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ABSTRACT 

A SIRU-type epidemic model is proposed for the prediction of COVID-19 spreading 

within Brasil, and analyse the influence of public health measures on simulating the 

control of this infectious disease. Since the reported cases are typically only a fraction of 

the total number of the symptomatic infectious individuals, the model accounts for both 

reported and unreported cases. Also, the model allows for the time variation of both the 

transmission rate and the fraction of asymptomatic infectious that become reported 

symptomatic individuals, so as to reflect public health interventions, towards its control, 

along the course of the epidemic evolution. An analytical exponential behaviour for the 

accumulated reported cases evolution is assumed at the onset of the epidemy, for 

explicitly estimating initial conditions, while a Bayesian inference approach is adopted 

for parametric estimations employing the present direct problem model with the data from 

the known portion of the epidemics evolution, represented by the time series for the 

reported cases of infected individuals. The direct-inverse problem analysis is then 

employed with the actual data from China, with the first half been employed for the 

parametric estimation and the second half for validation of the predictive capability of the 

proposed approach. The full dataset for China is then employed in another parameter 

identification, aimed at refining the values for the average times that asymptomatic 

infectious individuals and that symptomatic individuals remain infectious. Following this 

validation, the available data on reported cases in Brasil from February 15th till March 

29th, 2020, is used for estimating parameters and then predict the epidemy evolution under 

these conditions. Finally, public health interventions are simulated, aimed at diminishing 

the effects of the disease spreading, by acting on both the transmission rate and the 

fraction of the total number of the symptomatic infectious individuals, considering time 

variable exponential behaviours for these two parameters, usually assumed constant in 

epidemic evolutions without intervention. It is demonstrated that a combination of actions 

to affect both parameters can have a much faster and effective result in the control of the 

epidemy dynamics. 
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INTRODUCTION 

A new human coronavirus started spreading in Wuhan, China, by the end of 2019, 

and turned into a pandemic disease called COVID-19 as declared by the World Health 

Organization on March 11th, 2020. The affected countries and cities around the world 

have been reacting in different ways, towards locally controlling the disease evolution. 

These measures include general isolation through quarantine and massive testing for 

focused isolation, with varying degrees of success so far, as can be analysed from the 

limited data available. Naturally, China offers the longest time series on reported infected 

cases and the resulting effects of combining different public health interventions. As of 

March 26th, 2020, there were no reports in China of further internal contaminations, and 

all the new cases are associated with infected individuals that (re)entered in the country. 

Despite the apparent success of the interventions in China, each region or country might 

require a specific combination of measures, due to demographic spatial distribution and 

age structure, health system capabilities, and social-economical characteristics. In this 

sense, it urges to have a mathematical model that would allow for the simulation of such 

possible interventions on the epidemic evolution within the following few weeks or 

months. This article presents a collaborative research effort towards the construction of 

an epidemic evolution prediction tool, which combines direct and inverse problem 

analysis and is both reliable and easy to implement and execute, initially motivated by 

offering some insight into the control of COVID-19 within Brasil.   

 The classical susceptible-infectious-recovered (SIR) model describes the 

transmission of diseases between susceptible and infective individuals and provides the 

basic framework for almost all later epidemic models. At the onset of the coronavirus 

epidemy in China, there were some initial studies for the prediction of its evolution and 

the analysis of the impact of public health measures [1], which however did not consider 

in the modelling the presence of unreported infection cases, which are in practice inherent 

to this process. The present work is first based on the SIR-type model proposed in [2], 

which deals with the epidemic outbreak in Wuhan by introducing the unreported cases in 

the modelling, and evaluating the consequences of public health interventions. It was a 

direct application of previous developments [3,4] on the fundamental problem of 

parameter identification in mathematical epidemic models, accounting for unreported 

cases. This same modelling approach was more recently employed in the analysis of the 

epidemic outbreak in different countries, including China, South Korea, Germany, Italy, 
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and France [5-7]. Besides identifying unreported cases, this simple and robust model also 

allows for introducing a latency period and a time variable transmission rate, which can 

simulate a public health orientation change such as in a general isolation measure. In 

addition, an analytical exponential behaviour is assumed for the accumulated reported 

cases evolution along a second phase just following the onset of the epidemy, which, upon 

fitting of the available data, allows for the explicit analytical estimation of the 

transmission rate and the associated initial conditions required by the model. 

