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Abstract

Governments and researchers around the world are implementing digital contact tracing so-
lutions to stem the spread of infectious disease, namely COVID-19. Many of these solutions
threaten individual rights and privacy. Our goal is to break past the false dichotomy of effective
versus privacy-preserving contact tracing. We offer an alternative approach to assess and com-
municate users’ risk of exposure to an infectious disease while preserving individual privacy. Our
proposal uses recent GPS location histories, which are transformed and encrypted, and a private
set intersection protocol.

1 Introduction

This is a proposed design for how a system can identify and notify users who may have come in contact
with diagnosed disease carriers about their risk while respecting individuals’ privacy. It is common
practice for healthcare workers to interview individuals diagnosed with a communicable disease about
their recent movements in order to identify and alert others who they may have come in contact
with. This process is referred to as contact tracing and is crucial as health entities, communities
and governments attempt to contain viral outbreaks. Manually performing contact tracing is highly
resource-intensive, intrusive and time-consuming. Yet the ubiquitous use of personal digital devices
provides access to detailed location histories collected automatically, providing the opportunity for a
system to conduct this process at scale. The objective of this work is to describe such a system in the
face of the COVID-19 pandemic that preserves the privacy of its users.

1.1 Privacy-preserving contact tracing

There currently are digital approaches to contact tracing that use location historiesﬂ but they operate
on a skewed trade-off between privacy and effectiveness [4]. Some rely on general public broadcasting
of information that introduces uncertainty in the information disseminatedﬂ

1There are also digital contact tracings solutions that use bluetooth technology to detect points of contact between
individuals without using location histories directly [1l 2 B]. We will discuss these shortly.

2Information about where diagnosed COVID-19 carriers have visited has been publicly broadcasted in different ways.
Singapore updates a map and lists details about the identities about each COVID-19 case [5]. South Korea sends text



Other alternatives resort to usage of privacy-violating technologies that risk individual rights
against stigmatization and surveillance

Even when systems do attempt to use location data while respecting individual privacy, their
methods are often insufficient: simply anonymizing user location histories by replacing users’ identifiers
with random new ones fails to achieve privacy in a meaningful way. Secondary data that is not
anonymized can be used to re-identify users by matching data points across the datasets. For example,
a study using credit cards records has shown that only four data points from a user’s location history
are enough to uniquely re-identify 90% of individuals [12].

This work breaks past the dichotomy of privacy versus effectiveness established by previous digital
contact tracing approaches. We propose a technology-based solution for coordinating information on
the state of infection and possible transmission through contact tracing while protecting the privacy
rights of both diagnosed infected carriers and other citizens.

The privacy and trust principles central to the design of this work are summarized below:

e Keep location data private. Locations visited are kept private for all users including
those who are diagnosed disease carriers.

e Avoid surveillance. The system can detect points of contact between users without precise
location histories being exposed.

e Only allow one-way private data publication. Only diagnosed carriers ever publish data,
but this data remains encrypted and private, and their identities remain protected. Other users
can check if they came in contact with carriers without sharing their location histories.

Any privacy-preserving contact tracing framework should be considered a “best effort” and avoid
promising to be perfectly private. Our primary contribution to the space of existing frameworks
and digital tools is the degree to which our cryptographic approach can preserve user privacy while
providing highly useful and accurate information through individuals GPS location histories.

We present our proposal in response to current events where we see an increase in surveillance and
a forfeit of privacy due to contact tracing efforts designed to contain the spread of COVID-19. We
intend to show that effective contact tracing is possible without further forfeiting privacy.

1.2 A motivating first step

A simple first version of a system that provides exposure risk information is one that collects,
anonymizes, and aggregates the recent GPS location histories of diagnosed carriers to create a spa-
tiotemporal “heatmap” representing large geographic regions where diagnoseed carriers spent time
and when. Individuals’ data and areas visited should be aggregated and obfuscated in a way that
minimizes what can be learned about individual people or places visited in the dataset, in order to
protect people and businesses from stigmatization or any other threat. This aggregated view can pro-
vide helpful information about infection risk across different areas, types of places, and time periods
for both health authorities and the general public. This aggregated data can be further analyzed to
better understand the flow and trends of disease transmission.

