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For preventing the spread of epidemics such as the coronavirus disease COVID-19, social distanc-
ing and the isolation of infected persons are crucial. However, existing reaction-diffusion equations
for epidemic spreading are incapable of describing these effects. We present an extended model for
disease spread based on combining an SIR model with a dynamical density functional theory where
social distancing and isolation of infected persons are explicitly taken into account. The model
shows interesting nonequilibrium phase separation associated with a reduction of the number of
infections, and allows for new insights into the control of pandemics.

Controlling the spread of infectious diseases, such as
the plague [1, 2] or the Spanish flu [3], has been an im-
portant topic throughout human history [4]. Currently,
it is of particular interest due to the worldwide outbreak
of the coronavirus disease 2019 (COVID-19) induced by
the novel coronavirus SARS-CoV-2 [5–10]. The spread of
this disease is difficult to control, since the majority of in-
fections are not detected [11]. Due to the lack of vaccines,
attempts to control the pandemic have mainly focused on
social distancing [12–15] and quarantine [16, 17], i.e., the
general reduction of social interactions, and in particular
the isolation of persons with actual or suspected infec-
tion. While political decisions on such measures require
a way for predicting their effects, existing theories do
not explicitly take them into account. In this article, we
present a dynamical density functional theory (DDFT)
[18–21] for epidemic spreading that allows to model the
effect of social distancing and isolation on infection num-
bers.

A quantitative understanding of disease spreading can
be gained from mathematical models [22–27]. A well-
known theory for epidemic dynamics is the SIR model
[28]

Ṡ = −cSI, (1)

İ = cSI − wI, (2)

Ṙ = wI, (3)

which has already been applied to the current coronavirus
outbreak [29–31]. It is a reaction-model that describes
the number of susceptible S, infected I, and recovered R
individuals as a function of time t. Susceptible individu-
als get the disease when meeting infected individuals at
a rate c. Infected persons recover from the disease at a
rate w. When persons have recovered, they are immune
to the disease.

A drawback of this model is that it describes a spatially
homogeneous dynamics, i.e., it does not take into account
the fact that healthy and infected persons are not dis-
tributed homogeneously in space, even though this fact
can have significant influence on the pandemic [32, 33].

To allow for spatial dynamics, disease-spreading theories
such as the SIR model have been extended to reaction-
diffusion equations [34–44], where a term Dφ

~∇2φ with
diffusion constant Dφ is added on the right-hand side of
the dynamical equation for φ = S, I,R.

Reaction-diffusion equations, however, still have the
problem that they – being based on the standard diffu-
sion equation – do not take into account particle inter-
actions other than the reactions. This issue arises, e.g.,
in chemical reactions in crowded environments such as
inside a cell. In this case, the reactands, which are not
pointlike, cannot move freely, which prevents them from
meeting and thus from reacting. To get an improved
model, one can make use of the fact that the diffusion
equation is a special case of DDFT. In this theory, the
time evolution of a density field ρ(~r, t) with spatial vari-
able ~r is given by

∂tρ = Γ~∇ ·
(
ρ~∇δF

δρ

)
(4)

with a mobility Γ and a free energy F . Note that
we have written Eq. (4) without noise terms, which
implies that ρ(~r, t) denotes an ensemble average [45].
The free energy is given by F = Fid + Fexc + Fext.Its
first contribution is the ideal gas free energy Fid =
β−1

