
Static vs accumulating priorities

in healthcare queues under heavy loads

Binyamin Oz∗ Seva Shneer† Ilze Ziedins‡

Abstract

Amid unprecedented times caused by COVID-19, healthcare systems all over the world
are strained to the limits of, or even beyond, capacity. A similar event is experienced by some
healthcare systems regularly, due to for instance seasonal spikes in the number of patients.
We model this as a queueing system in heavy traffic (where the arrival rate is approaching
the service rate from below) or in overload (where the arrival rate exceeds the service rate).
In both cases we assume that customers (patients) may have different priorities and we
consider two popular service disciplines: static priorities and accumulating priorities. It has
been shown that the latter allows for patients of all classes to be seen in a timely manner
as long as the system is stable. We demonstrate however that if accumulating priorities
are used in the heavy traffic or overload regime, then all patients, including those with the
highest priority, will experience very long waiting times. If on the other hand static priorities
are applied, then one can ensure that the highest- priority patients will be seen in a timely
manner even in overloaded systems.

1 Introduction

We are currently seeing the effect COVID-19 has on healthcare services in vast majority
of countries in the world. Healthcare services are also under increasing pressure as demo-
graphics change and populations age. Public health services are struggling, and sometimes
failing, to maintain services under this increasing load. Given this context of high demand
for tightly constrained resources it is instructive to reassess the rationales for prioritization
regimes currently in use, and contrast with other possibilities. Specifically, in this paper we
characterize the performance of the very commonly used static priority regime, and contrast
it with the recently proposed accumulating priority regime, under critical loadings.

Healthcare systems have traditionally used static priority queues in a range of settings
from triage in an emergency departments (EDs), to organizing access to elective surgeries,
such as hip and knee replacements [5],[1]. In a static priority regime, patients are assigned
to a priority class, and must wait to be treated until all patients in higher priority classes
have been treated. Patients may sometimes be moved to a higher priority class if their
condition deteriorates, but in practice there is often no automatic mechanism for making
such transitions, and any adjustments may rely on patients proactively approaching their
healthcare provider. Accumulating priority queues (APQs) have recently been proposed
to overcome some of the inherent drawbacks of static priority queues in healthcare [9]. In
accumulating priority queues, patients accumulate priority with time spent in the queue,
at a rate that depends on their priority class, with higher priority patients accumulating
priority faster than lower priority patients. Priority can accumulate linearly, or in a nonlinear
fashion. Observational studies of behaviour in emergency departments have revealed that
in practice physicians may operate a regime that is similar to an APQ, with the likelihood
of being seen increasing more rapidly as waiting times approach threshold targets, see e.g.
[5].

∗Hebrew University of Jerusalem
†Heriot-Watt University
‡The University of Auckland

1

ar
X

iv
:2

00
3.

14
08

7v
1

 [
cs

.P
F]

 3
1

M
ar

 2
02

0

The accumulating priority regime was first proposed by Kleinrock [6], who obtained
expressions for the expected waiting times for all classes. A large-deviations principle has
been established in [11]. More recently, Stanford et al. [9] derived expressions for the Laplace
Stieltjes Transform of the waiting time distribution, which can then be inverted numerically.
A later paper [7], showed that a wide range of possible accumulation functions (including,
for instance, exponential and log) have an equivalent linear regime, in the sense that the
order in which patients are seen is the same in both the nonlinear and linear formulation.

This paper considers the performance of a single server queue with total arrival rate ρ
and service rate 1, where ρ, the load on the server, either satisfies ρ ↑ 1 or ρ > 1. The
heavy traffic regime has been intensively studied, although not for the accumulating priority
queue. When ρ > 1 queues are overloaded and hence unstable, and no equilibrium exists.
Unstable queues, if unchecked, grow without bound, which is unrealistic for almost every
application, and of course, an infinite queue never exists in practice. However, there are
many applications where arrival rates are greater than service rates for shorter or longer
periods. Traffic networks are an immediate example. In many cities rush hour queues build
up, and then decay, not because the system can cope with the increased volume of traffic
but simply because the flow into the network has reduced as rush hour passes.

