
Dynamic Competing Risk Modeling COVID-19
in a Pandemic Scenario

Min Lu∗and Hemant Ishwaran†

Department of Public Health Sciences, University of Miami

April 13, 2020

The emergence of coronavirus disease 2019 (COVID-19) in the United States has forced fed-
eral and local governments to implement containment measures. Moreover, the severity of
the situation has sparked engagement by both the research and clinical community with the
goal of developing effective treatments for the disease. This article proposes a time dynamic
prediction model with competing risks for the infected individual and develops a simple tool
for policy makers to compare different strategies in terms of when to implement the strictest
containment measures and how different treatments can increase or suppress infected cases.
Two types of containment strategies are compared: (1) a constant containment strategy that
could satisfy the needs of citizens for a long period; and (2) an adaptive containment strategy
whose strict level changes across time. We consider how an effective treatment of the disease
can affect the dynamics in a pandemic scenario. For illustration we consider a region with
population 2.8 million and 200 initial infectious cases assuming a 4% mortality rate compared
with a 2% mortality rate if a new drug is available. Our results show compared with a constant
containment strategy, adaptive containment strategies shorten the outbreak length and reduce
maximum daily number of cases. This, along with an effective treatment plan for the disease
can minimize death rate.

Keywords: Cumulative incidence function, survival function, adaptive containment measures, pan-
demic, period of communicability, infectious period

1 Introduction
To prevent the spread of a new infectious disease such as coronavirus disease 2019 (COVID-19),
policy makers rely on prediction models to foresee the number of infectious cases and to inform
best containment measure strategies including patient quarantine, active monitoring of contacts,
border controls, and community education and precautions [19, 16, 10, 12]. There are many pre-
diction models available for this kind of modeling [7, 1, 9, 6, 18, 8, 3, 2, 14, 21]. In predicting
local COVID-19 spread, there are two major challenges. Firstly, number of actual infected cases
is usually unconfirmed and could be far larger than confirmed cases because there are significant
number of infected cases in incubation period and test kits may be insufficient. Secondly, regions
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that experienced earlier outbreaks can provide valuable information, such as the distribution of cure
time, death time, and mortality rate [20], but it is not easy to integrate these dynamic parameters
into many current models.

This article provides a simple and robust model framework whose parameters are dynamically
adjustable and generally interpretable for policy makers. This framework utilizes competing risks
survival analysis to borrow information from regions that experienced earlier outbreaks. Moreover,
the model enables containment measures to change over time [5] through introducing a novel
reproduction number which incorporates containment measures and the basic reproduction number
(R0).

2 The model
Assume the disease of interest has a M -day period of communicability so that infected people are
either cured or dead within M days. The value M can also be treated as a parameter in our model.
Denote the mortality rate within an infectious period as mdeath. On day t, denote the number of
people that have been infected for d days as pt,d. The total number of infectious cases at time t is
Pt =

∑M
d=1 pt,d, where pt,d is determined by the following factors:

1. Mortality rate for people that have been infected for d days, denoted as md.

2. Cure rate for people that have been infected for d days, denoted as cd.

3. Average number of people an infectious person can communicate on day t, denoted as Rt.

4. Number of travelers from other areas who have been infected for d days, denoted as pimp
t,d .

When moving forward from day t to t + 1, the number of infectious cases, Pt+1, is the sum
of three terms: (a) the number of survived but uncured cases from day t; (b) the number of newly
infected cases; and (c) the number of imported cases, denoted as P imp

t+1 =
∑M

d=1 p
imp
t,d [4, 13, 17]:

Pt+1 :=
M∑
d=1

pt+1,d =
M−1∑
d=1

pt,d(1−md − cd) + PtRt + P imp
t+1 . (1)

Here we use pt+1,1 = PtRt, which counts newly infected cases, and for d = 1, . . . ,M − 1, we
have pt+1,d+1 = pt,d(1 − md − cd). Note that the people who have been infected for M days on
day t (pt,M ) will not affect Pt+1 since their period of communicability will be over and they will
be either dead or cured on day t+ 1.

3 Competing risk survival analysis for mortality and cure pa-
rameter specification

We use a competing risks framework to specify the mortality rate md and cure rate cd. Let T be
the continuous event time of an infected patient. Notice that T is subject to two mutually exclusive
competing risks: cure or death. Let δ ∈ {1, 2} be the indicator recording which event occurs;
δ = 1 denotes cure and δ = 2 denotes death.
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The cumulative incidence (CIF) is the probability of experiencing an event of type j by time t,
i.e. Fj(t) = P{T ≤ t, δo = j}. The CIF is related to the survival function S(t) = P{T ≥ t} by
the identity

S(t) = 1− P{T ≤ t}
= 1− [P{T ≤ t, δ = 1}+ P{T ≤ t, δ = 2}]
= 1− F1(t)− F2(t).