∫
ddr ρ(~r, t)(ln(ρ(~r, t)Λd)−1) corresponding to a sys-

tem of noninteracting particles with the inverse temper-
ature β, number of spatial dimensions d, and thermal de
Broglie wavelength Λ. If this is the only contribution,
Eq. (4) reduces to the standard diffusion equation with
D = Γβ−1. The second contribution is the excess free en-
ergy Fexc, which takes the effect of particle interactions
into account. It is typically not known exactly and has to
be approximated. The third contribution Fext incorpo-
rates the effect of an external potential Uext(~r, t). DDFT
can be extended to mixtures [46–49], which makes it ap-
plicable to chemical reactions. While DDFT is not an
exact theory (it is based on the assumption that the den-
sity is the only slow variable in the system [50, 51]), it
is nevertheless a significant improvement compared to
the standard diffusion equation as it allows to incor-
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porate the effects of particle interactions and generally
shows excellent agreement with microscopic simulations.
In particular, it allows to incorporate the effects of par-
ticle interactions such as crowding in reaction-diffusion
equations. This is done by replacing the diffusion term
D~∇2φ(~r, t) in the standard reaction-diffusion model with
the right-hand side of the DDFT equation (4) [52–54].
Thus, given that its equilibrium counterpart, static den-
sity functional theory, has already been used to model
crowds [55], DDFT is a very promising approach for the
development of extended models for epidemic spreading.
However, despite the successes of DDFT in other bio-
logical contexts such as cancer growth [56, 57], protein
adsorption [58–61], ecology [62], or active matter [63–75],
no attempts have been made to apply DDFT to epidemic
spreading (or other types of socio-economic dynamics).

In this work, we use the idea of a reaction-diffusion
DDFT to extend the SIR model given by Eqs. (1)-(3)
to a (probably spatially inhomogeneous) system of in-
teracting persons, which compared to existing methods
allows the incorporation of social interactions and social
distancing. DDFT describes the diffusive relaxation of
an interacting system and is thus appropriate if we make
the plausible approximation that the underlying diffusion
behavior of persons is Markovian [76] and ergodic [77].
Using the Mori-Zwanzig formalism [78–82], one can con-
nect the DDFT model and its coefficients to the dynam-
ics of the individual persons [50, 51, 83]. The extended
model reads

∂tS = ΓS ~∇ ·
(
S~∇δF

δS

)
− cSI, (5)

∂tI = ΓI ~∇ ·
(
I ~∇δF

δI

)
+ cSI − wI −mI, (6)

∂tR = ΓR~∇ ·
(
R~∇δF

δR

)
+ wI. (7)

Note that we use different mobilities ΓS , ΓI , and ΓR for
the different fields S, I, and R, which allows to model the
fact that infected persons, who might be in quarantine,
move less than healthy persons. For generality, we have
added a term −mI on the right-hand side of Eq. (6) to
allow for death of infected persons, which occurs at a
rate m (cf. SIRD model [84, 85]). Since we are mainly
interested in how fast the infection spreads, we will set
m = 0 in the following. In this case, since the total
number of persons is constant, one can easily show that

~J = −ΓSS~∇
δF

δS
− ΓII ~∇

δF

δI
− ΓRR~∇

δF

δR
(8)

is a conserved current. The ideal gas term Fid in the free
energy corresponds to a system of noninteracting persons
and ensures that standard reaction-diffusion models for
disease spreading [35] arise as a limiting case. The tem-
perature measures the intensity of motion of the persons.
A normal social life corresponds to an average temper-
ature, while the restrictions associated with a pandemic

will lead to a lower temperature. Moreover, the temper-
ature can be position-dependent if the epidemic is dealt
with differently in different places. The excess free en-
ergy Fexc describes interactions. This is crucial here as
it allows to model effects of social distancing and self-
isolation via a repulsive potential between the different
persons. Social distancing is a repulsion between healthy
persons, while self-isolation corresponds to a stronger re-
pulsive potential between infected persons and other per-
sons. Thus, we set Fexc = Fsd + Fsi with Fsd describing
social distancing and Fsi self-isolation. Note that effects
of such a repulsive interaction are not necessarily cov-
ered by a general reduction of the diffusivity in existing
reaction-diffusion models. For example, if people prac-
tice social distancing, they will keep a certain distance
(6 feet is recommended [86]) in places such as supermar-
kets, where persons accumulate even during a pandemic,
or if people live in crowded environments, as was the case
on the ship “Diamond Princess” [16]. In our model, in
the cases of two particles approaching each other, which
even at lower temperatures still happens, repulsive inter-
actions will reduce the probability of a collision and thus
of an infection. Existing models can only incorporate
this in an effective way as a reduction of the transmission
rate c, which implies, however, that properties of the dis-
ease (How infectious is it?) and measures implemented
against it (Do people stay away from each other?) cannot
be modelled independently. Furthermore, interactions al-
low for the emergence of spatio-temporal patterns. The
final contribution is the external potential Uext. In gen-
eral, it allows to incorporate effects of confinement into
DDFT. Here, it corresponds to things such as externally
imposed restrictions of movement. Travel bans or the
isolation of a region with high rates of infection enter the
model as potential wells.