1.3 Contributions

Our proposed system does this but also builds on top of this functionality to provide more precise risk
assessments to individual users based on the points of contact they had with individuals who were later
diagnosed as disease carriers. Our approach is to combine a private set intersection protocol with a

messages to citizens containing personal information about diagnosed carriers [6]. In the US, location information about
diagnosed patients has been published through media outlets and university and government websites [7} [8} [@].

31srael approved cellphone tracking for coronavirus patients [I0]. China requires use of an COVID-19 tracker app to
surveil citizens and dictate quarantines [11].



method of discretizing the continuous space of possible spatiotemporal points that represent location
histories. This approach allows the system to detect when a user came in contact with diagnosed
carriers to assess and inform them of their risk, while preserving the privacy of individuals.

2 Alternative privacy-preserving solutions

Clever approaches to privacy-preserving systems for contact tracing that rely on Bluetooth rather
than GPS have been proposed and implemented as smartphone applications, such as TraceTogether
[2], which was created by the government of Singapore, and the open-source projects COVID Watch
[3] and CoEpi [1]. Instead of recording user location histories, these systems record when users come
in proximity of one another. A user’s smartphone application generates, and periodically updates, a
random identifier called a “contact event number” (CEN). The user’s device broadcasts its CEN using
Bluetooth Low Energy and receives and locally records CENs broadcast by other users’ devices. Users
who later fall ill then share their CENs, which can be matched against the CENs recorded locally by
other users to identify points of contact between diagnosed users and the other users. The different
implementations vary in the privacy and security they provide their users. For example, the Singapore
government requires users of its TraceTogether app to share their phone numbers and identities with
the central authority that maintains a database of recorded CENs. This authority contacts users
whose recorded CENs match against diagnosed users’ CENs to alert them of their exposure. This
system provides users with no privacy from the central authority but does protect users from having
their identities exposed to other users. In contrast, the COVID Watch and CoEpi projects place
more trust in it system users rather than a central authorityEI With their designs, diagnosed users’
CENSs are stored in a database that is either made public for other users’ apps to download or made
available for them to poll [I3] [I4]. These models are not perfectly privacy-preserving either, as they
are susceptible to privacy attacks from other users, as described by Cho et al. [I5].

These Bluetooth based systems leverage features of Bluetooth, which GPS cannot provide, in
order to detect when users come in proximity of one another. With Bluetooth, proximity can be
approximated by signal strength that is reduced by obstructions like walls; therefore, it more accurately
reflects functional proximity in high-risk environments for close contact, such as within buildings and
vehicles, or in underground transit. These Bluetooth features can benefit our proposed system as well,
with the installation of Bluetooth beacons to mark locations with higher levels of accuracy than what
would otherwise be marked only with GPS coordinates.

We note that these applications that detect users’ exposure risk by relying on users to come into
Bluetooth proximity and exchange CENs may not be sufficient, given that in addition to human-
to-human transmission, a virus like COVID-19 can transmit through commonly touched surfaces or
environments. In contrast, our proposed system can be extended to handle this kind of exposure risk
by checking adjacent time periods to accommodate when two users may have occupied the same space
one after another.

Another issue with purely Bluetooth based systems is that they require people to use a special
application and could suffer from slow or limited adoption, limiting their ability to capture a large
enough base of users before they are diagnosed, and therefore limiting their potential to be useful.
With GPS based approaches we might leverage the fact that the applications on users’ phones are
already collecting their GPS location histories, and develop a technology as a plugin to interface with
these apps, to more quickly roll out our system as a life-saving contact tracing technology.

4The CoEpi project puts so much trust in users that it allows users to self-diagnose and share their CENs without
a health official verifying their diagnosis and data. This can result in false reporting and invites spam attacks from
malicious users, which can result in other users seeing false positives and cause mass panic or simply distrust of
the system. This issue has been acknowledged by CoEpi’s technical leadership and they have invited solutions from
researchers [13].
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Figure 1: High-level schematic showing the major steps in the system’s process for privacy-preserving
contact tracing: data collection, redaction, secure exchange of transformed and encrypted data, con-
tact tracing with private set intersection, and risk assessment and notification. A more detailed
description of the process includes usage of discrete spatiotemporal point intervals and is described
later on in this paper.

3 A GPS-based privacy-preserving solution

In what follows, we describe what type of information our system provides before showing a high-level
system overview. We then explain the trust and privacy model it is designed for, and finally provide
a more technical description with details on how it can work.

