Cleavage of the S protein along
dibasic arginine sites by the host protease TMPRSS2 to gen-
erate the S1 and S2 subunits is a critical step for S2-induced
membrane fusion and viral internalization by endocytosis with
ACE2 in the pulmonary epithelium (17, 21). The S protein is
a not a substrate for ACE2, nor does SARS-CoV-2 bind to
ACE. Wrapp and colleagues (52) suggest the greater virulence
of SARS-CoV-2 may reflect that the S1 protein exhibits mark-
edly higher affinity for ACE2 as compared with that of SARS-
CoV. ACE2 internalization by SARS-CoV-2 would potentially
result in the loss of ACE2 at the cell surface and voids a key
pathway for the cell to degrade ANG II and generate the
CVD-protective Ang-(1–7). Indeed, an increase in the overall
ratio of ANG II:Ang-(1–7) following ACE2 internalization
may exacerbate the pulmonary tissue damage initially pro-
voked by SARS-CoV-2. In turn, the reduction in ACE2 may
contribute to chronic loss of pulmonary function and increased
tissue fibrosis due to COVID-19.

The extent to which SARS-CoV-2 infects the heart or other
cardiovascular tissues once it enters the circulation and poten-
tially contributes to the myocarditis associated with COVID-19
is unknown (16, 18, 55). In fact, the impact of SARS-CoV-2 on
the cardiovascular system apart from the lung is not estab-
lished. Cardiovascular tissues or cells that express ACE2 are
potentially at risk for SARS-CoV-2 infection; however, other
factors including expression of the host proteases that prime
the virus are required for infection as well (17, 21). In patients
with underlying CVD, the loss of ACE2 by SARS-CoV-2-

induced internalization would be predicted to exacerbate CVD
acutely and perhaps long term (56). ACE2 is the primary route
of ANG II metabolism and Ang-(1–7) generation in the heart,
and the loss of this carboxypeptidase may compromise cardiac
function apart from or in addition to viral infection (3, 12, 24,
38, 40, 43, 56). ACE2 is highly expressed in the tubular
epithelium of the kidney, and the loss of the enzyme may
contribute to altered sodium transport leading to an increase in
blood volume and pressure, as well as both acute and chronic
effects on kidney injury (4, 5, 10, 22, 24, 43, 50). On the basis
of studies on SARS-CoV and recent reports of the presence of
viral load in the brain stem with SARS-CoV-2, a similar
transfer of virus to the brain by ACE2 may occur via internal-
ization and transport by various cranial nerves (32, 35). Cer-
tainly, neuronal cell death as a result of viral infection would
disrupt these vital functions (32). In addition, loss of ACE2 in
brain cardiovascular centers short of neuronal death may im-
pair proper autonomic nervous system regulation of blood
pressure and potentially respiration (52). The loss of ACE2 in
the brain stem may facilitate an increase in sympathetic drive,
alterations in the baroreflex, and exacerbation of hypertension
(1, 8, 54). Reduced expression of ACE2 in the vasculature may
also promote endothelial dysfunction and inflammation and
exacerbate existing atherosclerosis and diabetes (9, 34, 42, 45,
56, 59). A loss of pulmonary ACE2 may exacerbate hyperten-
sion, respiratory distress, and fibrosis post-viral infection (20,
30, 44). Cell surface diminution of ACE2 may contribute to
widespread inflammation observed with COVID-19. We note
that the ACE2 protein collectrin that facilitates amino acid
transport and is expressed in multiple tissues (kidney, brain,
vasculature, and pancreas) lacks the extracellular peptide do-
main of ACE2 and is not expected to directly bind and enable
internalization of SARS-CoV-2 (7).