The advantage of our model compared to the standard
SIR theory is that it allows – in a way that is computa-
tionally much less expensive than “microscopic” simula-
tions, since the computational cost is independent of the
number of persons [87] – to study the way in which differ-
ent actions affect how the disease spreads. For example,
people staying at home corresponds to reducing the tem-
perature, quarantine measures correspond to a strongly
repulsive potential between infected an healthy persons,
and mass events correspond to attractive potentials.

Specifically, we assume that both types of interactions
can be modelled via Gaussian pair potentials, depending
on the parameters Csd and Csi determining the strength
and σsd and σsi determining the range of the interac-
tions. Combining this assumption with a Ramakrishnan-
Yussouff approximation [88] for the excess free energy
and a Debye-Hückel approximation [89] for the two-body
correlation, we get the specific SIR-DDFT model

∂tS = DS
~∇2S − ΓS ~∇ ·

(
S~∇(CsdKsd ? (S +R)

+ CsiKsi ? I)
)
− cSI,

(9)
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∂tI = DI
~∇2I − ΓI ~∇ ·

(
I ~∇(CsiKsi ? (S + I +R))

)
+ cSI − wI, (10)

∂tR = DR
~∇2R− ΓR~∇ ·

(
R~∇(CsdKsd ? (S +R)

+ CsiKsi ? I)
)

+ wI
(11)

with the diffusion coefficients Dφ = Γφβ
−1 for φ =

S, I,R, the kernels Ki(~r) = exp(−σi~r2) for i = sd, si,
and the spatial convolution ?. A possible generalization
is discussed in the Supplemental Material.

We begin our investigation with a linear stability anal-
ysis of this model, using a general pair potential, in order
to determine whether a homogeneous state with I = 0,
which is always a fixed point, is stable. The full calcula-
tion is given in the Supplemental Material. In the simple
SIR model, the S-R plane in phase space (these are the
states where everyone is healthy) becomes unstable when
cS0 > w, where S0 is the initial number of susceptible
persons. Thus, the pandemic cannot break out if persons
recover faster than they are able to infect others. A linear
stability analysis of the full model, performed under the
assumption that the initial number of immune persons
R0 is small (which corresponds to a new disease) gives
the eigenvalue λ1 = cS0−w−DIk

2 with the wavenumber
k, such that this instability criterion still holds when in-
teractions are present. This means that social distancing
cannot stabilize a state without infected persons, and can
thus not prevent the outbreak of a disease. As reported in
the literature [35], the marginal stability hypothesis [90–
94] gives, based on this dispersion, a front propagation
speed of v = 2

√
DI(cS0 − w). However, there are two

additional eigenvalues λ2/3 = (−Dj + j0ΓjUsdĥd(k))k2

with j = S,R and the Fourier transformed social dis-
tancing potential Usdĥd(k) associated with instabilities
due to interactions. Front speeds for dispersions of this
form have been calculated by Archer et al. [92]. If both
epidemic and interaction modes are unstable, the fronts
might interfere, leading to interesting results depending
on their different speeds.