3.1 Probabilistic risk assessment

The system provides a probabilistic measure of disease exposure risk for a user, based on the time
they have spent in spaces shared with users who were later diagnosed as disease carriers. More time
spent in such shared spaces indicates higher levels of risk, but this risk is also dependent on where
those spaces are.

Any technology system should be wary of claiming to precisely determine exposure risk, due to the
limitations of the technologies used for detection, and the ambiguity over what types of interactions
between people, shared spaces, or common surfaces, most elevate risk. Our proposed system uses GPS
points collected from users’ devices and can be extended to use Bluetooth to indicate locations visited
as well. GPS has limited accuracy, especially in dense urban environments or multi-story buildings.
But even detecting whether a user spent sustained time in a crowd or multi-story building with a
diagnosed carrier is useful, due to the heightened likelihood of sharing not only space but surfaces
such as door handles or elevator buttons, which help a virus spread. For this reason, we propose a
probabilistic risk assessment based on the amount of time and number of places that a user shared
with a disease carrier, which we call “points of contact”.

3.2 System overview

Below we provide a high-level overview of our system and walk through an illustrated example.

The system can be divided into a 4 step process of data collection, redaction and transformation
of data, privacy-preserving data exchange with a private set intersection protocol, and risk assessment
and notification. We expand upon these steps below.



Step 1: Data Collection An app collects timestamped GPS points throughout the user’s day,
every t minutes. The sequence of points represents their location history.

Step 2: Redaction and Transformation of Data All collected location histories are redacted,
transformed, and encrypted before leaving the device, to protect user privacy. In the case that a user
is diagnosed, their points are transformed and shared with a server in a way that maintains their
privacy. Collected points are deleted from both devices and servers D days after they were collected,
where D is the period of possible disease transmission informed by medical experts.

Step 3: Privacy-preserving data exchange Users’ apps can check whether they came in contact
with carrier users, and how often, while preserving privacy. This is done with a cryptographically
secure private set intersection protocol to find matches between encrypted points for carriers and other
users.

Step 4: Risk assessment and notification The app assesses risk for its user based on the points
of contact it found via (3) and can notify users of risk. Users whose apps find them at risk due to
contact with carriers can then be encouraged to get tested or self-quarantine. The app can optionally
show the user where and when the points of contact occurred.

This process is also illustrated above in Figure [[] We expand upon the steps 2 and 3 in the
following section.

3.2.1 Storing and sharing GPS histories while preserving privacy

As GPS points are collected by a user’s device, sensitive areas are removed through either automatic
redaction or manually by the userE| This redaction happens on the user’s device and the remaining
points are then transformed or encrypted, in the ways we later describe, before they are stored to
further protect the user’s privacyﬁ

If a user is diagnosed as a carrier, the system provides two different ways for that user to anony-
mously share their GPS points to provide important information to healthcare professionals, other
system users, and the general public, while protecting their own privacy. In order to support these
two different use cases, the user’s redacted GPS points are transformed in two different ways:

(a) GPS points are replaced by larger geographic areas that contain them to represent the areas
where carriers spent time and when, without representing precise locations.

(b) Precise timestamped GPS points are transformed into “point intervals” and encrypted with a
one-way hash function. The encrypted points cannot be unencrypted to expose their original
points but they can be used to match common location histories and more precisely identify
points of contact.

The first way (a) is used for the aggregated view of data that we previously described as a moti-
vating first step. The second way (b) is used for more precise contact tracing. This use case is where
we make a new contribution with our approach to finding points of contact while preserving privacy.

The two different use cases that @ and @ serve are both central to this work as they will both be
invaluable to containing the spread of infectious disease such as COVID-19. However the remainder
of this document focuses on @ as it is our new contribution and requires explanation.

5The system can provide two methods of redaction: automatic and manual. Redaction is an important privacy step,
as sensitive areas such as home areas, can be used to reidentify pseudo-anonymized users [16} [I7]. Home areas can be
automatically inferred by the app based on where users spend time in the nighttime. In addition, the app can provide
the user with an interface to set additional sensitive areas for redaction. Any GPS point collected within an area marked
for redaction is deleted and not shared.

6Redacting and modifying GPS points on the device rather than after points are shared is an important privacy
measure to prevent users from being coerced into providing information on where they have been when.