In contrast to ACE, endogenous circulating levels of soluble
ACE2 are generally quite low to nondetectable and would not
adequately sequester SARS-CoV-2 in the circulation to prevent
viral dissemination (3). While a clinical trial on infusion of
recombinant ACE2 was recently proposed and subsequently
withdrawn (NCT04287686), the extent that soluble ACE2
would compete for SARS-CoV-2 binding to reduce viremia
infection and alleviate tissue injury is unknown. This approach
would likely have little impact on viral infection via the
respiratory system or the gut, although an increase in circulat-
ing ACE2 to augment the Ang-(1–7):ANG II ratio may im-
prove SARS-CoV-2-induced organ injury such as ARDS and
attenuate subsequent viral infection of other tissues. However,
ACE2 infusion may decrease circulating ANG II and increase
Ang-(1–7) levels to the extent that blood pressure dysregula-
tion leading to relative hypotension could occur in patients
with COVID-19 in later stages of disease including septic or
cardiogenic shock (28).

Experimental studies generally support the notion that
RAAS blockade stimulates ACE2 expression and/or activity,
although there appear to be differential responses to AT1

receptor antagonists (ARBs) versus ACE inhibitors (ACEIs),
as well as tissue-dependent responses. In normotensive Lewis
and hypertensive mRen2.Lewis male rats, we found that the
ARB losartan increased ACE2 activity in the heart by two- to
threefold as shown in Fig. 2 (11, 22); a similar increase in
cardiac ACE2 activity (~2-fold) was reported for the ARB
eprosartan in rats with CHF (27). The ACEI lisinopril, how-
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Fig. 1. Processing and functional scheme of the renin-angiotensin system. The
protease renin converts the precursor angiotensinogen to angiotensin I (ANG
I), which is subsequently converted to ANG II by dipeptidyl carboxypeptidase
angiotensin-converting enzyme (ACE). ANG II binds to the ANG II type 1
receptor (AT1R) to stimulate inflammation, fibrosis, oxidative stress, and an
increase in blood pressure. ANG II is metabolized to ANG III and ANG IV
through various aminopeptidases (APs). ANG I and ANG II are converted to
Ang-(1–7) via endopeptidases (NEP) and the monocarboxypeptidase ACE2,
respectively. Ang-(1–7) binds to the Mas receptor (Mas-R) to exert anti-
inflammatory and antifibrotic actions, stimulate the release of nitric oxide, and
reduce blood pressure. Ang-(1–7) is metabolized to Ang-(1–5) by ACE. Major
forming and degrading pathways are depicted by solid and dashed lines,
respectively. SARS-CoV-2 binds to ACE2 to stimulate internalization of both
the virus and peptidase that may remove ACE2 from this pathway.
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ever, either failed to increase cardiac ACE2 activity (Lewis) or
stimulated to a lesser extent than losartan (mRen2) (Fig. 2),
despite similar reductions in blood pressure (11, 22) Plasma
and cardiac tissue contents of Ang-(1–7) paralleled the increase
in ACE2 activity following losartan treatment in the Lewis rats
(11). In the kidney of both strains, losartan and lisinopril
increased ACE2 activity (10, 22), although to a lesser degree
compared with the heart (Fig. 2). Burchill et al. (2) found that
the ACEI ramipril reduced cardiac ACE2 activity to the level
of the control group in a rat model of acute kidney injury
(AKI). Wang et al. (49) recently showed that various ARBs
(olmesartan, losartan, valsartan, candesartan, telmisartan, and
irbesartan) all increased ACE2 protein to a similar extent
(~2-fold) in the hearts of aorta-constricted mice. In patients
with chronic kidney disease (CKD), urinary ACE2 levels (an
index of renal tubular expression) in those treated with ACEIs
or ARBs were similar to the untreated group (36). Furthermore,
Lely et al. (31) found no effect of ACEI treatment on ACE2
protein expression in renal biopsy samples from patients with
various renal pathologies, as well as in recipients of kidney
transplant. In contrast, only patients treated with ACEI exhib-
ited an increase in intestinal ACE2 mRNA levels as compared
with those on ARBs; however, ACE2 protein or activity were
not assessed to validate the mRNA results (46).