For a further analysis, we solved Eqs. (9)-(11) numeri-
cally. We assume x and t to be dimensionless, such that
all model parameters can be dimensionless too. The cal-
culation was done in one spatial dimension on the domain
x ∈ [0, 1] with periodic boundary conditions, using an ex-
plicit finite-difference scheme with step size dx = 0.005
(individual simulations) or dx = 0.01 (parameter scan)
and adaptive time steps. As an initial condition, we use a
Gaussian peak with amplitude 1 and variance 50−2 cen-
tered at x = 0.5 for S(x, 0), I(x, 0) = 0.001S(x, 0), and
R(x, 0) = 0. Since the effect of the parameters c and w on
the dynamics is known from previous studies of the SIR
model, we fix their values to c = 1 and w = 0.1 to allow
for an outbreak. Moreover, we set ΓS = ΓI = ΓR = 1,
DS = DI = DR = 0.01, and σsd = σsi = 100. The rel-
evant control parameters are Csd and Csi, which control
the effects of social interactions that are the new aspect

FIG. 1. Phase diagram for the SIR-DDFT model showing the
dependence of (a) the maximal number of infected persons
Imax and (b) the final number of susceptible persons S∞ on
the strength of self-isolation Csi and social distancing Csd. A
phase boundary is clearly visible.

of our model. We assume these parameters to be ≤ 0,
which corresponds to repulsive interactions.

Measures implemented against a pandemic will typi-
cally have two aims: reduction of the total number of
infected persons, i.e., making sure that the final number
of noninfected persons S∞ = limt→∞ S(t) is large, and
reduction of the maximum number of infected persons
Imax for keeping the spread within the capacities of the
healthcare system. Using parameter scans, we can test
whether social distancing and self-isolation can achieve
those effects.

As can be seen from the phase diagrams for the SIR-
DDFT model shown in Fig. 1, there is a clear phase
boundary between the upper left corner, where low values
of Imax and high values of S∞ show that the spread of the
disease has been significantly reduced, and the rest of the
phase diagram, where the disease spreads in essentially
the same way as in the model without social distancing.
Since all simulations were performed with parameters of c
and w that correspond to a disease outbreak in the usual
SIR model, this shows that a reduction of social inter-
actions can significantly inhibit epidemic spreading, and
that the SIR-DDFT model is capable of demonstrating
these effects. The phase boundary shows that, for a re-
duction of spreading by social measures, two conditions
have to be satisfied. First, |Csi| has to be sufficiently
large. Second, |Csi| has to be, by a certain amount,
larger than |Csd|. Within our physical model of repul-
sively interacting particles, this arises from the fact that
if healthy “particles” are repelled more strongly by other
healthy particles than by infected ones, they will spend
more time near infected particles and thus are more likely
to be infected themselves. Physically, |Csi| > |Csd| is thus
a very reasonable condition given that infected persons,
at least once they develop symptoms, will be isolated
more strongly than healthy persons. Figure 2 shows the
time evolution of the total numbers S(t), I(t), and R(t) of
susceptible, infected, and recovered persons, respectively,
for the cases without interactions (usual SIR model with
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FIG. 2. Time evolution of the total number of susceptible, in-
fected, and recovered persons for no interactions (Csi = Csd =
0) and for interactions with Csi = 2Csd = −10. A reduction
of social contacts flattens the curve I(t).

diffusion) and with interactions (our model). If no inter-
actions are present (i.e., Csi = Csd = 0), I(t) reaches a
maximum value of about 0.4 and the pandemic is over at
time t ≈ 100. In the case with interactions (we choose
Csi = 2Csd = −10, i.e., parameter values inside the social
isolation phase), the maximum is significantly reduced to
a value of about 0.1. The final value of R(t), which mea-
sures the total number of persons that have been infected
during the pandemic, decreases from about 1.0 to about
0.8. Moreover, it takes significantly longer (until time
t ≈ 200) for the pandemic to end. This demonstrates
that social distancing and self-isolation have the effects
they are supposed to have, i.e., to flatten the curve I(t) in
such a way that the healthcare system is able to take care
of all cases. The theoretical predictions for the effects of
quarantine on the course of I(t) (sharp rise, followed by
a bend and a flat curve) are in good qualitative agree-
ment with recent data from China [95, 96], where strict
regulations were implemented to control the COVID-19
spread [17].

