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Author Summary 
Previous small, mostly candidate gene studies have shown associations between paternal pre-pregnancy BMI and 
offspring blood DNA methylation. However, in our large meta-analysis of co-ordinated EWAS results from a total of 
19 datasets across two timepoints, we found little evidence to support these findings, even at imprinted regions. 
This does not rule out the possibility of a paternal epigenetic effect in different tissues, at regions not covered by the 
450k array, via different mechanisms, or in populations with greater extremes of paternal BMI. More research is 
warranted to help understand the size and nature of contributions of paternal adiposity to offspring epigenetics and 
health outcomes. 

Abstract 
Background: Accumulating evidence links paternal adiposity in the peri-conceptional period to offspring health 
outcomes. DNA methylation has been proposed as a mediating mechanism, but very few studies have explored this 
possibility in humans. 

Methods and findings: In the Pregnancy And Childhood Epigenetics (PACE) consortium, we conducted a meta-
analysis of co-ordinated epigenome-wide association studies (EWAS) of paternal prenatal Body Mass Index (BMI) 
(with and without adjustment for maternal BMI) in relation to DNA methylation in offspring blood at birth (13 
datasets; total n= 4,894) and in childhood (six datasets; total n = 1,982). We found little evidence of association at 
either time point: for all CpGs, the False Discovery Rate-adjusted P-values were >0.05. In sex-stratified analyses, we 
found just four CpGs where there was robust evidence of association in female offspring. To compare our findings to 
those of other studies, we conducted a systematic review, which identified seven studies, including five candidate 
gene studies showing associations between paternal BMI/obesity and offspring or sperm DNA methylation at 
imprinted regions. However, in our own study, we found very little evidence of enrichment for imprinted genes. 

Conclusion: Our findings do not support the hypothesis that paternal BMI around the time of pregnancy is 
associated with offspring blood DNA methylation, even at imprinted regions. 

Introduction 
Accumulating evidence links paternal exposures in the peri-conceptional period to offspring health outcomes(1–3). 
Results from animal studies support a causal role for “paternal effects”(4) that are independent of maternal 
effects(2). Whereas prenatal maternal effects are most commonly postulated to occur via fetal intrauterine 
exposure, the suggested biological mechanisms underlying paternal effects(3,5) include germline de novo genetic 
mutations(6) or epigenetic changes(7), or alterations of components or properties of semen(8).  

Epigenetic mechanisms that have been studied in relation to paternal exposures include DNA methylation, histone 
modification and microRNA expression(7), all of which can induce mitotically-heritable alterations in gene expression 
without changes to the DNA sequence. At most loci, patterns of DNA methylation are erased shortly after 
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fertilization to create totipotent cells. However, some loci (most notably imprinted regions) can evade erasure, thus 
raising the possibility for intergenerational paternal epigenetic inheritance(9,10). 

A large proportion of the research on paternal effects has explored dietary and metabolic exposures in relation to 
offspring metabolism and adiposity, sometimes including exploration of the potential mediating role of DNA 
methylation in sperm and offspring. Animal models of high fat diet-induced paternal obesity and diabetes have 
found associations with impaired offspring development(11) and offspring metabolic phenotypes and DNA 
methylation in pancreatic islets(12). In humans, a recent systematic review(13) found conflicting evidence on the 
association between paternal body mass index (BMI) and offspring birthweight, and some evidence of an association 
with greater offspring BMI, weight or body fat mass in childhood. A small number of studies have also found links 
between paternal BMI and sperm or offspring neonatal blood DNA methylation, but these have been based on 
candidate genes and/or had very limited sample sizes(14–20). 

In the Pregnancy And Childhood Epigenetics (PACE) consortium(21), we conducted meta-analyses of coordinated 
epigenome-wide association studies (EWAS) exploring prenatal paternal BMI in relation to genome-wide DNA 
methylation at birth (cord blood; 13 independent datasets across ten cohorts) and in childhood (peripheral blood; six 
datasets across nine cohorts). A major challenge in studies of paternal effects is the correlation between paternal 
and maternal phenotypes and exposures, which could be due to shared environments and/or assortative 
mating(22). Several studies (for example, 22–24), including a large PACE consortium study(26), have shown that 
maternal BMI is associated with variation in offspring DNA methylation. To help disentangle any paternal effect from 
a maternal effect, we adjusted paternal associations for maternal BMI. We also conducted additional analyses with 
maternal BMI as the main exposure (unadjusted and adjusted for paternal BMI) and compared results to our primary 
analyses where paternal BMI was the main exposure. Finally, we systematically reviewed the literature on 
associations between paternal BMI and offspring or sperm DNA methylation in humans and assessed whether our 
results were enriched for imprinted loci and other regions identified by previous studies. 

Methods 
Meta-analysis of epigenome-wide association studies (EWAS) 
Participating cohorts 
The EWAS meta-analysis at birth included data from 13 independent datasets from ten cohorts in PACE (n=4,894): 
The Avon Longitudinal Study of Parents and Children (ALSPAC)(27–29); two independent datasets from Born in 
Bradford (BiB)(30); Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS)(31); 
Generation R Study (GENR)(32,33); the Genetics of Overweight Young Adults(34) (GOYA; nested within the Danish 
National Birth Cohort); INfancia y Medio Ambiente (INMA)(35); three independent datasets from the Norwegian 
Mother and Child Cohort Study (MoBa1, MoBa2, MoBa3)(36,37); Project Viva (Viva)(38); and two independent 
datasets generated as part of the EXPOsOMICS(39) project Piccolipiù(40) and RHEA(41). 

The EWAS meta-analysis at childhood included data from six datasets from nine PACE cohorts (n=1,982): ALSPAC; 
CHAMACOS; Generation R; INMA, Project Viva and Human Early Life Exposome study (HELIX)(42). HELIX is a sample 
containing childhood methylation data pooled from several other cohorts (BIB; EDEN(43); INMA; MoBa; and RHEA). 
We conducted a sensitivity analysis excluding HELIX, because of concerns about potential sample overlap (albeit at a 
different time-point) with the INMA sample. 

Cohorts are summarised in Table 1 and more detailed methods for each cohort are provided in Supporting 
Information File S1. 
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Table 1: A summary of key information for participating cohorts. 