In the brain stem of older rats, losartan treatment increased
ACE2 mRNA levels twofold; ACE2 was the primary peptidase
to generate Ang-(1–7) in this brain region (8, 14). Chronic
exercise may be another important stimulus of ACE2 in the
brain and the periphery (37). In the rostral ventrolateral me-
dulla (RVLM), an exercise regimen markedly increased ACE2

protein as compared with both the control and CHF experi-
mental groups (26). However, this raises the potential issue that
while exercise is clearly associated with improved cardiovas-
cular outcomes in chronic situations, exercise may contribute
to a greater risk of SARS-CoV-2 infection. Keidar et al. (25)
reported that the mineralocorticoid antagonist spironolactone
increased ACE2 activity fourfold in monocyte-derived macro-
phages from patients with CHF; however, spironolactone
failed to increase cardiac ACE2 significantly in experimental
CHF (27). Apart from RAAS blockade, experimental studies
reveal that statins also augment the ACE2 expression. Tikoo et
al. (45) reported an increase in ACE2 protein in both heart and
kidney (~2-fold) of atorvastatin-treated atherosclerotic rabbits
that was associated with epigenetic modifications of the ACE2
gene. Fluvastatin treatment significantly enhanced the effects
of insulin to augment cardiac ACE2 protein expression in
diabetic rats (41). To our knowledge, the influence of ARB or
ACEI treatments combined with statins on ACE2 expression
has not been established. Finally, the peroxisome proliferator-
activated receptor-� (PPAR-�) may influence ACE-2 expres-
sion as well. The PPAR-� agonist rosiglitazone increased
ACE2 protein levels twofold in the aorta of hypertensive rats
following aortic coarctation (39). Oudit and colleagues (61)
found that telmisartan, a partial PPAR-� agonist, also increased
ACE2 protein expression in aorta which was associated with
greater PPAR-� content in the spontaneously hypertensive rat.
The extent that ARBs with PPAR-� agonistic actions such as
telmisartan and irbesartan exhibit a greater effect on ACE2
expression in different tissues is unknown, although Wang et
al. (49) found no difference in the increase in cardiac ACE2

*
*

CON LOS LIS
0

20

40

60

80

100

fm
o

l/m
g

/m
in

**

**

ACE2 Activity
Heart–Lewis Heart–mRen2 

Kidney–Lewis Kidney–mRen2 
*

*

CON LOS LIS
0

20

40

60

80

100

fm
o

l/m
g

/m
in

CON LOS LIS
0

20

40

60

80

100

CON LOS LIS
0

20

40

60

80

100

Fig. 2. Influence of angiotensin II (ANG II)
type 1 receptor or angiotensin-converting en-
zyme (ACE) blockade on ACE2 activity in the
heart and kidney of normotensive Lewis and
hypertensive mRen2.Lewis rats. Chronic
blockade with losartan (LOS) increased car-
diac ACE2 activity by 3-fold in normotensive
Lewis and 2-fold hypertensive mRen2.Lewis
(mRen2) male rats. Lisinopril (LIS) treatment
had little or no effect on cardiac ACE2 activity
in these strains. Chronic LOS or LIS treatment
increased renal ACE2 activity in the Lewis
(1.3- and 1.7-fold, respectively) and mRen2
(1.3- and 1.2-fold, respectively). ACE2 activ-
ity is the amount of Ang-(1–7) converted from
ANG II in the plasma membrane fraction
(fmol Ang-(1–7)·mg protein�1·min�1) sensi-
tive to the ACE2 inhibitor MLN4760 (3). Data
are means � SE; n � 6–8. *P � 0.05 (10, 11,
22). CON, control.
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among six different ARBs that included both telmisartan and
irebesartan.