At the time of writing, one cannot overstate the importance of looking at healthcare sys-
tems in the situations when demand suddenly exceeds capacity. We see healthcare systems
of a very large number of countries being overwhelmed with an influx of patients.

Healthcare can however suffer from a similar excess of demand over capacity in other
situations, particularly in winter, and for those healthcare systems which experience loss of
capacity over longer periods, addressing the issue of how best to organize patient prioriti-
zation is vital [8]. Emergency departments may also see increased demand due to patients
who could have been treated by their GP, but were deterred by cost (e.g. in New Zealand,
where hospital visits in the public health system are free, but GP visits are not), or long
waiting times for GP appointments. No patient arriving in a period when ρ > 1 actually
sees an infinite queue – rather they see a large, possibly very large, queue ahead of them.
Their waiting time for treatment, given they have joined the queue, is also not infinite, but
as a patient’s condition deteriorates, it may nevertheless be far too long. In practice also,
if ρ is close to 1, then over relatively short periods of time it may be difficult to determine
whether ρ < 1 or ρ > 1. Thus there is a strong practical need to address the question of
how best to organize patient prioritization in this transient regime.

Indeed, we will see below that the two cases: a) ρ << 1 and b) ρ ↑ 1 or ρ > 1,
require fundamentally different approaches to patient prioritization. If ρ << 1, then the
accumulating priority regime ensures that all patients are seen in a timely manner, while
ensuring health targets are met (if those targets are feasible). On the other hand, if ρ ↑ 1
or ρ > 1, then it is impossible to limit waiting times for all patients, and the static priority
regime provides a mechanism for ensuring that healthcare is still available to the most acute,
and vulnerable, patients (see Fig. 2 below), whereas under APQ the expected waiting times
for all classes increase (Fig. 1 below). For this scenario we propose below a mixture of the
two prioritization schemes.

Section 2 gives a detailed description of the models we consider. Section 3 considers the
case where ρ = 1− ε, as ε ↓ 0, while Section 4 considers the case where ρ > 1. We conclude
with a short discussion of related models and potential future research directions in Section
5.

2 Model

We consider a service system with a single server and N+1 classes of customers. Customers
(patients) of class i arrive according to a Poisson process with rate λi and their priority class
is associated with a positive real number bi for 1 ≤ i ≤ N + 1. The higher the number bi,
the higher the priority class, and without loss of generality we assume b1 > b2 > . . . > bN >
bN+1. Thus arrivals of class 1 are in the highest priority class and arrivals of class N + 1
are in the lowest priority class.

If a customer finds the server idle upon its arrival, the server immediately starts serving
this customer. Priority is non-preemptive, that is, if the server is busy when a new customer

2

arrives, the customer joins the waiting room regardless of her priority class. The room is
assumed to be of infinite size. Whenever the server finishes serving a customer and the
waiting room is non-empty, the server starts to serve the customer with the highest current
priority among those currently in the waiting room.

We consider two different priority policies:

• Static priorities (SP): in this case a customer of class i has priority level bi which
does not change;

• Accumulating priorities (AP): in this case a customer of class i that spent s, s ≥ 0,
units of time waiting in the waiting room has priority level bis.

We assume, without loss of generality, that service times for customers are independent
and exponentially distributed with mean 1. Therefore

ρ = λ1 + . . .+ λN+1 (1)

is the load on the system – the average amount of new work arriving per unit of time – and
ρ < 1 is necessary for stability.

We will consider the system in high loads in two scenarios. In the first scenario we
assume that ρ = 1 − ε and ε ↓ 0. The system is stable for any ε > 0, but, as ε decreases
to 0, the average number of customers waiting in the queue in the stationary regime (and,
by Little’s formula, the average waiting time of a typical customer arriving in the system)
tends to infinity. In the second scenario ρ > 1 and the system is thus unstable.