3.3 Trust and privacy model

The proposed system is designed around a model that assumes there is a semi-trusted authority
maintaining the server with diagnosed carriers’ redacted location histories. The system is designed
to minimize the amount of diagnosed carriers’ information that is exposed to other users, and to
maximize the privacy for all other users of the system. These other users need not share any of their
location data in order to find points of contact with diagnosed users. However, diagnosed users do
risk forfeiting some privacy when they share their location histories with the authority managing the
server ﬂ Even though they only share their redacted and encrypted location data, given enough
computational resources and malicious intent, the managing authority can attempt to circumvent
these measures and reconstruct location history data and re-identify userﬁ

There is a clear need for a governance model regarding this data collection and use. For example,
data should be deleted D days after it was shared, where D is the number of days the diagnosed user
could have transmitted the virus before sharing their location history. There also needs to be a legal
framework in place to end the practice of collecting data in this way once the health crisis is under
control’]

That said, we must also acknowledge that our government already has access to the massive
amounts of location data that our proposed system would collect. Location histories are already
collected by apps on users’ smartphones, and the cellular towers they connect to, and through credit
card purchases.

The semi-trusted authority that our system is designed around plays an important role. They
make sure that only users whose diagnoses are verified by trusted healthcare professionals are able to
share their location histories, preventing fraudulent data publication and abuse.

4 Technical description

Our system broadly involves data collection followed by a method to deterministically construct hashed
spatiotemporal intervals that discrete points in users’ location histories are mapped to. These intervals
are then used with a private set intersection protocol to inform users when points in their location
histories match points in the location histories of diagnosed carriers.

The finer details of these steps are described in the following sections.

1. Collecting and Representing GPS points
2. Detecting Points of Contact Using Private Set Intersection

3. Assessing Risk and Notifying Users

"Even systems designed to be opt-in on the part of users sharing data can be abused and made compulsory by
authorities once they are built. In Singapore, people contacted by health authorities are required by law to assist in the
activity mapping of their movements and interactions [2, [18].

8The authority managing the server with redacted and encrypted user data can attempt a grid search attack over all
possible encrypted point intervals in order to find hash collisions and reverse the one-way hash function that encrypted
the point intervals, thereby exposing the underlying data. They can then attempt to reconstruct location histories
based on the spatiotemporal correlation between data points or re-identify users due to the unique nature of location
histories [12].

9We have examples to be wary of regarding measures taken in times of crisis that extend indefinitely. Israel declared
a state of emergency during its 1948 War of Independence, justifying a range of “temporary” measures that removed
individual freedoms. They won the War of Independence but never declared their state of emergency over, and many of
the “temporary” measures are ongoing [19]. Israel recently approved cellphone tracking for its COVID-19 patients [20].
Similarly COVID-19 surveillance innovations in China are likely to be used by China’s counterterrorism forces beyond
the pandemic to further monitor and regulate the movement of its people. Consider the Uighur people. The Chinese
government has categorized this ethnic group as terrorists and has subjected many of them to forced labor [21].
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Figure 2: A geographic area partitioned by a hexagonal H3 grid. Points are mapped to an index
corresponding to their containing grid cell.

4.1 Collecting and representing GPS points

Timestamped GPS points are collected from user devices as they move throughout their day. These
points are collected as tuples of latitude, longitude, and time: (latitude, longitude, time). A user’s app
checks for matches between their collected points and the points shared by users who were diagnosed
as carriers in order to identify points of contact.

4.1.1 Partition space and time into intervals

For privacy purposes, GPS points are never directly compared in order to find these matches. Times-
tamped GPS points are instead first mapped to a 3-dimensional grid, where two dimensions are for
geographic space (latitude and longitude), and the third dimension is time. We call these 3-dimensional
grid cells “point intervals”. Point intervals are then encrypted with a deterministic hash function.
Identifying points of contact becomes a matter of matching hashed point intervals. Transforming GPS
histories in this way to map (latitude, longitude, time) points that occur within a continuous spa-
tiotemporal space into discrete “point intervals” makes comparing encrypted GPS histories possible.
It also makes sense for our use case of finding (short) time intervals where users occupied the same
spatial area[[}

There are established ways to partition a geographic space, such as with geohasheﬂ for square
grid cells or with the hexagonal global geospatial indexing system of H3 griﬂ

Similarly, time can be partitioned into intervals. For example, if an interval size is 2 minutes, then
an interval boundary can always fall on the hour, and on the 2nd minute of the hour, and so on.
The 3-dimensional grid of point intervals is shared across all user devices in the system. The specific
partition scheme and interval sizes used are implementation details. What matters more is that the
chosen partition scheme and the geographic and temporal resolution used are consistent.