Cohort Country and ancestry 

Methylation time 
point and array Paternal BMI data source Maternal BMI data source 

Birth Childhood Measured Self-reported* Reported by 
mother* 

Measured* Self-reported* 

ALSPAC United Kingdom; 
Northern European 450k 450k O P (first trimester) O O P (pre-pregnancy) 

BIB (Asian) United Kingdom; 
Pakistani EPIC O O P (first trimester) O P (first trimester)  

BIB (European) United Kingdom; 
Northern European EPIC O O P (first trimester) O P (first trimester)  

CHAMACOS United States; Mexican 
American 450k 450k P (around 

delivery) O O Height only (first trimester) Weight only (pre-pregnancy) 

Generation R The Netherlands; 
Northern European 450k 450k P (first 

trimester) O O O P (pre-pregnancy) 

GOYA Denmark; Northern 
European 450k O O O 

P (18 
months after 
delivery) 

O P (pre-pregnancy) 

HELIX (BIB, 
EDEN, INMA,  
MoBa, Rhea) 

Mixed (UK, France, 
Spain, Lithuania, 
Norway, Greece); 
European 

O 450k O 
BIB, MoBa (first 
trimester), EDEN 
(third trimester) 

INMA, Rhea 
(first 
trimester) 

BIB (BMI, first trimester) 
INMA, Rhea (height only, first 
trimester), EDEN (height only, 
second trimester) 

EDEN (weight only, pre-
pregnancy), INMA, Rhea 
(weight only, first trimester), 
MoBa (BMI, first trimester) 

INMA Spain; Southern 
European 450k 450k O O P (first 

trimester) Height (first trimester) Weight (first trimester) 

MoBa 1 Norway; Northern 
European 450k O O O P(first 

trimester) O P (first trimester) 

MoBa 2 Norway; Northern 
European 450k O O O P (first 

trimester) O P (first trimester) 

MoBa 3 Norway; Northern 
European 450k O O O P (first 

trimester) O P (first trimester) 

Piccolipiù Italy; Southern 
European 450k O O O P (around 

delivery) O P (around delivery) 

Project Viva United States; 
European 450k 450k O O P (first 

trimester) O P (pre-pregnancy) 

Rhea Greece (Crete); 
Southern European 450k O O O P (first 

trimester) Height (first trimester) Weight (first trimester) 

*timepoints (i.e. pre-pregnancy, first trimester, etc) refer to the period participants were asked to report on rather than when the questionnaire was completed
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Measurement of paternal and maternal BMI 
Paternal and maternal BMI was calculated using either self-reported or measured height and weight of participants 
(Table 1). For paternal BMI, cohorts selected a timepoint as close to the time of pregnancy as possible. Where 
possible, inclusion was restricted to biological fathers, but paternity status was not ascertainable in all cohorts. For 
maternal BMI, cohorts used self-reported pre-pregnancy BMI or BMI measured in the early stages of pregnancy. BMI 
was calculated in kg/m2 and then standardised for each cohort by converting to internal Z-scores.  

Measurement of DNA methylation 
Biological samples were either cord blood samples from neonates or peripheral blood samples from children. DNA 
methylation was measured using either the llumina Infinium® HumanMethylation450 (486,425 probes) or EPIC 
(866,553 probes) BeadChip assay (Table 1). Probes that were common to both arrays (maximum 453,008) were 
included in the meta-analysis. Each cohort conducted its own laboratory methods, quality control and normalisation, 
as detailed in Supporting Information File S1. All cohorts used normalised, untransformed methylation beta values 
on a scale of 0 to 1. 

Other covariates 
Questionnaire data was used to derive the following covariates, which were included in all adjusted models 
regardless of whether the main exposure was paternal or maternal BMI: maternal and paternal age (years); maternal 
smoking status during pregnancy (preferred definition: smoking throughout pregnancy/no smoking in pregnancy or 
quitting in the first trimester, but some cohorts used any/no smoking in pregnancy); paternal smoking status during 
or prior to pregnancy (any smoking in this time/no smoking in this time); maternal parity (one or more previous 
pregnancies/no previous pregnancies); and paternal socioeconomic position (higher/lower). For the latter variable, 
precise definitions were cohort-specific but most cohorts used paternal educational attainment (if data on paternal 
socioeconomic position were not available, maternal socioeconomic position was used). In addition, some models 
were stratified by sex of the child. Cohort specific information on covariate definitions is provided in Supporting 
Information File S1. 

Systematic differences between samples (for example, those influenced by technical batch) were addressed by 
generating 20 surrogate variables using the SVA(44,45) R package. The number of surrogate variables (i.e. 20) was 
estimated using the ALSPAC dataset, and then each cohort estimated 20 SVs using their own data. Cellular 
heterogeneity was addressed by estimating cell type proportions using the Houseman algorithm(46) and either a 
cord blood reference panel(47) or a peripheral blood reference panel(48), depending on the methylation time-point. 

Cohort-specific EWAS 
Each cohort performed independent EWAS according to a common, pre-specified analysis plan and R script 
(available on our Open Science Framework site at doi:10.17605/OSF.IO/EBTW7). If cohorts had data for both 
timepoints, EWAS were performed separately for birth and childhood. Potential methylation outliers, thought to be 
introduced by a technical error or a rare SNP were identified and removed using the Tukey method as previously 
described(49).  

Linear regression models, modelling offspring methylation as the outcome and parental BMI as the exposure, were 
applied to each CpG using the Limma R package(50). Two main models were run for both paternal and maternal 
BMI: 1) a basic model where paternal or maternal BMI associations were adjusted for estimated cell proportions, 
surrogate variables for technical batch, maternal and paternal age, maternal smoking status during pregnancy, 
paternal smoking status during or prior to pregnancy, paternal socioeconomic position and maternal parity; and 2) a 
model with additional adjustment for the other parent’s BMI. In secondary analyses, the mutually adjusted models 
(i.e. model 2) were run stratified by sex of the offspring. This is because, although sex is not a true confounder (i.e. it 
does not influence pre-pregnancy parental BMI), it is a major source of variation in methylation(51) and there is 
some literature to support paternal effects occurring in a sex-specific manner (52,53). All probes were annotated to 
the human reference genome version 19, build 37. 

Other cohort-specific analyses 
To allow us to explore the extent to which paternal BMI is associated with offspring blood cell proportions (which is 
an important source of variation in methylation data, but also an interesting phenotype to study in its own right 
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(54)), cohorts provided results (effect estimate, standard error, p-value) for linear regressions of each estimated cell 
type on paternal BMI. These were then meta-analysed using the R package metafor (55).  

Cohorts also provided the Spearman coefficient and P-value for the correlation between maternal and paternal BMI 
to allow us to assess the likelihood of assortative mating as an explanation for our results. 

Meta-analysis 
Fixed-effects meta-analysis weighted by the inverse of the variance was performed at the University of Bristol using 
METAL(56). A shadow meta-analysis was also conducted independently by an author at the University of Hasselt 
(Rossella Alfano). All code used to perform these analyses is provided on our Open Science Framework site at 
doi:10.17605/OSF.IO/EBTW7. 