Our goal is to study the behavior of the expected waiting time of a customer from each
of the classes, in the two scenarios described above, and under the two different priority
policies.

3 Loads approaching capacity

In this section we consider a sequence of systems indexed by ε > 0 such that the loads in these
systems increase to 1. More precisely, we assume that λ1(ε), . . . , λN+1(ε) are non-decreasing
functions of ε > 0 such that λi(ε) ↑ λi as ε ↓ 0 for all i = 1, . . . , N + 1,

N+1∑
i=1

λi(ε) = 1− ε

for all ε > 0, and
N+1∑
i=1

λi = 1.

An interesting special case of the setting above is the scenario where λ1, . . . , λN are fixed
and λN+1(ε) = 1− (λ1 + . . .+ λN)− ε, but we do not restrict ourselves to this case.

Regardless of the service discipline chosen, the systems are stable for any ε > 0. Denote
by (Qε

1, . . . , Q
ε
N+1) the vector of steady-state queue lengths and by (W ε

1 , . . . ,W
ε
N+1) the

vector of steady-state waiting times (inclusive of the service time), for a particular value of
ε. We also let Qε

i = E (Qε
i) and Wε

i = E (W ε
i) be the expected queue length and waiting

times respectively, for all i. Regardless of the service discipline,

Qε
1 + . . .+ Qε

N+1 =
1− ε
ε
∼ 1

ε
(2)

as ε → 0. The total queue lengths thus increase to infinity, and we are interested in how
queue lengths, and waiting times, of the individual classes behave.

3.1 Static priorities

Consider first the SP priorities. Let σi(ε) =
∑i

k=1 λk(ε), 1 ≤ i ≤ N + 1, with σ0(ε) = 0.
Let also σi = limε↓0 σi(ε). From Cobham [4], we obtain that the expected waiting times for
the priority classes are given by

Wε
i =

1− ε
(1− σi−1(ε))(1− σi(ε))

+ 1, 1 ≤ i ≤ N + 1. (3)

3

and we can write

Wε
N+1 =

1
ε − 1

ε+ λN+1(ε)
+ 1.

Thus, we see that as ε→ 0,

Wε
i → 1

(1− σi−1)(1− σi)
+ 1 <∞, 1 ≤ i ≤ N.

Wε
N+1 → ∞

and

Qε
i < ∞, 1 ≤ i ≤ N

Qε
N+1 ∼ 1/ε.

Thus, as ε→ 0, in the (SP) case, the expected queue lengths and waiting times for classes 1
to N are bounded from above, while for class N+1 they grow without bound. The durations
of busy periods also increase without bound.

3.2 Accumulating priorities

For the AP case we can conclude from the Kleinrock formula ([6], see also [9]) that waiting
times for all customers grow without bound as ε → 0, so that if the bi are held constant,
this regime does not offer the same protection for the higher priority classes as SP does.
Indeed we can prove the following exact statement.

Lemma 1. Consider an accumulating priority queue with N + 1 classes, and accumulation
rates b1 > b2 > . . . > bN+1. Then

lim
ε↓0

εWε
i =

1/bi
N+1∑
k=1

λk/bk

, 1 ≤ i ≤ N + 1.

We present a proof of Lemma 1 below but first comment on its implications. The result
may be interpreted as follows: a customer from class i entering service after waiting for time
Wi has, at that time, priority biWi. Lemma 1 essentially states that the (AP) discipline
makes all these priorities just before service equal on average, across classes, in heavy traffic.
This is similar to the behaviour in heavy traffic of the MaxWeight protocol (see [10]) which
equates scaled queue lengths (we discuss this connection further below).