The cause-specific hazard hj for event j is given by

hj(t) = lim
∆t→0

P{t ≤ T ≤ t+ ∆t, δ = j|T ≥ t}
∆t

=
fj(t)

S(t)
, t > 0.

Thus hj has the following intuitive meaning

S(t)hj(t) �
P{t ≤ T ≤ t+ ∆t, δ = j}

∆t
.

From this, one can deduce that

Fj(t) =

∫ t

0

S(s)hj(s) ds =

∫ t

0

S(s) dHj(s)

where Hj(t) =
∫ t

0
hj(s)ds is the cumulative hazard function (CHF). By the mutual exclusiveness

of the two events, the hazard for T is h(t) = h1(t) + h2(t). Because T is a continuous random
variable, S(t) = exp(−H(t)) where H(t) =

∫ s
0
h(s)ds is the CHF. It follows that

Fj(t) =

∫ t

0

exp

(
−
∫ s

0

2∑
l=1

hl(u)du

)
dHj(s) =

∫ t

0

exp(−H1(s)) exp(−H2(s)) dHj(s). (2)

Let Tj be a continuous random variable with hazard hj . Keep in mind Tj is used only for theoretical
construction and is not related to T . Let fTj and FTj be the density and cumulative distribution
function (CDF) for Tj . Thus

hj(t) =
fTj(t)

1− FTj(t)
=
fTj(t)

STj(t)

where STj(t) = exp(−Hj(t)) is the survival function for Tj . Using (2), we can rewrite the CIF as

Fj(t) =

∫ t

0

ST1(s)ST2(s)hj(s) ds =

∫ t

0

ST1(s)ST2(s)
fTj(s)

STj(s)
ds.

Cancelling the common value in numerator and denominator we obtain

F1(t) =

∫ t

0

ST2(s) dF1(s), F2(t) =

∫ t

0

ST1(s) dF2(s). (3)

Identity (3) provides a method for specifying the CIF in terms of the hazard function. A flexible
choice is the lognormal hazard. This equals the hazard for the random variable Tj that is normally
distributed under a log base-e transformation,

lnTj ∼ N(µj, σ
2
j ).
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Let φµ,σ and Φµ,σ denote the density and CDF for a N(µ, σ2) random variable. By (3) we have

F1(t) =

∫ t

0

P{T2 ≥ s} dP{T1 ≤ s}

=

∫ t

0

P{lnT2 ≥ ln s} dP{T1 ≤ s}

=

∫ t

0

[1− Φµ2,σ2(ln s)] dP{T1 ≤ s}

=

∫ t

0

dP{T1 ≤ s} −
∫ t

0

Φµ2,σ2(ln s) dP{T1 ≤ s}

= P{lnT1 ≤ ln t} −
∫ t

0

Φµ2,σ2(ln s) dP{lnT1 ≤ ln s}

= Φµ1,σ1(ln t)−
∫ t

0

Φµ2,σ2(ln s)
1

s
φµ1,σ1(ln s) ds.

Similarly, we have

F2(t) = Φµ2,σ2(ln t)−
∫ t

0

Φµ1,σ1(ln s)
1

s
φµ2,σ2(ln s) ds.

Both F1 and F2 can be rapidly computed numerically using standard software.
Once the CIF is determined, parameters md and cd are obtained as follows:

md = P{d− 1 < T ≤ d, δ = 2} = F2(d)− F2(d− 1),

cd = P{d− 1 < T ≤ d, δ = 1} = F1(d)− F1(d− 1). (4)

Note that while the dynamic model (1) implicitly assumes a time window of [0,M ], it is not
necessary to impose this constraint in the competing risk analysis. We can instead view (1) as an
M -window approximation where

cM � (1−mdeath) = F1(∞), mM � mdeath = F2(∞) and mM + cM � 1. (5)

This alleviates restrictive assumptions on the survival model, but more importantly allows survival
quantities to be fully data driven. This is especially useful when fully nonparametric methods for
estimating the CIF are utilized [11].

4 Reproduction number specification
The reproductive numbers Rt is determined by the basic reproduction number R0, the containment
measures on day t, and the percentage of uninfected people. It is assumed that cured cases will not
get infected again. Since R0 is a constant, we only need to set

Rt = rt ×
Ppop − Pt −

∑t
i=1(Di + Ci)

Ppop

,
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whereDi =
∑M

d=2 pi−1,dmd andCi =
∑M

d=2 pi−1,dcd are the number of deaths and number of cured
patients on day t = i respectively, and Ppop denotes the total population. The crucial parameter is
rt which is used to specify the containment scenario.

For initialization, values are generated from Poisson distribution to mimic the individual vari-

ation [15], where p1,d =
∑P1

i=1 1{Xi = d}, pimp
t,d =

∑P
imp
t
j=1 1{Xj = d} and (Xi, Xj)i,j are indepen-

dently distributed from a Poisson distribution with mean λ.