To explain the observed phenomena, it is helpful to an-
alyze the spatial distribution of susceptible and infected
persons during the pandemic. Figure 3 visualizes I(x, t)
with x = (~r)1. Interestingly, during the time interval
where the pandemic is present, a phase separation can
be observed in which the infected persons accumulate
at certain spots separated from the susceptible persons.
(As this effect is reminiscent of measures that used to be
implemented against the spread of leprosy, we refer to
these spots as “leper colonies”.) This phase separation is
a consequence of the interactions. Since the formation of
leper colonies reduces the spatial overlap of the functions
I(x, t) and S(x, t), i.e., the amount of contacts between
infected and susceptible persons, the total number of in-

FIG. 3. Number of infected persons I(x, t) as a function of
space x and time t. During the epidemic spreading, the in-
fected persons self-organize into “leper colonies”.

fections decreases significantly and it takes longer until
enough persons are immune to stop the pandemic.

The leper colony transition is an interesting type of
nonequilibrium phase behavior in its own right. Recall
that we have motivated the SIR-DDFT model based on
theories for nonideal chemical reactions. It is thus very
likely that effects similar to the ones observed here can be
found in chemistry. In this case, they would imply that
particle interactions can significantly affect the amount
of a certain substance that is produced within a chemical
reaction, and that such reactions are accompanied by new
types of (transient) pattern formation.

In summary, we have presented a DDFT-based exten-
sion of the usual models for epidemic spreading that al-
lows to incorporate social interactions, in particular in
the form of self-isolation and social distancing. This
has allowed us to analyze the effect of these measures
on the spatio-temporal evolution of pandemics. Given
the importance of the reduction of social interactions for
the control of pandemics, the model provides a highly
useful new tool for predicting epidemics and deciding
how to react to them. Moreover, it shows an interest-
ing phase behavior relevant for future work on DDFT
and nonideal chemical reactions. A possible extension of
our model is the incorporation of fractional derivatives
[97, 98]. Furthermore, enhanced simulations in two spa-
tial dimensions could show interesting pattern formation
effects associated with leper colony formation.
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[67] C. Hoell, H. Löwen, and A. M. Menzel, “Particle-scale
statistical theory for hydrodynamically induced polar or-
dering in microswimmer suspensions,” Journal of Chem-
ical Physics 149, 144902 (2018).
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tals and their stability,” Physical Review E 89, 022301
(2014).

[72] R. Wittmann and J. M. Brader, “Active Brownian par-
ticles at interfaces: an effective equilibrium approach,”
Europhysics Letters 114, 68004 (2016).

[73] R. Wittmann, C. Maggi, A. Sharma, A. Scacchi, J. M.
Brader, and U. Marini Bettolo Marconi, “Effective equi-
librium states in the colored-noise model for active mat-
ter I. Pairwise forces in the Fox and unified colored noise
approximations,” Journal of Statistical Mechanics: The-
ory and Experiment 2017, 113207 (2017).

[74] R. Wittmann, U. Marini Bettolo Marconi, C. Maggi, and
J. M. Brader, “Effective equilibrium states in the colored-
noise model for active matter II. A unified framework for
phase equilibria, structure and mechanical properties,”
Journal of Statistical Mechanics: Theory and Experi-
ment 2017, 113208 (2017).

[75] T. F. F. Farage, P. Krinninger, and J. M. Brader, “Effec-
tive interactions in active Brownian suspensions,” Phys-
ical Review E 91, 042310 (2015).

[76] M. te Vrugt, “The five problems of irreversibility,” in
preparation (2020).