Lemma 1 also implies that Wε
i →∞ as ε ↓ 0 for all i, and hence

lim
ε↓0

εQε
i = lim

ε↓0
ελi(ε)W

ε
i =

λi/bi
N+1∑
k=1

λk/bk

, (4)

which also means that

lim
ε↓0

Qε
i∑N+1

k=1 Qε
k

=
λi/bi

N+1∑
k=1

λk/bk

. (5)

Proof of Lemma 1. In order to simplify notation, in this proof we will drop the
dependence of λi and Wi on ε. The formulas from [6] adapted to our setting are as follows:

Wi =
1/ε− 1−

∑N+1
k=i+1 λk

(
1− bk

bi

)
Wk

1−
∑i

k=1 λk

(
1− bi

bk

) .

We use a proof by induction on i = N + 1, . . . , 1. First write

WN+1 =
1/ε− 1

1−
∑N+1

k=1 λk

(
1− bN+1

bk

) =
1/ε− 1

1−
∑N+1

k=1 λk + bN+1

∑N+1
k=1 λk/bk

=
1/ε− 1

ε+ bN+1

∑N+1
i=1 λk/bk

,

4

0 5 10
104

0

10

20

30

40

50

60

70

80

90

100
Class1

0 5 10
104

0

10

20

30

40

50

60

70

80

90

100
Class2

0 5 10
104

0

10

20

30

40

50

60

70

80

90

100
Class3

Figure 1: Numbers of customers of different classes against time in the system with accumulating
priorities, with ε = 0.001

which implies the statement of the lemma for i = N + 1. Assume now the statement is valid
for all i ≥ j + 1 and let us prove if for i = j:

lim
ε↓0

εWj =
1

1−
∑j

k=1 λk

(
1− bj

bk

)
1−

N+1∑
k=j+1

λk

(
1− bk

bj

)
lim
ε↓0

εWk

=

1

1−
∑j

k=1 λk + bj
∑j

k=1 λk/bk

1−

∑N+1
k=j+1 λk

(
1− bk

bj

)
1/bk∑N+1

k=1 λk/bk

=

1∑N+1
k=1 λk/bk

1

1−
∑j

k=1 λk + bj
∑j

k=1 λk/bk

N+1∑
k=1

λk/bk −
N+1∑

k=j+1

λk/bk +
1

bj

N+1∑
k=j+1

λk

=

1∑N+1
k=1 λk/bk

∑j
k=1 λk/bk + 1

bj

∑N+1
k=j+1 λk∑N+1

k=j+1 λk + bj
∑j

k=1 λk/bk
=

1/bj∑N+1
k=1 λk/bk

.

3.3 Solution

These results suggest that in the AP regime, the accumulation rates need to be adjusted
if the system is subjected to increasingly heavy loads. A natural solution we propose is to
take bi(ε) = ci/ε for fixed ci, {1, . . . , N}, with bN+1 = cN+1. This effectively applies the SP
regime to the lowest priority class, while maintaining the positive benefits of the AP regime
for the remaining classes. More generally, we could consider regimes where bi(ε) = ci/ε for
fixed ci, {1, . . . ,M} for any M ≤ N . If M < N , then the split between classes following AP
and those following SP will still provide benefits to the higher priority classes. Whatever
the split, only the lowest priority class will experience delays that grow without bound.

3.4 Numerical illustrations

We illustrate the conclusions above with typical sample paths of a system with N = 2 (there
are therefore 3 classes of customers) under different priority regimes. Assume that arrival
intensities are given by λ1 = λ2 = 1/3 and λ3 = 1/3 − ε, and priorities b1 = 3, b2 = 2 and
b3 = 1.

In the case of accumulating priorities one can see (Fig. (1)) that the numbers of customers
in all classes become large. If static priorities are used (Fig. (2)), only the number of
customers of class 3 grows large, whereas the numbers of customers in classes 1 and 2
remain reasonably small at all times. We can also see from Fig. (3) below that if our

5

0 5000 10000
0

10

20

30

40

50

60

70

80

90

100
Class1

0 5000 10000
0

10

20

30

40

50

60

70

80

90

100
Class2

0 5000 10000
0

10

20

30

40

50

60

70

80

90

100
Class3

Figure 2: Numbers of customers of different classes against time in the system with static
priorities, with ε = 0.001

0 5000 10000
0

10

20

30

40

50

60

70

80

90

100
Class1

0 5000 10000
0

10

20

30

40

50

60

70

80

90

100
Class2

0 5000 10000
0

10

20

30

40

50

60

70

80

90

100
Class3

Figure 3: Numbers of customers of different classes against time in the system with accumulating
but where initial priorities are assigned according to our suggested solution, with ε = 0.001

proposed solution is applied, the sample path looks similar to that of the system with static
priorities.