The EWAS meta-analysis pipeline was as follows:  

1) Filter probes from cohort results files to remove probes that are not common to both the EPIC and 450k 
array, control and QC probes, probes on SNPs, cross-hybridizing probes according to Chen et al.(57), and 
probes on the sex chromosomes; 

2) Perform quality checks of cohort results by plotting correlation matrices of effect estimates generated by 
different models, generating QQ plots and calculating Lambda values, plotting the distribution of effect 
estimates, and producing “precision plots” of 1/median standard error against the square root of the sample 
size for each cohort and model;  

3) Conduct a fixed effects meta-analysis using METAL for each model;  
4) Adjust meta-analysis P-values for multiple testing using the false discovery rate (FDR) method. The threshold 

used to define statistical evidence of association was FDR-adjusted P-value<0.05. 
5) Perform checks of meta-analysed results by plotting a correlation matrix of effect estimates generated by 

different models, generating QQ plots and calculating Lambda values;  
6) Conduct a leave-one-out analysis using the R package metafor(55) at sites with the smallest P-values. The 

leave-one-out survival criteria we specified are: when any single cohort is omitted, the meta-analysis effect 
estimate should be in the same direction, not attenuate substantially (arbitrarily defined as >20% change-in-
estimate), and not have a confidence interval that crosses the null; 

7) Conduct a meta-regression to explore the impact of average age at DNA sample collection on the childhood 
EWAS meta-analysis results; 

8) Conduct a sensitivity analysis at the birth time point, excluding cohorts that collected information on 
paternal BMI based on maternal-report (GOYA, INMA, MoBa, Piccolipiu, Project Viva, Rhea), because of 
concern about measurement error. 

9) Conduct a sensitivity analysis at the childhood time point excluding HELIX because of concerns about overlap 
between some individuals in this dataset and individuals in INMA. 

Comparison of results for maternal and paternal BMI 

To assess whether paternal and maternal BMI are associated with offspring methylation to similar extents and with 
similar distributions throughout the genome, we compared effect estimates for the EWAS meta-analyses with and 
without mutual adjustment for the other parent’s BMI. At the top ten CpGs associated with paternal BMI with the 
smallest P-values, we calculated the Cochrane Q statistic to explore statistical evidence for differences between the 
maternal and paternal effect estimates. 

To explore the extent to which maternal BMI might explain associations between paternal BMI and offspring 
methylation, we conducted Kolmogorov-Smirnov tests to assess enrichment of our EWAS meta-analysis results for 
CpGs previously found to be associated with maternal BMI in the PACE consortium (26). 

Systematic literature review 
To identify previous human studies of paternal adiposity and offspring or sperm methylation, we performed a 
systematic search of PubMed using the R package RISmed(58). Search terms (Supporting Information File S2) were 
formed using intersections of terms related to paternity, methylation and adiposity. Duplicate PubMed IDs and 
ineligible article types (non-journal articles and reviews) were excluded. Titles/abstracts were manually screened to 
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assess inclusion based on whether the study investigated paternal adiposity and germ cell/offspring methylation, 
and whether it did so in humans. Information on study design, exposure, outcome, tissue, sample size, species and 
key relevant findings was manually extracted from the full text of included articles.  

Testing for enrichment of candidate loci identified through the literature 
To explore enrichment of our EWAS meta-analysis results for loci identified through our literature search, we tested 
whether the distribution of EWAS meta-analysis P-values at these regions deviates from a null (uniform) distribution 
using Kolmogorov-Smirnov tests, and compared the direction of effect estimate to what has been reported 
previously. To identify CpG probes falling within a particular gene, we defined the location of the gene according to 
the GeneCards database (https://www.genecards.org) and human genome version 19 build 37. 

Availability of data and code 

All code used to generate our results is available on our Open Science Framework site at 
doi:10.17605/OSF.IO/EBTW7. We are not able to publicly share individual level data from participating cohorts due 
to issues with consent and ethics, however all summary statistics generated by meta-analysis are also available at 
doi:10.17605/OSF.IO/EBTW7. 

Results 
EWAS meta-analysis at birth 
Cohort summaries 
Thirteen independent datasets were included in the EWAS meta-analyses at birth. Table 2 summarises key 
characteristics of these cohorts (more details in Supporting Information File S3). Around 48% of the babies were 
female. In all cohorts, paternal BMI had a higher mean and a lower standard deviation compared to maternal BMI. 
There was moderate correlation between both parents’ BMIs (r=0.2) which might be explained by assortative mating 
and/or shared environment. 

Table 2. A summary of sex of the child and parental BMI for each cohort in the birth meta-analysis.  

Study 
N (N female, 

N male) 

Mean paternal 

BMI in kg/m2 

(SD) 

Percentage 

fathers 

with 

BMI>=30 

(i.e. obese) 

Mean 

maternal 

BMI in 

kg/m2 (SD) 

Percentage 

mothers with 

BMI>=30 (i.e. 

obese) 

Spearman’s 

correlation 

between paternal 

and maternal BMI 

(P-value) 

ALSPAC 531 (267, 264) 25.0 (3.0) 6% 22.6 (3.3) 4% 0.2 (7.6x10-7) 
Born in Bradford 
(British Asian) 

70 (27*, 43) 26.6 (5.3) 17% 26.2 (5.8) 21% 0.2 (1.1x10-1) 

Born in Bradford 
(White British) 

115 (59, 56) 27.5 (4.7) 24% 26.7 (6.1) 24% 0.4 (9.1x10-4) 

CHAMACOS 158 (80, 78) 28.0 (4.2) 32% 26.5 (4.5) 19% 0.1 (1.1x10-1) 
Generation R 947 (476, 471) 25.2 (3.2) 7% 23.2 (3.9) 6% 0.2 (8.8x10-8) 
GOYA 390 (190, 200) 25.1 (3.1) 6% 23.4 (3.7) 6% 0.1 (7.1x10-3) 
INMA 352 (173, 179) 25.8 (3.5) 13% 23.8 (4.5) 9% 0.2 (4.7x10-5) 
MoBa1 982 (458, 524) 25.6 (3.1) 8% 24.0 (4.1) 9% 0.1 (6.2*10-5) 
MoBa2 621 (275, 346) 25.7 (3.1) 8% 24.3 (4.6) 11% 0.2 (2.2*10-8) 
MoBa3 212 (109, 103) 26.0 (3.1) 9% 24.0 (3.9) 9% 0.3 (2.0*10-4) 
Piccolipiu 98 (45, 53) 24.9 (3.0) 3% 22.6 (3.9) 8% 0.3 (2.6x10-3) 
Project Viva 324 (160, 164) 26.3 (3.6) 13% 24.3 (4.9) 12% 0.3 (1.2x10-6) 
RHEA 94 (45, 49) 27.2 (4.0) 20% 25.1 (5.5) 16% 0.3 (1.1x10-2) 

Total or mean* 
4,894 (2,337, 

2,530) 
26.98 (3.2) 10% 23.7 (4.1) 9% 0.2 

*In the Total row, average BMI and correlation values were calculated by weighting by the inverse variance for each cohort.  