[77] T. Schindler, R. Wittmann, and J. M. Brader, “Particle-
conserving dynamics on the single-particle level,” Physi-
cal Review E 99, 012605 (2019).

[78] S. Nakajima, “On quantum theory of transport phenom-
ena: steady diffusion,” Progress of Theoretical Physics
20, 948–959 (1958).

[79] H. Mori, “Transport, collective motion, and Brownian
motion,” Progress of Theoretical Physics 33, 423–455
(1965).

[80] R. Zwanzig, “Ensemble method in the theory of irre-
versibility,” Journal of Chemical Physics 33, 1338–1341
(1960).

[81] H. Grabert, Projection Operator Techniques in Nonequi-
librium Statistical Mechanics, 1st ed., Springer Tracts in
Modern Physics, Vol. 95 (Springer-Verlag, Berlin, 1982).

[82] M. te Vrugt and R. Wittkowski, “Mori-Zwanzig projec-
tion operator formalism for far-from-equilibrium systems
with time-dependent Hamiltonians,” Physical Review E
99, 062118 (2019).

[83] A. Yoshimori, “Microscopic derivation of time-dependent
density functional methods,” Physical Review E 71,
031203 (2005).

[84] P. Zhu, X. Wang, S. Li, Y. Guo, and Z. Wang, “Investiga-
tion of epidemic spreading process on multiplex networks
by incorporating fatal properties,” Applied Mathematics
and Computation 359, 512–524 (2019).

[85] T. Berge, J. M.-S. Lubuma, G. M. Moremedi, N. Morris,
and R. Kondera-Shava, “A simple mathematical model
for Ebola in Africa,” Journal of Biological Dynamics 11,
42–74 (2017).

[86] W. Zhu, “Should, and how can, exercise be done during a
coronavirus outbreak? An interview with Dr. Jeffrey A.

Woods,” Journal of Sport and Health Science 9, 105–107
(2020).
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SUPPLEMENTAL MATERIAL

I. GENERALIZED MODEL

Here, we present a possible generalization of our model. In the main text, we have used the decomposition

Fexc = Fsd + Fsi (S1)

with

Fsd = −
∫

ddr

∫
ddr′ Csde

−σsd(~r−~r′)2
(

1

2
S(~r, t)S(~r′, t) + S(~r, t)R(~r′, t) +

1

2
R(~r, t)R(~r′, t)

)
, (S2)

Fsi = −
∫

ddr

∫
ddr′ Csie

−σsi(~r−~r′)2I(~r, t)

(
1

2
I(~r′, t) + S(~r′, t) +R(~r′, t)

)
, (S3)

which gives the excess free energy (i.e., the contribution from interactions) as a sum of social distancing and self-
isolation. Instead, one can use the form

Fexc = Fsd + Fiso + Fill. (S4)

In this case, social distancing remains unaffected. However, there are now two terms Fiso and Fill determining the way
infected persons interact with others. Fiso is the isolation term, which corresponds to a repulsive interaction between
infected and healthy individuals. The term Fill models the interaction of infected persons with other infected persons.
This can have various forms. They repel each other if they practice social distancing or self-isolation, but they can
also attract each other (e.g., if they intentionally accumulate in a hospital or quarantine station). Assuming that the
interaction corresponding to Fill is also Gaussian, i.e.,

Fiso = −
∫

ddr

∫
ddr′ Cisoe

−σiso(~r−~r′)2I(~r, t)(S(~r′, t) +R(~r′, t)), (S5)

Fill = −1

2

∫
ddr

∫
ddr′ Cille

−σill(~r−~r′)2I(~r, t)I(~r′, t) (S6)

with the parameters Ciso and Cill for the strength and σiso and σill for the range of the infected-noninfected and
infected-infected interactions, respectively, the model given by Eqs. (9)-(11) in the main text generalizes to