The influence of RAAS blockade on pulmonary ACE2 has
not been evaluated thoroughly, but ACEI and ARB treatment
may improve outcomes in patients with ARDS (27). In exper-
imental studies, Yuan et al. (57) reported reduced ACE2
protein in the lungs of rats subjected to chronic smoking and
that losartan treatment was beneficial but failed to increase
ACE2 in either the control or the smoking-exposed groups.
However, there are inconsistencies in the stated conclusions of
this study that are not supported by the data, as well as the
extremely high ANG II content reported in the lung tissue
(�10 �g/mg or 10 nmol/mg protein) whereby ANG II would
comprise 1% of the total protein content in lung (57). In a
model of LPS-induced ARDS, losartan improved pulmonary
function and inflammation (51). Losartan treatment was asso-
ciated with higher ACE2 activity in bronchoalveolar lavage
fluid (BALF) compared with that of the ARB-treated controls;
losartan reduced ACE2 activity by 50% in the ventilated
control group (49). Changes in ANG II and Ang-(1–7) BALF
content evaluated by HPLC-mass spectroscopy paralleled al-
terations in ACE2 activity (51). We are not aware of studies in
animals or humans that have examined the effects of ACEI on
pulmonary ACE2, and the discrepancy between ARBs and
ACEIs to augment ACE2 activity clearly requires further
evaluation. The effect of ARBs or ACEIs on the expression of
the SPIKE proteases on the host cell that facilitate binding and
entry of SARS-CoV-2 is also unknown. ARBs substantially
increase the circulating levels of ANG II arising from the
disinhibition of kidney renin release, and whether the higher
ANG II levels compete for SARS-CoV-2 binding to ACE2 is
unclear. In collaborative studies with the McCray laboratory,
we reported that the SPIKE protein from SARS-CoV did not
attenuate hydrolysis of ANG II to Ang-(1–7) by soluble ACE2,
thus it may be unlikely that ANG II or other peptide substrates
would directly interfere with SAR-CoV-2 binding and inter-
nalization (23).

Finally, our knowledge of the cardiovascular consequences
of SARS-CoV-2 infection in patients at this early point is quite
limited. Liu et al. (33) recently reported that the circulating
levels of ANG II were significantly higher in patients with
COVID-19 than those of healthy controls that would be con-
sistent with lower ACE2 activity. Moreover, plasma ANG II
content significantly correlated with both the viral load in
BALF and pulmonary function in the SARS-CoV-2 cohort
(33). Thus, as suggested by Liu and colleagues, whether a
direct ANG II ACE2 interaction occurs or changes in pulmo-
nary or cardiac function in these patients alters RAAS expres-
sion cannot be ascertained. However, this clinical study com-
prised only 12 patients, and circulating ACE2 or ACE levels
were not determined. Moreover, an increase in circulating
ANG II may reflect changes in a number of RAAS components
as opposed to solely a reduction in ACE2 activity (Fig. 1).
Plasma ANG II levels in the study of Liu et al. (33) ranged
from 100 pM in healthy controls to 500 pM in the SARS-
CoV-2 cohort [100–500 pg/ml] using an ELISA-based method
in which the patient plasma was directly assayed; these values
are 5–10-fold higher than expected ANG II levels in plasma
but are in an acceptable range particularly if the patients were
ventilated (3). In contrast, their previous study using a different
ELISA reported plasma ANG II values in control subjects of 5

nM [5,000 pg/ml] that increased up to 20 nM [20,000 pg/ml] in
patients with the influenza A H7N9N1 virus that far exceeds
accepted plasma ANG II concentrations (19). This latter study
underscores that appropriate methods to accurately quantify
ANG II, ACE2, and other RAAS component are vital to
establish the role of the RAAS in patients with COVID-19.
Biochemical approaches to assess the peptide and protein
components of the RAAS in plasma and tissues, as well as the
expected endogenous peptide values, were recently reviewed
by Chappell (3). The study of Liu et al. (33) also failed to
include blood pressure data for each patient which could
substantiate the higher circulating levels of ANG II. Patients
with more severe COVID-19 are reported to have hypokalemia
and higher blood pressure as compared with those with milder
COVID-19 that would support a role for a stimulated ANG
II-AT1 receptor axis (6). Current clinical data on the ACE2-
Ang-(1–7) pathway, however, are quite limited relative to the
experimental data, especially in regard to the effects of ACEI
and ARB. Furthermore, the existing evidence, though novel
and insightful, often comes from smaller cross-sectional ob-
servational studies with incomplete RAAS measurements that
cannot fully account for potential sources of bias and con-
founding.