Quality checks 
Quality checks of cohort-specific EWAS results are summarised in Supporting Information File S4. Generally, no 
major problems were identified, but there were a small number of extreme effect estimates in some cohorts, mainly 
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in the sex-stratified models where the sample sizes were lower. Quality checks of the meta-analysis results 
(Supporting Information File S5) showed that these outliers had little weighting in the meta-analysis and therefore 
little impact on the EWAS meta-analysis results. Therefore, these values were not excluded from the meta-analysis. 

Associations between paternal BMI and offspring methylation at birth 
Table 3 summarises the results of each EWAS meta-analysis model (full results available on our Open Science 
Framework site at doi:10.17605/OSF.IO/EBTW7). After FDR correction for multiple testing, we did not identify any 
CpG sites where there was evidence of an association between paternal BMI and offspring DNA methylation at birth 
(FDR<0.05). Effect estimates for the model with and without adjustment for maternal BMI were very similar: they 
correlated highly (Spearman’s r=0.97) and the median percentage difference in effect estimates between models 
was 0.23% (IQR: 0.1%, 0.6%), suggesting that maternal BMI was not a strong confounder. In a sensitivity analysis, 
excluding cohorts that defined paternal BMI based on maternal-report did not increase the number of CpGs with 
FDR-corrected P<0.05. 

Table 3. A summary of results of each EWAS meta-analysis model at birth 

Model* 

CpGs with 
FDR-
corrected 
P<0.05 

CpGs 
surviving 
leave-one-
out 
analysis 

Meta-
analysis 
sample 
size 

Genomic 
inflation 
factor 
(λ)** 

Paternal BMI 
 All offspring 0 n.a. 4894 1.13 

 All offspring (additionally adjusted for 
maternal BMI) 0 n.a. 4894 1.16 

 Female offspring (additionally adjusted for 
maternal BMI) 7 4 (57%) 2337 1.10 

 Male offspring (additionally adjusted for 
maternal BMI) 0 n.a. 2530 1.10 

Maternal BMI 
 All offspring 39 35 (90%) 4894 1.10 

 All offspring (additionally adjusted for 
paternal BMI) 30 28 (93%) 4894 1.11 

 Female offspring (additionally adjusted for 
paternal BMI) 9 4 (44%) 2337 1.05 

 Male offspring (additionally adjusted for 
paternal BMI) 1 1 (100%) 2530 1.09 

*(all models adjusted for maternal and paternal age, maternal and paternal smoking, paternal SEP, maternal parity, estimated cell counts and 

20 surrogate variables) 

** The genomic inflation factor (λ) estimates the extent of bulk inflation of EWAS p-values and the excess false positive rate. 1 = no inflation; >1 

some evidence of inflation. 

In a sex-stratified analysis adjusted for maternal BMI, we found some evidence of association between methylation 
and paternal BMI at seven CpGs in female offspring only (Table 4). Three of these did not survive the leave-one-out 
analysis (i.e. on omission of one cohort, the effect estimates were in different directions, changed considerably 
(>20%) and/or had confidence intervals that crossed the null; results in Supporting Information File S6). 
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Table 4. CpGs associated with paternal BMI with FDR-adjusted P<0.05 in female offspring only at birth (estimates are 
adjusted for maternal BMI) 

CpG (gene) Estimate (95% CI) in 
females 

P value in 
females 

Heterogeneity I2 
in females (P-
value) 

Estimate (95% CI) 
in males 

P value in 
males 

Estimate 
(95% CI) in all 

P value 
in all 

*cg03395511 
(DUSP22) 2.93 (2.55, 3.30) 7x10-53 98.7 (6x10-179) 0.39 (0.01, 0.77) 0.04 0.07 (-0.21, 

0.35) 0.6 

*cg27586797 
(intergenic) -4.90 (-5.80, -4.00) 2x10-26 75.8 (1x10-5) 1.33 (-0.03, 2.68) 0.05 -0.30 (-1.25, 

0.65) 0.5 

*cg04481923 
(MIR886) 2.07 (1.42, 2.72) 4x10-10 90.4 (3x10-19) -0.08 (-0.73, 0.57) 0.8 -0.02 (-0.46, 

0.43) 0.9 

cg09452082 
(intergenic) -0.43 (-0.59, -0.26) 4 x10-7 79.3 (2x10-7) -0.13 (-0.29, 0.04) 0.1 -0.18 (-0.29, -

0.06) 0.003 

cg23487201 
(APCDD1L) -0.17 (-0.24, -0.11) 5 x10-7 15.2 (0.3) 0.03 (-0.03, 0.09) 0.4 -0.06 (-0.10, -

0.01) 0.01 

cg19702703 
(AFAP1) -0.45 (-0.63, -0.27) 6 x10-7 1.3 (0.4) -0.13 (-0.30, 0.04) 0.1 -0.23 (-0.35, -

0.11) 0.0001 

cg00039564 
(TAX1BP1) -0.19 (-0.26, -0.11) 8x10-7 23.4 (0.2) 0.03 (-0.04, 0.11) 0.4 -0.05 (-0.10, 

0.00) 0.06 

“Estimate” can be interpreted as difference in offspring percentage methylation per one standard deviation increase in paternal BMI, after 

adjustment for all covariates including maternal BMI 

* CpG did not survive leave-one-out analysis, indicating that the strong association was driven by a single cohort 

Comparison of estimates for paternal and maternal BMI 
Maternal BMI was associated with methylation at many more CpG sites than paternal BMI was (Table 3). In the 
models not stratified by sex, there were 39 CpGs associated with maternal BMI before adjustment for paternal BMI 
and 30 after (FDR-adjusted P<0.05), 26 overlapped. Most associations survived a leave-one-out sensitivity analysis.  