We note that when collecting GPS points there is a trade off between accuracy in detecting points
of contact and the amount of data that must be then stored and processed. For example, if data is
collected more frequently, the system is more likely to detect when users spend little time near each
other, such as sharing a bus ride. However, this requires collecting and storing more data, and hence
more compute resources. We also note that the geographic partition of space can be expanded to
include specific locations. For example, a bus line might install bluetooth beacons on its buses with
unique identifiers to serve as the geographic portion of point intervals, allowing users with an app that
supports this functionality to later detect if they shared a bus ride with a diagnosed carrier.

10Phones collect GPS data with limited accuracy and therefore trying to match users across spatial areas with radii
too small will miss points of contact.

Hhttps://en.wikipedia.org/wiki/Geohash

Zhttps://h3geo.org/
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4.1.2 Checking for matches across encrypted GPS histories

Since the point intervals are encrypted with a one-way hash function, they cannot be reversed to
expose underlying location histories of users. Yet, since the mapping and encryption is deterministic,
users apps can still check for points of contact with encrypted point intervals shared by disease carriers.
Checking whether two individuals came into contact is a matter of checking whether the timestamped
GPS points (latitude, longitude, time) collected by their devices map to any of the same hashed point
intervals, (as well as adjacent point intervala{EI).

4.2 Detecting points of contact using private set intersection

We now describe the protocol that facilitates the private detection of matches across users’ GPS
histories. We assume that there is a semi-trusted authority operating a server. When a patient is
diagnosed as a disease carrier, they share their redacted and anonymized encrypted (hashed) point
intervals to the central server. Other users’ apps periodically exchange information about their own
encrypted point intervals with the server to detect if their point intervals match against those shared
by diagnosed carriers. They do so with a private set intersection protocol.

Private set intersection (PSI) enables two parties to compute the intersection of their data in a
privacy-preserving way, such that only the common data values are revealed. It has applications in
a variety of privacy sensitive settings, from measuring conversion rates for online advertising [22] to
securely testing sequenced human genomes [23].

In our case, the two parties involved are the server storing the hashed point intervals shared by
diagnosed carriers, and another users’ device - the client. Their data are their respective hashed point
intervals. We leverage PSI in a way so that only the user learns about the intersection of their data
- the server does not learn whether it shares any point intervals in common with the user, while the
users’ app does learn this. Our use of PSI is designed to maximize the privacy for users who may be
wary of surveillance or not fully trust the entities who maintain the server.

There are many PSI schemes that would fit our needs. These different schemes vary in their
computational complexity, speed, and accuracyiﬂ A good overview and comparison of PSI protocols
can be found in [22]. A simple scheme that would work for our use case is Diffie-Hellman [26, 27].

4.2.1 Using Diffie-Hellman

Below we outline an example of how our system would work with a simple Diffie-Hellman PSI protocol.
Note that the actual implementation may differ from this example. Our description assumes familiarity
with Diffie-Hellman, modular arithmetic and concepts from cryptography such as the discrete log
problem. Readers can otherwise skip this section to the PSI protocol summary below.

Before we walk through this PSI protocol, we clarify the problem and notation.

Notation and Problem Statement: We call a point interval p, and a collected sequence of point
intervals P = [p1,pa,...]. We call the users’ point intervals that are collected by their device Py. We
call the point intervals collected for diagnosed carriers and later shared with the server Pj.

13Technical note about matching against adjacent intervals: Since the partition of geographic space into intervals was
predetermined, two points may be close together in space but fall into different intervals. For this reason a user’s app
checks each of their collected point intervals, as well as the spatially adjacent intervals against the diagnosed carriers’
shared point intervals. That is, if we use a spatial grid of hexagons (like H3), a user’s collected point falls within a
grid cell and that grid cell is used as an interval. We must check that interval as well as the surrounding 6 hexagons
in the grid against each data point shared by diagnosed carriers. This adds some complexity to make the comparisons
7Ny X Ny rather than just Ny x Ny. But O(7TNy X Ny) = O(Ny X Ny).