∂tS = DS
~∇2S − ΓS ~∇ ·

(
S~∇(CsdKsd ? (S +R) + CisoKiso ? I)

)
− cSI, (S7)

∂tI = DI
~∇2I − ΓI ~∇ ·

(
I ~∇(CisoKiso ? (S +R) + CillKill ? I)

)
+ cSI − wI, (S8)

∂tR = DR
~∇2R− ΓR~∇ ·

(
R~∇(CsdKsd ? (S +R) + CisoKiso ? I)

)
+ wI (S9)

with the kernels

Kiso(~r) = e−σiso~r
2

, (S10)

Kill(~r) = e−σill~r
2

(S11)

and Ksd as defined in the main text. For Ciso = Cill = Csi and σiso = σill = σsi, the standard case is recovered. The
general model can also allow for attractive interactions between infected persons, or simply for a reduction of the
repulsion between them (resulting from the fact that they are already ill).
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II. LINEAR STABILITY ANALYSIS

Here, we perform a linear stability analysis of the extended model given by Eqs. (5)-(7) from the main text. For
the excess free energy, we use the combined Ramakrishnan-Yussouff-Debye-Hückel approximation as in Eqs. (9)-(11),
but now with general two-body potentials Usdhd(x − x′) for social distancing and Usihi(x − x′) for self-isolation. In
one spatial dimension, we obtain

∂tS(x, t) = DS∂
2
xS(x, t)− cS(x, t)I(x, t)

− ΓSUsd∂x

(
S(x, t)∂x

∫
dx′ hd(x− x′)(S(x′, t) +R(x′, t))

)
− ΓSUsi∂x

(
S(x, t)∂x

∫
dx′ hi(x− x′)I(x′, t)

)
,

(S12)

∂tI(x, t) = DI∂
2
xI(x, t) + cS(x, t)I(x, t)− wI(x, t)

− ΓIUsi∂x

(
I(x, t)∂x

∫
dx′ hi(x− x′)(S(x′, t) + I(x′, t) +R(x′, t))

)
,

(S13)

∂tR(x, t) = DR∂
2
xR(x, t) + wI(x, t)

− ΓRUsd∂x

(
R(x, t)∂x

∫
dx′ hd(x− x′)(S(x′, t) +R(x′, t))

)
− ΓRUsi∂x

(
R(x, t)∂x

∫
dx′ hi(x− x′)I(x′, t)

)
.

(S14)

Any homogeneous state with S = S0, R = R0, and I = 0, where S0 and R0 are constants, will be a fixed point. We
consider fields S = S0 + S̃ and R = R0 + R̃ with small perturbations S̃ and R̃ and linearize in the perturbations. This
results in

∂tS̃(x, t) = DS∂
2
xS̃(x, t)− cS0I(x, t)

− S0ΓSUsd∂
2
x

∫
dx′ hd(x− x′)(S̃(x′, t) + R̃(x′, t))

− S0ΓSUsi∂
2
x

∫
dx′ hi(x− x′)I(x′, t),

(S15)

∂tI(x, t) = DI∂
2
xI(x, t) + cS0I(x, t)− wI(x, t), (S16)

∂tR̃(x, t) = DR∂
2
xR̃(x, t) + wI(x, t)

−R0ΓRUsd∂
2
x

∫
dx′ hd(x− x′)(S̃(x′, t) + R̃(x′, t))

−R0ΓRUsi∂
2
x

∫
dx′ hi(x− x′)I(x′, t).