At the top CpGs associated with paternal BMI at a relaxed (but arbitrary) P-value threshold of P<1x10-5, the 
estimated paternal effect was greater (further from the null) than the estimated maternal effect, even after 
adjustment for the other parents’ BMI (Figure 1). There was also strong evidence of heterogeneity between the 
maternal and paternal mutually adjusted estimates (all heterogeneity FDR-adjusted P-values<0.05; I2 ranging 86.6 to 
96.4). However, apart from at the most robustly paternal BMI-associated CpG sites, this pattern (of greater paternal 
than maternal effect estimates) was not observed. In fact, throughout the genome, around half (49.6%) of CpGs had 
larger absolute effect estimates for paternal BMI and the other half (50.2%) had larger absolute effect estimates for 
maternal BMI. Figure 2 shows that maternal effect estimates (before adjustment for paternal BMI) were similar in 
size to paternal effect estimates, and the distribution of effect estimates across the genome was similar regardless of 
parent. Results were very similar after mutual adjustment for the other parent’s BMI (Supporting Information File 
S7). 
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Figure 1. A comparison of paternal and maternal BMI effect estimates at CpGs with P<1*10-5 in the paternal BMI 
EWAS meta-analysis at birth. CpGs were selected if they were associated with paternal BMI with a P-value <1x10-5 in 
the model that was not adjusted for maternal BMI. Points show EWAS meta-analysis effect estimates, bars show 95% 
confidence intervals. Confidence intervals are not adjusted for multiple testing. 
 
 

 

Figure 2. A comparison of paternal and maternal BMI EWAS effect estimates across the genome. Absolute effect 
estimates (y-axis) are plotted against genomic location (x-axis; numbers indicate chromosome number). Paternal BMI 
EWAS meta-analysis results are plotted on the top, with maternal EWAS meta-analysis results on a mirrored axis 
below. Models were not mutually adjusted for the other parent’s BMI (for a comparison of the mutually adjusted 
results, see Supporting Information File S7). 

In a previous PACE consortium study (26), we identified 86 cord blood CpGs associated with maternal BMI in an 
EWAS meta-analysis across 19 cohorts (nine of which also contributed results to the current study). Of the 86 CpGs 
identified in that previous study (which had higher statistical power to detect associations), 64 were available in the 
current study after probe filtering. To explore the extent to which maternal BMI might be driving any association 
between paternal BMI and offspring methylation in the current study, we assessed enrichment of our paternal BMI 
EWAS meta-analysis results for these 64 maternal BMI-associated CpGs. We found little evidence of enrichment 
(Kolmogorov-Smirnov P-value for inflation of EWAS P-values = 0.54 in EWAS unadjusted for maternal BMI; 0.61 in 
EWAS adjusted for maternal BMI), suggesting that any relationship between paternal BMI and offspring methylation 
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was unlikely to be driven by confounding by maternal BMI, even before adjustment for maternal BMI. Conversely, 
the maternal BMI EWAS meta-analysis results in the current study were highly enriched for previously-identified 
maternal BMI-associated CpGs (Kolmogorov-Smirnov P for inflation = 2.2*10-16 in EWAS adjusted and unadjusted for 
paternal BMI). This finding was as expected, given that the main exposure was the same and the samples were 
overlapping, but it highlights the ability of this analysis to detect strong associations with maternal BMI if they exist.  

EWAS meta-analysis at childhood 
Cohort summaries 
Six cohorts were included in the EWAS meta-analyses at childhood. Table 5 summarises key characteristics of these 
cohorts. Around 48% of the children were female. In all cohorts, paternal BMI had a higher mean and a lower 
standard deviation compared to maternal BMI. 

Table 5. A summary of sex and age of the child and parental BMI for each cohort in the childhood meta-analysis.  

Study N (N female, 
N male) 

Mean 
age of 
children 
in years 
(SD) 

Mean 
paternal 
BMI in 
kg/m2 
(SD) 

Percentage 

fathers with 

BMI>=30 (i.e. 

obese) 

Mean 
maternal 
BMI in 
kg/m2 (SD) 

Percentage 

mothers 

with 

BMI>=30 

(i.e. obese) 

Spearman’s 
correlation 
between 
paternal and 
maternal BMI 
(P-value) 

ALSPAC 570 (280, 
290) 7.5 (0.2)       25.0 (3.1) 7% 22.6 (3.4) 4% 0.2 (5.1x10

-6
) 

CHAMACOS 108 (56, 52) 9.2 (0.3) 27.6 (3.4) 27% 27.0 (4.4) 22% 0.2 (2.9x10
-2

) 

Generation R 335 (174, 
161) 6.0 (0.4) 25.0 (3.3) 6% 24.1 (3.9) 6% 0.2 (1.5x10

-5
) 

HELIX 516 (231, 
285) 8.4 (1.7) 26.6 (3.7) 18% 23.9 (4.4) 9% 0.3 (1.1x10

-10
) 

INMA 177 (87, 90) 4.4 (0.2) 26.0 (3.6) 15% 24.6 (5.1) 13% 0.3 (9.6x10
-5

) 

Project Viva 276 (132, 
144) 7.8 (0.7) 26.4 (3.7) 15% 24.5 (4.7) 13% 0.4 (4.2x10

-13
) 

Total 1982 (960, 
1022) 6.9 (0.3) 25.7 (3.4) 12% 24.3 (5.2) 9% 0.3 

* In the Total row, average BMI, age and correlation values were calculated by weighting by the inverse variance for 
each cohort. 

Quality checks 
Quality checks of cohort-specific EWAS results are summarised in Supporting Information File S8. Meta-analysis 
quality checks are summarised in Supporting Information File S9. We did not exclude any data following these 
checks. 

Associations between paternal BMI and offspring methylation in childhood 
Table 6 summarises the results of each EWAS meta-analysis model (full results available on our Open Science 
Framework site at doi:10.17605/OSF.IO/EBTW7). There was one CpG where we found evidence (FDR-adjusted 
P<0.05) of an association with paternal BMI (cg2720130 at GIP on chromosome 17; ß 0.4%, 95% CI 0.2% to 0.5%, P 
8.8*10-8), and one (different) CpG with evidence of an association with maternal BMI (cg07099084 in an intergenic 
region on chromosome 1, ß -0.05%, 95% CI -0.03% to -0.06%, P 1.1*10-7). However, neither survived mutual 
adjustment for the other parent’s BMI, neither was associated with parental BMI in the birth analysis, and one 
(cg07099084) did not survive a leave-one-out analysis (Supporting Information File S10). Excluding HELIX from the 
full meta-analysis did not change the number of associations with FDR-adjusted P<0.05. A meta-regression also 
showed little evidence that mean age of the children at methylation measurement was associated with EWAS meta-
analysis effect estimates (Supporting Information File S10).   
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Table 6. A summary of results of each EWAS meta-analysis model at childhood 