A further example (see figure 4) illustrates how by changing the priority regime one can
avoid long waiting times for high-priority customers if there is a sudden surge of lower-
priority customers. There are, as before, three priority classes, λ1 = λ2 = 1/3 for the entire
simulation. In the first quarter of the simulation time λ3 = 1/3 − 0.3, so the total load of
the system is 0.7, the system is in relatively light traffic and the accumulating priorities are
used. All queue lengths are small. In the second quarter of the simulation time the arrival
rate of the low priority customers suddenly jumps (this could represent for instance seasonal
effects) to λ3 = 1/3 − 10−3, so the total load in the system is 1 − 10−3 and the system is
in heavy traffic. One can observe all queues becoming large, including that of the highest
priority customers. At this point we switch to the static priority regime and apply it for
the remainder of the simulation time (arrival rates remain such that the system is in heavy
traffic). One can observe that the static priority regime ensures that only the low-priority
queue is large, queues of higher-priority customers are small.

4 Loads above capacity

In this section we assume that Λ = λ1 + . . . + λN < 1 is fixed. We assume in addition
that ρ = Λ + λN+1 > 1 and is also fixed, and further that ρ − λi < 1 for any i (i.e. the

6

0 1 2 3 4 5 6 7 8 9 10
104

0

20

40

60

80

100

120

140

160

180
Class 3
Class 2
Class 1

Figure 4: Switching from accumulating to static priorities stabilises queues of high-priority
customers

system without any class would be stable). We have two particular cases in mind but do
not restrict our attention to these. The first case is similar to the one we had in mind when
studying the system in heavy traffic: an increase in the lowest-class arrival rate takes the
system load above capacity. Another case may illustrate a catastrophic event, such as for
instance a pandemic where a sudden jump in the highest-priority patients may lead to a
system operating above capacity.

Since ρ > 1, and the system is therefore unstable, in this section we study a fluid version
of the model in which we consider separately the queue for each customer class.

We suppose that the level of queue i at time t > 0, Li(t), is given by

Li(t) = Li(0) + λit−
∫ t

0

Di(s)ds,

where Di(s) denotes instantaneous service rate enjoyed by queue i.

4.1 Static priorities

In the case of (SP) D1(s) = I(L1(s) > 0) + λ1I(L1(s) = 0) for s > 0. As long as L1, the
queue for class 1 is strictly positive, all the available service capacity is directed to class 1.
Once L1 has emptied, the new arrivals of class 1 are assigned a dedicated service rate of λ1.
Since λ1 ≤ Λ < 1, this guarantees that L1(t) = 0 for all t ≥ T1 for some finite T1.

If N ≥ 2, then D2(t) = 0 for t < T1. For values of t > T1, we have D2(t) = (1 −
λ1)I(L2(t) > 0) + λ2I(L2(t) = 0), that is, a fraction λ1 of the available rate is used to keep
L1 at zero, and the remaining service capacity is all assigned to queue 2, while it is positive.
Once L2 drops to 0, only a fraction λ2 of the available capacity is required to drain the queue
length at the same rate at which arrivals occur. Thus, since λ1 + λ2 ≤ Λ < 1, L2(t) = 0 for
t > T2 for some finite T2.

Similarly to the above, we can conclude that there exists a finite T = TN such that
L1(t) = . . . = LN (t) = 0 for t ≥ T . For class N + 1, on the other hand, DN+1(t) = 0 for
t < T . When t ≥ T , DN+1(t) = (1−Λ)I(LN+1(t) > 0), and thus L′N+1(t) = λN+1−(1−Λ) =
ρ− 1 > 0, and LN+1(t)→∞ as t→∞.