(S17)

We now drop the tilde and make the ansatz S = S1 exp(λt − ikx), I = I1 exp(λt − ikx), and R = R1 exp(λt − ikx).
This gives the eigenvalue equation

λ

S1

I1
R1

 =

−DSk
2 + S0ΓSUsdĥd(k)k2 S0ΓSUsiĥi(k)k2 − cS0 S0ΓSUsdĥd(k)k2

0 −DIk
2 + cS0 − w 0

R0ΓRUsdĥd(k)k2 w +R0ΓRUsiĥi(k)k2 −DRk
2 +R0ΓRUsdĥd(k)k2

S1

I1
R1

 . (S18)

Here, ĥd(k) and ĥi(k) are the Fourier transforms of hd(x − x′) and hi(x − x′), respectively. The corresponding
characteristic polynomial reads

(−λ−DIk
2 +cS0−w)((−DSk

2 +S0ΓSUsdĥd(k)k2−λ)(−DRk
2 +R0ΓRUsdĥd(k)k2−λ)−S0R0k

4U2
sdĥ

2
d(k)ΓSΓR) = 0.

(S19)
Rather than solving this third-order polynomial in λ exactly, we consider the limit of long wavelengths. For k = 0,
which corresponds to the usual SIR model given by Eqs. (1)-(3) in the main text if we assume k2ĥd(k) = 0, Eq. (S19)
simplifies to

(−λ+ cS0 − w)λ2 = 0, (S20)
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which has the solutions

λ1 = cS0 − w, (S21)

λ2 = 0. (S22)

This means that the epidemic will start growing when cS0 > w, since in this case there is a positive eigenvalue. When
interpreting this result, one should take into account that, since a susceptible person that has been infected cannot
become susceptible again, the system will, after a small perturbation, not go back to the same state as before even if
w > cS0. Actually, we have tested the linear stability of the S-R plane in phase space, and the fact that any parameter
combination of S0 and R0 with I = 0 is a solution of the SIR model is reflected by the existence of the eigenvalue
λ = 0 with algebraic multiplicity 2 (a perturbation within the S-R plane will obviously not lead to an outbreak).

Next, we consider the case k 6= 0, but assume that we can neglect the term S0R0k
4U2

sdĥ
2
d(k)ΓSΓR in Eq. (S19).

This corresponds to assuming either R0 = 0 (i.e., we consider the begin of an outbreak of a new disease that no one
is yet immune against) or small k (such that terms of order k4 can be neglected). Then, Eq. (S19) gives

(−λ−DIk
2 + cS0 − w)(−DSk

2 + S0ΓSUsdĥd(k)k2 − λ)(−DRk
2 +R0ΓRUsdĥd(k)k2 − λ) = 0. (S23)

We can immediately read off the solutions

λ1 = cS0 − w −DIk
2, (S24)

λ2 = −DSk
2 + S0ΓSUsdĥd(k)k2, (S25)

λ3 = −DRk
2 +R0ΓRUsdĥd(k)k2. (S26)

The result for λ1 shows that the initial state still becomes unstable for cS0 > w, i.e., the interactions cannot stabilize
a state without infected persons that would be unstable otherwise. The eigenvalues λ2 and λ3, which were 0 in the
long-wavelength limit, now describe the dispersion due to interparticle interactions that may lead to instabilities not
related to disease outbreak.

For determining the propagation speed of fronts, we can use the marginal stability hypothesis [90–94]. We transform
to the co-moving frame that has velocity v and assume that the growth rate in this frame is zero at the leading edge.
Thereby, we obtain for a general dispersion λ(k) the equations

iv +
dλ

dk
= 0, (S27)

Re(ivk + λ) = 0. (S28)

These equations can be solved for the complex wavenumber k = kre + ikim and the velocity v. For the dispersion
λ1 = cS0 − w −DIk

2 (we are interested in instabilities associated with infections), Eqs. (S27) and (S28) lead to

iv − 2iDIkim = 0, (S29)

−2DIkre = 0, (S30)

−vkim + cS0 − w −DI(k
2
re − k2im) = 0. (S31)

The solution of these equations is

kre = 0, (S32)

kim = ±
√
cS0 − w
DI

, (S33)

v = 2
√
DI(cS0 − w), (S34)

which is in agreement with results from the literature [35]. Front speeds for dispersions of the form (S25) and (S26)
can be found in Ref. [92].
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