Model* 

CpGs with 
FDR-
corrected 
P<0.05 

CpGs 
surviving 
leave-one-
out 
analysis 

Meta-
analysis 
sample 
size 

Genomic 
inflation 
factor 
(λ)** 

Paternal BMI 
 All offspring 1 1 (100%) 1982 1.03 

 All offspring (additionally adjusted for 
maternal BMI) 

0 n.a. 1982 1.00 

 Female offspring (additionally adjusted for 
maternal BMI) 

0 n.a. 960 1.00 

 Male offspring (additionally adjusted for 
maternal BMI) 

0 n.a. 1022 1.05 

Maternal BMI 
 All offspring 1 0 (0%) 1982 1.11 

 All offspring (additionally adjusted for 
paternal BMI) 

0 n.a. 1982 1.08 

 Female offspring (additionally adjusted for 
paternal BMI) 

0 n.a. 960 1.06 

 Male offspring (additionally adjusted for 
paternal BMI) 

0 n.a. 1022 1.07 

*(all models adjusted for maternal and paternal age, maternal and paternal smoking, paternal SEP, maternal parity, estimated cell counts and 

20 surrogate variables) 

** The genomic inflation factor (λ) estimates the extent of bulk inflation of EWAS p-values and the excess false positive rate. 1 = no inflation; >1 

some evidence of inflation. 

Analysis of cell proportions 
Paternal BMI was not associated with the proportion of any cell type in offspring blood (Supporting Information File 
S11), except for a very small difference in the estimated proportion of nucleated red blood cells in offspring cord 
blood (nRBCs; 0.001 greater proportion of nRBCs per 1SD increase in paternal BMI; 95% CI 0.0004, 0.0017; P=0.001) 
and an even smaller difference in the proportion of CD4 T-cells in childhood peripheral blood (0.0007 lower 
proportion of CD4 T-cells per 1 SD increase in paternal BMI; 95% CI -0.0013, -0.0002; P=0.007), which appeared to be 
largely driven by the HELIX dataset and did not survive a sensitivity analysis excluding HELIX. 

Systematic literature review 
Figure 3 summarises the workflow and Table 7 outlines the seven included studies resulting from a systematic 
literature review of human studies of paternal adiposity and offspring or gamete methylation. There were five 
studies of imprinted regions and two untargeted array-based studies. Four studies investigated DNA methylation in 
offspring cord blood, two in paternal sperm and one in both. 
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Figure 3. The systematic review process used to identify human studies of paternal adiposity and offspring or germ 
cell methylation 

182 records 
identified through 

the R package 
RISmed

48 unique records 
screened for title 

and abstract

• Duplicate records 
removed: 115

• Non-journal articles and 
reviews removed: 19

7 studies included 
(Table 7)

• Studies on different 
exposures/outcomes 
removed: 31

• Animal studies    
removed: 10
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Table 7. Summary of identified studies of paternal adiposity and sperm or offspring DNA methylation. In all studies of offspring methylation, the estimated 
effect of paternal BMI/obesity was adjusted for maternal BMI/obesity. 

Study Exposure Outcome Sample size Studied regions Key findings 
Noor et al. 
2019 (20) 

Paternal 
BMI 

Offspring DNA 
methylation at birth 
(cord blood), age 3 
and age 7 (peripheral 
blood) 

429 Untargeted (Illumina 450k array) Paternal BMI was associated with cord blood DNA methylation at 9 
CpGs with an FDR-adjusted P-value <0.05. Three of these persisted 
at age 3 and one of those also persisted at age 7. When stratified 
by maternal BMI, no CpGs were associated with paternal BMI in 
the subset with maternal BMI <25, but 18 CpGs were identified in 
the subset with maternal BMI >=25. None persisted at later time 
points. 

Potabattula 
et al. 2019 
(19) 

Paternal 
BMI 

Sperm DNA 
methylation and cord 
blood DNA 
methylation 

294 (sperm) 
and 113 (cord 
blood) 

Imprinted genes: 
MEST/PEG1, SNRPN/PEG4, NNAT
/PEG5, SGCE/PEG10, H19-
IG, IGF2, and MEG3-IG, and one 
obesity related gene: HIF3A 

Paternal BMI was positively associated with MEG3 methylation in 
sperm and in male (but not female) offspring. There were some 
other small magnitude associations in sex-stratified analyses. 

Potabattula 
et al. 
2018(17) 

Paternal 
BMI 

Cord blood DNA 
methylation 

46 Six imprinted genes: H19, IGF2, 
MEST, PEG3, MEG3, NNAT 

Paternal BMI was positively associated with methylation of the 
paternal MEST allele. 

Soubry et 
al. 2016(16) 

Paternal 
overweight 
or obesity 

Sperm DNA 
methylation 

67 (23 
overweight or 
obese) 

12 imprinted genes: MEG3, 
MEG3-IG, IGF2, H19, GRB10, 
NDN, NNAT, PLAGL1, 
SGCE/PEG10, SNRPN, 
PEG1/MEST, PEG3 

Paternal overweight/obesity was associated with lower sperm 
methylation at MEG3, NDN, SNRPN and SGCE/PEG10 and higher 
methylation at MEG3-IG, H19, IGF2, compared to controls. There 
was little evidence of association at GRB10, NNAT, PLAGL1, 
PEG1/MEST and PEG3. 

Donkin et 
al. 2015(18) 

Paternal 
obesity 

Sperm DNA 
methylation 

23 (10 obese) Untargeted (RRBS) There were 9,081 unique genes differentially methylated in the 
sperm of lean compared to obese men with an FDR-adjusted P<0.1 
(7,059 with FDR-adjusted P<0.05). 

Soubry et 
al. 2015(15) 

Paternal 
obesity and 
paternal 
BMI 

Cord blood DNA 
methylation 

63 (16 obese) Seven imprinted genes: MEG3, 
MEST, NNAT, PEG3, PLAGL1, 
SGCE, PEG10 

Paternal obesity was associated with lower offspring methylation 
at MEST, NNAT and PEG3. Paternal BMI was positively correlated 
with methylation at SGCE/PEG10. 

Soubry et 
al. 2013(14) 

Paternal 
obesity 

Cord blood DNA 
methylation 

70 (16 obese) Two imprinted genes: H19, IGF2 Paternal obesity was associated with lower methylation at IGF2 
compared to controls, but there was no difference at H19. 

RRBS: reduced representation bisulfite sequencing 
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Comparison to the literature 
Imprinted regions identified in studies by Soubry et al. and Potabattula et al. 
At paternally-imprinted regions identified in the literature review, EWAS meta-analysis effect estimates for the 
association between paternal BMI and cord blood methylation (adjusted for maternal BMI) were small with no clear 
trend in direction (Figure 4). Findings were similar for the EWAS model unadjusted for maternal BMI (Supporting 
Information File S12). 