7

4.2 Accumulating priorities

When considering accumulating priorities we define the maximal priority process for each
queue i, 1 ≤ i ≤ N + 1, as

Pi(t) =
biLi(t)

λi
.

Here we have replaced Wi(t) by Li(t)/λi, which is the age of the oldest fluid particles in the
system – for the fluid model considered here, these are equivalent.

If arg maxj{Pj(t)} is unique, then

Di(t) = I(i = arg max
j
{Pj(t)}), 1 ≤ i ≤ N + 1.

On the other hand, if arg maxj{Pj(t)} is not unique, let

J = {i : i ∈ arg max
j
{Pj(t)}.

Under the accumulating priority regime, if two or more classes have priority maxj{Pj(t)}
then service capacity should be divided between them in such a way that their priorities
remain equal (and maximal). Therefore, if |J | > 1, then P ′i (t) = c, say, for some constant
c ∈ R+ for all i ∈ J . Thus

c = P ′i (t) =
bi
λi

(λi −Di(t))

and hence

Di(t) = λi −
λi
bi
c

for all i ∈ J . But
∑

i∈J Di(t) = 1 and hence

c =

∑
i∈J λi − 1∑
i∈J λi/bi

.

Recall that c = P ′i (t) for all i ∈ J , and recall that we assume ρ − λi < 1 for any i. Thus
P ′i (t) < 0 for any i ∈ J as long as J does not consist of the entire set {1, . . . , N + 1} and
P ′i (t) > 0 as long as J = {1, . . . , N + 1}.

Thus we can now understand the dynamics of the process of priorities: if we start at
time 0 with a unique class with the highest fluid priority, its priority is decreasing until it
equalises with the priority of another class. From that point onwards, the two priorities stay
the same, and both are decreasing at the same rate, until they equalise with the priority of
a further class. This continues until all priorities equalise, from which point onwards these
priorities grow infinitely. This of course implies that the levels of fluids grow infinitely.

Note also that the above may be summarised for the level of queue i as follows: once all
priorities have equalised,

L′i(t) =
λi
bi
P ′i (t) =

λi
bi
ci = (ρ− 1)

λi/bi
N+1∑
j=1

λj/bj

,

or

lim
t→∞

Li(t)

t
= (ρ− 1)

λi/bi
N+1∑
j=1

λj/bj

,

which shows that the relative queue lengths are exactly as in (5).

4.3 Solution

As before, a solution to the possibility of queues growing without bound if the accumulating
priority regime is applied to all classes is to either employ a static priority regime, or a
mixture of accumulating and static priority regimes, but in either case the lowest priority
class needs to be operating under the static priority regime. Both the pure static priority
regime, and the mixture, yield identical fluid solutions for classes 1, 2, . . . , N as t→∞, with
Li(t) = 0, t > TS for some TS > 0. On the other hand, LN+1 →∞ as t→∞, under any of
the regimes.

8

5 Discussion

We have seen that in heavy traffic, the highest priority classes need greater protection than
is afforded by the accumulating priority queue with fixed accumulation rates. This can be
achieved either by permitting accumulation rates to grow in inverse proportion to ε in the
case ρ = 1− ε, or by applying a static priority regime to the lowest priority class. In either
case the lowest priority class suffers from increasing waiting times, but higher priority classes
are protected from this growth.

These results have implications for other scenarios where prioritisation of tasks is a
feature. We discuss below two other important areas of application, but we believe that the
potential applications are considerably wider.

Prioritisation of tasks has been introduced in models of human dynamics where, upon
completing a task, a person chooses the task from their to-do list with the highest priority
to be performed next. A variant of static priorities has been considered in [2] and a version
of accumulating priorities - in [3]. Few people would disagree with the observation that at
least at some points in our lives we all experience an overload of our to-do lists. This may
be modelled as the arrival rate being (perhaps temporarily) close to, or even above, the
completion rate, exactly the settings considered in this paper. Our results can therefore be
interpreted as follows: when the number of tasks on the to-do list grows, if time-dependent
priorities are used, the number of outstanding high-importance tasks will grow. In order to
prevent this, either static priorities, or a combination of accumulating and static priorities
suggested here, should be used.