5 Results and conclusion
To compare different pandemic scenarios, consider a region who will experience a COVID-19
outbreak in the scenario illustrated in Table 1. The first set of parameters are disease related and
include parameters used for the survival analysis. For this we use a lognormal hazard and we are
comparing two treatment plans: for scenario A and B, the mortality rate is mdeath = 0.04 in 50
days, σ1 = 0.3, σ2 = 0.7, µ1 = 3.19 and µ2 = 4.57; for scenario C, we suppose a new effective
drug is available and the mortality rate is mdeath = 0.02 in 40 days, σ1 = 0.3, σ2 = 0.7, µ1 = 2.95
and µ2 = 4.6. Note that in order to satisfy the constraint cM + mM = 1 (c.f. (5)) we apply the
following transformation:

md ←
md ×mdeath∑M

d′=1md′
=
md ×mdeath

mM

and cd ←
cd × (1−mdeath)∑M

d′=1 cd′
=
cd × (1−mdeath)

cM
.

The second set of parameters are population related. The third parameter is rt which defines the
containment strategy. For example, rt = 0.21 from strategy A implies every 100 infected cases
will communicate to 21 individuals per day on average. Scenario A adopts a constant containment
strategy. Containment strategies for scenarios B and C are the same, which are adaptive and al-
lowed to change weekly. The averages of rt for scenario A, B and C are all 0.21; thus all strategies
have the same overall strict level.

Results are displayed in Figure 1. After monitoring 100 simulations, the dynamic of number
of infectious cases does not change much from random initialization. In total, numbers of deaths
from scenarios A, B and C are 7.20 × 103, 5.41 × 103 and 2.49 × 103; numbers of infected cases
are 1.76× 105, 1.32× 105 and 1.28× 105. The number of infectious cases, Pt, reaches its peak on
the 47th, 40th and 40th day and the number of deaths, Dt, reaches its peak on the 60th, 52th and
49th day for scenarios A, B and C. After the peak of Pt, the containment strategy does not make
much difference on the trend of Pt or Dt.

In conclusion, compared with a constant containment strategy, adaptive containment strategies
shorten the outbreak length. Adaptive strategies are less strict at the beginning, which results in
more severe spread. However, the stricter measures that are enforced after this have the effect of
shortening the outbreak length. Fine tuning these stricter adaptive measures is critical to achieving
a minimum death rate and/or reducing maximum daily number of cases. New effective treatment
is the key to death rate. Scenario C assumes a new treatment that reduces mortality rate within
an infectious period from 4% to 2%, a 50% decrease. When applied in our model, this leads to a
decrease in total number of deaths by 53.97%. Importantly, notice this value is larger than 50%
as the new treatment reduces the number of infections due to a shorter infectious period and cure
time.
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Figure 1: Comparison of containment strategies and treatment plans for disease using inputs of
Table 1. Death and cure rate are plotted in sub-figures (a) and (b), where scenario A and B, colored
in blue, have the same mortality rate and a new drug is supposed to be available in scenario C
(colored in purple), with lower mortality rate and shorter infectious period. Sub-figure (c) demon-
strates the different containment strategies across time. Scenario A (red) has a constant strict level
while strictness level is allowed to change weekly for strategies B and C (blue). All containment
measures have the same overall strict level. From sub-figures (d) and (e), adaptive containment
measures (scenario B and C) result in the smallest number of infected patients and deaths and end
the outbreak faster. A new effective drug, illustrated in scenario C, could dramatically decrease the
number of deaths and shorten the outbreak length.
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Table 1: Necessary inputs for policy makers to compare different scenarios.

Domain Value Description

Disease M : MA = MB = 50 Infected cases will be either cured or dead within M days.
MC = 40 A new effective drug is available in scenario C

mdeath = 4% or 2% Within M days, mdeath of infected cases will be dead.
σ1 = 0.3, µ1 = 3.19 or 2.95 Parameters to shape the cure hazard function.
σ2 = 0.7, µ2 = 4.57 or 4.6 Parameters to shape the death hazard function.

People Ppop = 2.8× 106 On day 1, Ppop people are not infected within the region.
P1 = 200 On day 1, P1 individuals are infectious.
P imp

15 = P imp
48 = 2 On days 15, 29, 48 and 63, there are 2, 4, 2 and 4

P imp
29 = P imp

63 = 4 infectious people who travel into the region.
λ = 16 Initial infectious cases (P1 and P imp

1 ) have been
infected for λ days on average.

Policy rt described in Figure 1(c) Smaller value represent stricter containment measures*.

*rt can be interpreted as the average number of newly infected case communicated per infectious
person per day on day t, if nearly all the population is uninfected. The model will adjust these
inputs with percentage of infected cases across time, which produces Rt.

Supplement
An online prediction tool is available at https://minlu.shinyapps.io/killCOVID19/.
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