 

Figure 4. Paternal BMI effect estimates at CpGs within imprinted regions. Each panel shows a different imprinted 
gene, with CpGs arranged in order on the x-axis. The blue ribbon shows the 95% confidence intervals. All results are 
adjusted for maternal BMI. 

Regions identified by Donkin et al. 
Donkin et al. (18) reported 9,081 genes differentially methylated between sperm samples from lean and obese men 
(with FDR-adjusted P<0.1). Of these, we could only map to 511 CpGs at the same genomic positions in our cord 
blood EWAS meta-analysis results, because Donkin et al. measured methylation using reduced representation 
bisulfite sequencing (RRBS) with a higher coverage of the genome than the 450k array. In our paternal BMI EWAS 
meta-analysis at birth (adjusted for maternal BMI), we found the same direction of effect at only roughly half of 
these genes (252/511), and only 17 of these had a P-value<0.05, with none surviving FDR correction for multiple 
testing at either 511 or 252 sites. QQ plots and a Kolmogorov-Smirnov test suggested that our EWAS P-values at 
these 252 sites were not smaller than would be expected by chance (Supporting Information File S12; Kolmogorov-
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Smirnov P = 0.27). Findings were similar when using the EWAS meta-analysis P-values from the paternal BMI model 
that was not adjusted for maternal BMI (Supporting Information File S12). 

CpGs identified by Noor et al. 
In Project Viva (a cohort that also contributed results to our meta-analysis), Noor et al. identified nine CpGs where 
cord blood methylation was associated with periconceptional paternal BMI after adjustment for maternal BMI (20). 
In our results at birth, we found the same direction of estimated effect at 7/9 CpGs. Only one of these had a P-
value<0.05, but this association also survived FDR correction for multiple testing at nine sites (cg04763273 mapping 
to TFAP2C; -0.41% difference in methylation per 1SD increase in paternal BMI; 95% CI -0.67 to -0.15; P=0.002). 
According to our leave-one-out analysis criteria, this CpG “survived” after omission of Project Viva, but it did not 
survive after omission of Generation R. A Kolmogorov-Smirnov test suggested that our EWAS P-values at the nine 
CpGs identified by Noor et al. were not smaller than would be expected by chance (Kolmogorov-Smirnov P=0.21). 
Noor et al. also identified 18 CpGs where cord blood methylation was associated with paternal BMI when the 
analysis was restricted to a subset of offspring of mothers with a BMI>25. In our (unstratified) results at birth we 
found the same direction of estimated effect at only nine of these 18 CpGs, only one had a P-value<0.05 
(cg04763273) and a Kolmogorov-Smirnov test suggested our EWAS P-values were not smaller than would be 
expected by chance (Kolmogorov-Smirnov P=0.54). 

Discussion 
Summary and interpretation of findings 
In coordinated EWAS meta-analysis using a total of 19 datasets, at a genome-wide level of significance (FDR-adjusted 
P<0.05) we found little evidence of association between prenatal paternal BMI and offspring blood DNA methylation 
at birth or in childhood. In sex-stratified analyses, we found robust associations between paternal BMI and cord 
blood methylation at just four CpGs in female offspring only. There was little evidence of residual confounding by 
maternal BMI, and paternal BMI was not strongly associated with estimated cell heterogeneity at either timepoint. 
At the top CpGs most strongly associated with paternal BMI, estimates of the effect of paternal BMI on methylation 
were larger than estimates of the effect of maternal BMI, suggesting some evidence of paternal-specific effects at 
these top CpGs. However, more associations with maternal BMI than paternal BMI surpassed our P-value threshold 
(FDR-adjusted P<0.05), and across the whole genome estimates of the effect of paternal BMI were similar in 
magnitude to those of maternal BMI. 

The lack of evidence for large numbers of associations with low P-values is partly influenced by limited power and 
we cannot discount an impact of paternal BMI on offspring DNA methylation without larger numbers and/or studies 
in populations with greater variability in paternal BMI. Furthermore, we cannot rule out an impact on DNA 
methylation measured in different tissues and/or at regions not covered by the 450k array. 

Comparison to the literature 
Our null findings are in contrast to some previous findings. In a systematic review, we identified seven studies that 
have previously reported on associations between paternal BMI and sperm or offspring methylation in humans. Five 
of these (three from one study and group(14–16) and two from another (17,19)) were candidate gene studies that 
found associations between paternal obesity or higher BMI and sperm or offspring cord blood methylation at 
imprinted regions (all after adjustment for maternal BMI or obesity). There is a strong biological rationale to studying 
imprinted regions in the context of paternal exposures, because methylation marks at imprinted regions appear to 
survive the wave of demethylation that occurs following fertilization, and therefore have the potential to pass on 
epigenetic information from the gametes to the offspring(10,59). However, where studies of imprinted genes have 
considered the same loci, the direction of estimated effects have been discordant between studies. For example, 
Potabattula et al.(17) found a positive correlation between paternal BMI and cord blood methylation at MEST, but 
Soubry et al.(14) found that cord blood of offspring of obese fathers was lower than that of controls, indicating a 
negative correlation with BMI. There are also paradoxical findings at SGCE/PEG10 and IGF2 between studies of 
sperm(16) and cord blood(14), but if methylation differences in sperm are transmitted to offspring, we would expect 
the same direction of estimated effects in these tissues. In our EWAS meta-analysis of paternal BMI, we found little 
evidence of enrichment for imprinted genes. Effect estimates at individual CpGs within imprinted regions were small 
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and the direction of effect varied within most genes (Figure 4). Therefore, we found little evidence to support the 
findings of these candidate gene studies, despite having a much larger sample size and statistical power. However, it 
should be noted that the Illumina BeadChip array does not provide full coverage of imprinted regions, so further, 
more detailed analysis of these regions may be justified. 

One small study (total n=23; 10 obese) by Donkin et al.(18), used an untargeted genome-wide approach that 
identified over 9,000 CpGs throughout the genome differentially methylated in the sperm of obese versus lean men. 
Only 511 of these CpGs were available in our meta-analysis, but we found little evidence of association at these. The 
difference in findings of the two studies could reflect a number of factors, including differences in the studied tissue 
(sperm vs offspring blood), technology (RRBS versus 450k), definition of phenotype (i.e. obese/lean versus BMI over 
the whole range), or study sample (e.g. all the obese men in Donkin et al. were glucose intolerant). 