Another connection we would like to highlight is to wireless transmission protocols,
namely the celebrated MaxWeight introduced in [12]. A simple version of it may be described
as follows: there are a number of queues, each with its own exogenous stream of arriving
jobs, and a single server which, upon completing a job, chooses the next one to perform
from the queue with the largest number of outstanding jobs. Other priorities have also been
discussed, in particular weighted queue lengths. If one views our model as tasks from the
same class forming a queue, then in the case of accumulating priorities the server chooses
the next task from the queue with the highest weighted waiting time of the longest-waiting
task. Situations considered in this paper are such that the numbers of outstanding tasks in
all queues grow to infinity. In this case, the waiting time of the longest-waiting customer is
proportional to the number of outstanding tasks. Therefore, in the regimes considered here,
the behaviour of the accumulating-priority queue is the same as that of the system governed
by an appropriately weighted MaxWeight algorithm.

In this note we focused on average waiting times and queue lengths. It is of course
important to study their distributions, which is a subject of our ongoing research. Another
research direction we are currently pursuing is a more realistic scenario where customers
abandon the system if they waited longer than a certain (perhaps random and perhaps class-
dependent) threshold. Strategies minimizing the abandonment rate are of great practical
interest.

References

[1] G. Arnett and D. Hadorn. Developing priority criteria for hip and knee replacement
surgery: Results from the Western Canada waiting list project. Canadian Journal of
Surgery, 46(4):290–296, 2003.

[2] A.-L. Barabasi. The origin of bursts and heavy tails in human dynamics. Nature,
435(7039):207, 2005.

[3] P. Blanchard and M.-O. Hongler. Modeling human activity in the spirit of Barabasi’s
queueing systems. Physical Review E, 75(2):026102, 2007.

[4] A. Cobham. Priority assignment in waiting line problems. Journal of the Operations
Research Society of America, 2(1):70–76, 1954.

[5] Y. Ding, E. Park, M. Nagarajan, and E. Grafstein. Patient prioritization in emergency
department triage systems: An empirical study of the Canadian Triage and Acuity
Scale (CTAS). Manufacturing and Service Operations Management, pages 1–19, 2019.

9

[6] L. Kleinrock. A delay dependent queue discipline. Naval Research Logistics Quarterly,
11(3-4):329–341, 1964.

[7] N. Li, D. Stanford, P. Taylor, and I. Ziedins. Nonlinear accumulating priority queues
with linear equivalent proxies. Operations Research, 65(6):1613–1628, 2017.

[8] L. Rolewicz and B. Palmer. The nhs workforce in numbers. 2019.

[9] D. A. Stanford, P. Taylor, and I. Ziedins. Waiting time distributions in the accumulating
priority queue. Queueing Systems, 77(3):297–330, 2014.

[10] A. L. Stolyar et al. Maxweight scheduling in a generalized switch: State space collapse
and workload minimization in heavy traffic. The Annals of Applied Probability, 14(1):1–
53, 2004.

[11] A. L. Stolyar and K. Ramanan. Largest weighted delay first scheduling: Large devia-
tions and optimality. Annals of Applied Probability, pages 1–48, 2001.

[12] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems
and scheduling policies for maximum throughput in multihop radio networks. In 29th
IEEE Conference on Decision and Control, pages 2130–2132. IEEE, 1990.

10

	1 Introduction
	2 Model
	3 Loads approaching capacity
	3.1 Static priorities
	3.2 Accumulating priorities
	3.3 Solution
	3.4 Numerical illustrations

	4 Loads above capacity
	4.1 Static priorities
	4.2 Accumulating priorities
	4.3 Solution

	5 Discussion