There are essentially no clinical data on how ACEIs or
ARBs may impact the ACE2-Ang-(1–7) pathway in lung, heart
or brain. Thus, additional data are urgently needed on the
effects of ACEI and ARB on human pulmonary disease and
RAAS expression, particularly the response of the ACE2-Ang-
(1–7)-Mas receptor axis. Ang-(1–7) itself may potentially
serve as a novel therapeutic to treat COVID-19. In both LPS-
and acid-induced ARDS with high-stretch ventilation, Ang-
(1–7) infusion improved oxygenation, reduced the acute in-
flammatory response, and reduced subsequent tissue fibrosis
(51, 58). Clinical trials are in development to test the effects of
the ARB losartan in patients with COVID-19 (NCT04311177
and NCT04312009). Upregulation of the ACE2-Ang-(1–7)
pathway of the RAAS is well known to counter-regulate the
proinflammatory and profibrotic effects of the ACE-ANG II-
AT1 receptor axis in experimental models of HTN and CVD
(4, 5, 24, 40). Indeed, experimental studies demonstrate that
the ACE2-Ang-(1–7) pathway mediates some of the beneficial
effects of ACEI and ARB in these diseases including improved
regulation of autonomic control of blood pressure (3, 5, 40,
56), though data in humans remains limited. Experimental
evidence to date strongly suggests that ANG II may promote
acute lung injury and ARDS induced by coronaviruses, includ-
ing SARS-CoV, SARS-CoV-2/COVID-19, and possibly in
MERS-CoV (20, 30, 51).

We emphasize that further investigation into these potential
mechanisms is urgently required, now given the complex
interplay of the RAAS and novel coronaviruses such as SARS-
CoV-2. Particularly relevant information includes the status of
the RAAS at baseline, during and after the infection and during
progression of COVID-19 and following recovery. Compre-
hensive assessments of the full complement of RAAS compo-
nents across this timeline particularly in concert with medical
management of the patient during different phases of the
disease are required to establish whether the ACE-ANG II-
AT1 receptor versus ACE2-Ang-(1–7)-Mas receptor pathways
are beneficial or detrimental at a given point in time. This
situation is not surprising since the RAAS has both an imme-

H1087CORONAVIRUSES AND ACE2

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00217.2020 • www.ajpheart.org
Downloaded from journals.physiology.org/journal/ajpheart (187.226.120.060) on April 30, 2020.



diate role in blood pressure and fluid balance regulation and a
longer-term impact on chronic oxidative stress, inflammation
and fibrosis. Clinical trials are required for a greater under-
standing of the impact of treatment with ACEIs and ARBs (as
well as statins and aldosterone blockers) medications, known
to be highly effective for mitigating the impact of hypertension
and diabetes on the heart, kidney and vasculature, on infection
rates and severity of disease, to directly target our understand-
ing of proposed mechanisms of injury. Moreover, precise,
rigorous, and appropriate methods are required to correctly
characterize the RAAS phenotype, whether in patients with
COVID-19 or in animals in experimental studies, particularly
with respect to ACE2 activity or protein expression that may
provide insight into the role of ACE2 in the progression of
SARs-CoV-2 infection and, importantly, whether blockade of
the peptidase is an appropriate step, at least acutely and
targeted to the pulmonary system rather than systemically (56).
Thus, a shift to studies of the multifaceted roles of the
RAAS in the setting of infectious disease is warranted,
which should not occur in isolation from the other well-
known roles of the system in cardiovascular homeostasis,
particularly given the recent focus on the RAAS and the
balance of ANG II and Ang-(1–7) in critical care medicine
such as in septic shock (15, 28).
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