14Researchers have developed fast PSI protocols optimized for a client-server model, including those where the client
is a smartphone app [24] and where the server’s dataset is significantly larger than the client’s [25], which is the case for
our system. However many of these PSI protocols achieve their improved efficiency at the cost of accuracy, allowing a
small number of false positives, such as by employing bloom filters. This may not be an acceptable trade-off for a disease
contact tracing system where false positives can lead to panic or the wrong people seeking scarce medical resources.



As we noted earlier, each point interval is encrypted by a commonly shared deterministic hash func-
tion, which we call H. This means that a user’s phone really stores H(Py) = [H(pu1), H(pu1), ---H(pun)],
and the server stores
H(Pr) = [H(pn), H(pr1), --H(prm))]-

If a user has a point interval matching one shared by a diagnosed carrier, i.e. py; = pr; for
some py; in Py collected by the user’s device, and some py; in Pr collected by a diagnosed carriers’
device and later shared to the server, then the encrypted hashes of these point intervals match as well.
H(pui) = H(pr;)-

Consider H(Py) as a set which is stored on the user’s device, and H(P;) as a set stored on the
server. The problem is then to allow the user’s app to learn the set intersection of H(Py) and H (Pr).

Protocol: Our described use of Diffie-Hellman is written with the multiplicative group of integers
modulo p, where p is prime, and g is a primitive root modulo p.

Setup. The server and the client user’s device have an agreed upon modulus, p, and base of the
multiplicative group, g. The server and client each generate secret private keys, a and b, respectively.

1. The client encrypts the user’s hashed point intervals, H(Py), with a and sends this data to the
server.
Client — Server : H(Py)®* = [H(py1)®, H(pu1)?, ..., H(pun)®] mod p

2. The server encrypts its stored hashed point intervals, H(Py), with b and sends this data to the
client.
Server — Client : H(Pr)® = [H(pn)® H(pn)®, ...H (prm)°modp

3. Upon receiving the encrypted hashed point intervals sent by the client H(Py )%, the server further
encrypts this data with its key b and sends the result back to the client.
Server — Client : H(Py)® = [H(pr1)®, H(py1)®, ..., H(prn)®] mod p

4. The client receives both H(P;)® and H(Py)%. The client then further encrypts H(P;)® with its
key a to create
H(Pl)ba = [H(pll)baa H(pfl)baa ) H(pIm)ba] mod p.

5. The client can then compute the set intersection by comparing the elements of H(Py)® and
H(Py)be.

Due to the multiplicative properties of the group, any matching H (py) and H(;) values will have
matching H(py)®® and H(pr)*® values. This means that if the client has any point intervals that
match point intervals shared to the server, py = py, then H(py)® = H(p;)b®, and these matches will
be detected by the client.

This protocol allows for flexibility in terms of whether it allows a client to learn which of its
points have matches versus how many of its points have matches. At step (3) of the protocol the
server further encrypts the data received from the client, H(PU)a, and returns H(PU)ab. If the server
maintains the order in the sequence of points intervals, then the client can then learn exactly which
hashed point intervals in the sequence it sent to the server, H(Py)* = [H(py1)%, H(pu1)%, -.-H (pun)?]
match against items in the server’s encrypted data, H(Pr)b®. If the server instead shuffles the sequence
before returning it in step (3), then the client can learn how many of its point intervals match against
the server’s data, but not which ones do.

We described a simple protocol in order to more easily explain how our system can operate.
Optimizations can be made for efficiency. For example, the server can reuse its private key, b, and
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Figure 3: This figure shows our private set intersection (PSI) protocol based on Diffie-Hellman key
exchange. The intersection is done on encrypted point intervals corresponding to the client’s and
carrier’s location traces. The encrypted point intervals from diagnosed carriers are stored in a server.
Only the client device learns the intersection of data, where the intersection is the set of point intervals
it has in common with the point intervals on the server (Py N Pr). Points in (Py N Pr) are represented
in (H(Py)® n H(Pp)"®).

set of encrypted data across multiple interactions with different clients. It can refresh this key and
re-encrypt its data periodically, or as new data is shared by diagnosed carriers or deleted as it becomes
old. Decreasing how often the server encrypts its data can increase its efficiency. Faster PSI protocols
have been developed, including those that optimize for the exchange of information between a server
and client, particularly where the server has a much larger set of data than the client, such as in our
use case [28] [25].