Finally, in our meta-analysis we replicated the direction of effect at seven out of nine CpGs identified in Noor et al.’s 
study of periconceptional paternal BMI and cord blood DNA methylation in Project Viva (20). One of these CpGs 
(cg04763273 near TFAP2C) appeared robustly associated with paternal BMI, but we found limited evidence to 
support their other findings. Our study designs were similar in that we used the same Illumina array, exposure 
definition, offspring tissue and timepoint, and even had some sample overlap (Project Viva contributed results to our 
meta-analysis). However, there were some differences in the model and our sample size was over 11 times larger 
and therefore more robust to identifying false positives. 

Strengths  
Analyses were conducted according to a pre-specified, harmonised analysis plan, which is publicly available to aid 
reproducibility. All the code used to conduct these analyses, and all the resulting EWAS meta-analysis summary 
statistics, are publicly available on our Open Science Framework site at doi:10.17605/OSF.IO/EBTW7. This means 
that new studies with relevant data could undertake identical analyses and meta-analyse with our results to produce 
more precise estimates. 

Our study uses a sample size of 4,894, which is >11-fold larger than all the independent studies identified in our 
systematic review (Table 7), the largest of which has a sample size of 429. It draws together rich data from multiple 
birth cohorts internationally and this richness allowed us to adjust for important potential confounders. We also 
attempted to adjust for systematic variation in the DNA methylation data by generating and adjusting for surrogate 
variables, which is an approach that has been shown to reduce the risk of false positives(44). In a further attempt to 
ensure the robustness of our results, we conducted sensitivity analyses (leave-one-out at top sites, excluding cohorts 
with only maternal-reported paternal BMI, excluding HELIX from the genome-wide meta-analysis, and meta-
regression of age).  

Our rich data enabled us to conduct a series of novel analyses. Firstly, we explored associations between paternal 
prenatal BMI and offspring DNA methylation at childhood, which allows exploration of the persistence of 
associations from birth, and/or the effect of paternal BMI postnatally (which we would expect to be correlated with 
prenatal paternal BMI). Secondly, we explored associations between paternal BMI and cellular heterogeneity, which 
is an important source of variation in methylation data, but also an interesting phenotype to study in its own right 
(54). Thirdly, we have previously shown that maternal BMI is associated with offspring methylation, which may 
reflect a causal intrauterine effect at some CpGs (26). Therefore, to help us tease apart paternal from maternal 
effects, we compared paternal models adjusted and unadjusted for maternal BMI and we also studied maternal BMI 
as the main exposure. A particular advantage here was that we included the same samples in both analyses and 
adjusted for the same covariates, so the sample sizes were the same and the main exposure (paternal or maternal 
BMI) was the only difference between models. We calculated the correlation between maternal and paternal BMI in 
each cohort which provided modest support for assortative mating, but by comparing paternal and maternal effect 
estimates and assessing enrichment of our paternal results for the CpGs we previously identified as associated with 
maternal BMI (26), we were able to infer that maternal BMI was not an important confounder driving associations 
between paternal BMI and offspring methylation.  
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Limitations 
There are a number of limitations that should be considered when interpreting our results. Firstly, the 450k array 
covers only 1.7% of CpGs on the genome, therefore regions (including imprinted regions) that might be differentially 
methylated in association with paternal BMI might be missed. Secondly, BMI could be a poor measure of paternal 
adiposity in our sample, partly due to general issues with the use of BMI as a measure of adiposity(60,61) (perhaps 
particularly in men) and partly due to measurement error introduced by self- or partner-report. One study showed 
that lean mass explained more variability in men’s BMI than body fat did, whereas the opposite was seen in 
women(60). Measurement error might be higher for paternal BMI than maternal BMI because few cohorts had 
direct measurements and in some instances BMI was reported for the father by the mother, introducing additional 
measurement error to the questionnaire reported variable (however, we found similar results in our EWAS meta-
analysis when we excluded cohorts that used maternal-report to define paternal BMI). More variation in offspring 
methylation might be captured by another measure such as fat mass percentage or a measure of “lipotoxicity” (61), 
but these data were not available. Thirdly, offspring blood might not be the most suitable tissue to study and effects 
might be seen in other tissues such as adipose (given previous evidence of associations between paternal and 
offspring adiposity), but again, we were limited by data availability. Fourthly, the range of paternal BMI in our study 
sample could be insufficient to show an effect. As with associations between maternal BMI and offspring adiposity 
(62), there might be a J- or U-shaped relationship between paternal BMI and offspring outcomes, whereby strong 
associations are only seen at the extremes of the distribution. We anticipated that we would not have enough power 
to dichotomise into (extreme) obese and lean groups, therefore we were limited to only studying paternal BMI 
across the whole range as a continuous variable. Indeed, in our birth analysis, only 10% of fathers across all cohorts 
were obese (Table 2; Supporting Information File 3), which is the same as a recent estimate of the worldwide 
prevalence of obesity in men, but much lower than the estimated prevalence of obesity in adults living in Europe 
(23%) and America (28%)(63), where most of our sample reside. This relatively low occurrence of paternal obesity 
(and therefore variability in BMI) in our sample may partly explain why we did not find stronger evidence of 
association with our outcome. Finally, paternal data, including paternal BMI, from birth cohort studies is potentially 
more at risk of bias than maternal data. Lower prioritisation and greater difficulties recruiting fathers can introduce a 
higher degree of missing data for fathers compared to mothers. If paternal participation is related to BMI, this could 
create a selection bias in our sample. Additionally, non-paternity (i.e. partners not being genetically related to their 
offspring) might also introduce bias if it is related to paternal BMI. Both of these issues could bias paternal estimates 
towards the null and therefore could be a plausible non-biological reason for our observation of more FDR<0.05 
associations between offspring methylation and maternal than paternal BMI. 

Suggestions for further research 
Paternal effects on offspring health have been observed, so there is a logical motivation to further investigate the 
potential underlying molecular mechanisms. As mentioned above, in studies of the effect of paternal adiposity, this 
work could focus on extreme ends of the BMI distribution and/or other more informative measures of adiposity such 
as fat mass index, waist-circumference or measures of lipotoxicity (61). There is also huge scope to study the effects 
of other paternal characteristics, such as health behaviours like smoking and alcohol consumption. Evidence from 
animal studies suggests that other epigenetic mechanisms such as long non-coding RNAs or tRNAs could be more 
likely intergenerational carriers of paternal information than DNA methylation and it would be useful to extend 
these investigations to humans. 

Conclusion 
In this large EWAS meta-analysis, we found little evidence of association between paternal pre-pregnancy BMI and 
offspring DNA methylation in blood, including at imprinted genes. However, this does not rule out the possibility of a 
paternal epigenetic effect in different tissues or via different mechanisms. More research is warranted to gain a 
greater understanding of the size and nature of contributions of paternal adiposity to offspring outcomes more 
broadly. 
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