4.2.2 PSI protocol summary

The PSI protocol adds an extra layer of privacy protection for both the diagnosed carriers and the
other users, beyond just the redaction and encryption of datalﬂ

Other users only ever learn points shared by diagnosed carriers that their own points matched
with (the intersection Py N Py). This further protects the privacy of diagnosed carriers. Moreover,
the server does not learn whether any points match; only the other user learns the intersection of Py
and Py. This further protects the privacy of undiagnosed users who may be wary of their location
histories leaving their device, or being shared with an authority.

There are implementation details that further enhance privacy and efficiency. For example, servers
can hold data for their local geographic regions, so that users with location histories specific to the
Boston area need not interact with servers holding data specific to the Bay Area. This helps subset
the data so as to run PSI on a much smaller dataset, thereby helping computational efficiency. In
addition, data shared by diagnosed carriers to servers should be deleted after D days, as both a
privacy and efficiency measure. The server also limits the amount of data that a user’s client device
can exchange with it. It is only relevant to compare recent location histories, i.e. from the past D
days. Since points are partitioned into consistent time intervals, there is therefore an upper bound on
the number of points, N, that any app needs to check against the server’s set of points, P;. The server
can limit the exchanges with any client to N points per exchange, and limit the number of queries per
day. This limitation is important for preventing privacy attacks where an adversary might attempt

15When other users send their point intervals to the server, their point intervals are effectively encrypted twice. First
with the deterministic hash function (H) that encrypts all point intervals in the same way. Second by the PSI protocol.

10



querying over the entire spatiotemporal grid to reconstruct the location histories of diagnosed carriers.
It also reduces the computation burden for servers.

4.3 Assessing risk and notifying users

A user’s app can assess their risk of infection based on the points of contact found as shared between
the apps’ user and diagnosed carriers. Users whose apps find them at reasonable risk can then be
encouraged to get tested or self quarantine.

The implementation of our system can differ to either allow the app to learn just the number
of points of contact that occured, or where and when points of contact occurred. These different
implementations have different implications for the privacy and utility that our system can offer to
its users.

The number of detected points of contact is related to how likely a user was to have spent sustained
time in spaces shared with diagnosed users, so the number of detected points of contact is commensu-
rate with risk and can be used to provide a risk assessment. When the locations of points of contact
are known, the risk assessment can leverage context about these locations, such as whether they are
confined spaces with few people versus multi-story office buildings versus outdoor parks. Future work
can further incorporate intelligence into the risk assessment.

5 Intermediary implementation

Given the urgency of the COVID-19 pandemic, we note that intermediary steps can be taken to
implement the system we describe. Even before a secure server is set up to perform the private
set intersection (PSI) protocol, hashed point intervals for diagnosed carriers can be published to a
flat data file for other users to download. However, privacy guarantees are diminished in this case,
as attackers can attempt to create points representing every potential point interval to check for
matches. They could then attempt to reconstruct location histories of users diagnosed as carriers and
possibly re-identify them from their shared anonymized data. The redaction step performed before
data is shared would decrease the likelihood of an attacker’s success, but the privacy risk remains.
Any implemented system should be opt-in so that only diagnosed users who are aware of this risk,
and capable of weighing the trade-off between their individual privacy risk and the ongoing risk the
pandemic poses to other users will then share their data. This intermediary implementation with a
flat data file can be transitioned to the more secure implementation with PSI.

6 Conclusion

We proposed a technical design to address the problem of assessing users’ risk of disease exposure
with location histories. Our proposal is in response to existing contact tracing tools with an approach
that better preserves the privacy of individuals.

However, a critical requirement for widespread impact of any digital contact tracing tool is that of
extensive adoption. This system can only be useful if it is widely adopted. To expand system adop-
tion, the app’s technology can be developed as an SDK (software development kit) and integrated
into partnering applications that already collect user location histories, such as Google Maps. These
partner applications can then ask the user for the extra permissions and content for this system’s use
case. There are many such applications that already collect user location histories in the background.
They often use this information to serve the user more relevant content and improve the user experi-
ence. However, this data collection more often serves private profit. Now, in the face of the COVID-19
pandemic, is the time for industry and researchers to come together and for the ubiquitous collection
of location data to serve the public good.
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