 Here, the SIR-type model in [2-7] is implemented for the direct problem 

formulation of the COVID-19 epidemic evolution, adding a time variable parametrization 

for the fraction of asymptomatic infectious that become reported symptomatic 

individuals, a very important parameter in the public health measure associated with 

massive testing and consequent focused isolation. The same analytical identification 

procedure is maintained for the required initial conditions, as obtained from the early 

stages exponential behaviour. However, a Bayesian inference approach is here adopted 

for parametric estimation, employing the Markov Chain Monte Carlo method with the 

Metropolis-Hastings sampling algorithm [8-12]. At first, the goal of the inverse problem 

analysis was estimating the parameters associated with the transmission rate and the 

fraction of asymptomatic infectious that become reported symptomatic individuals, which 

can be quite different in the various regions and countries and also very according to the 

public health measures. Then, in light of the success in this parametric identification, an 

extended estimation was also employed which incorporates the average time the 

asymptomatic infectious are asymptomatic and the average time the infectious stay in the 

symptomatic condition, due to the relative uncertainty on these parameters in the 

literature. The proposed approach was then applied to the data from China, first by taking 

just the first half of these data points in the estimation, while using the second half to 

validate the model using the estimated parameters with just the first half of the epidemy 

evolution, and second  by employing the whole time series in the MCMC estimation 

procedure, thus identifying parameters for the whole evolution period. This second 

estimation was particularly aimed at refining the data for the average times that 

asymptomatic infectious individuals and that symptomatic individuals remain infectious. 

Upon validation of the approach through the data for China, we have proceeded to the 

analysis of the epidemic dynamics in Brasil, after about 35 days of collected information 

on reported infected individuals. First, the available data was employed in the parametric 

estimation, followed by the prediction of the epidemy evolution in Brasil. Then, we have 
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explored the time variation of both the transmission rate and the fraction of asymptomatic 

infectious that become reported symptomatic individuals, so as to reflect public health 

interventions, in simulating possible government measures, as described in what follows. 

 

DIRECT PROBLEM 

 The implemented SIR-type model [2-7] is given by the following initial value 

problem: 

 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝜏(𝑡)𝑆(𝑡)[𝐼(𝑡) + 𝑈(𝑡)] (1.a) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜏(𝑡)𝑆(𝑡)[𝐼(𝑡) + 𝑈(𝑡)] − 𝜈𝐼(𝑡) (1.b) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝜈1(𝑡)𝐼(𝑡) − 𝜂𝑅(𝑡) (1.c) 

𝑑𝑈(𝑡)

𝑑𝑡
= 𝜈2(𝑡)𝐼(𝑡) − 𝜂𝑈(𝑡) (1.d) 

where, 

𝜈1(𝑡) = 𝜈𝑓(𝑡);   𝜈2(𝑡) = 𝜈(1 − 𝑓(𝑡))                                 (2.a,b) 

with initial conditions 

𝑆(𝑡0) = 𝑆0;    𝐼(𝑡0) = 𝐼0;     𝑅(𝑡0) = 0;     𝑈(𝑡0) = 𝑈0;                                 (3.a-d) 

 

Here, t0 is the beginning date of the epidemic in days, S(t) is the number of individuals 

susceptible to infection at time t, I(t) is the number of asymptomatic infectious individuals 

at time t, R(t) is the number of reported symptomatic infectious individuals (i.e., 

symptomatic infectious with severe symptoms) at time t, and U(t) is the number of 

unreported symptomatic infectious individuals (i.e., symptomatic infectious with mild 

symptoms) at time t. Asymptomatic infectious individuals I(t) are infectious for an 

average period of 1/ν days. Reported symptomatic individuals R(t) are infectious for an 

average period of 1/η days, as are unreported symptomatic individuals U(t). We assume 

that reported symptomatic infectious individuals R(t) are reported and isolated 

immediately, and cause no further infections. The asymptomatic individuals I(t) can also 

be viewed as having a low-level symptomatic state. All infections are acquired from either 

I(t) or U(t) individuals. The fraction f(t) of asymptomatic infectious become reported 

symptomatic infectious, and the fraction 1-f(t) become unreported symptomatic 
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infectious. The rate asymptomatic infectious become reported symptomatic is ν1 = f ν, the 

rate asymptomatic infectious become unreported symptomatic is ν2 = (1-f) ν, where ν1(t) 

+ ν2(t) = ν. The transmission rate, τ(t), is also allowed to be a time variable function along 

the evolution process. Figure 1 below illustrates the infection process as a flow chart. 

 

 

Figure 1 – Flow chart illustrating the infection path process [3]. 

 

 The time variable coefficients, τ(t) and f(t), are given by: 

 

𝜏(𝑡) = 𝜏0 , 0 ≤ 𝑡 ≤ 𝑁 (4.a) 

𝜏(𝑡) = 𝜏0 exp (−𝜇(𝑡 − 𝑁)), 𝑡 > 𝑁 (4.b) 

𝑓(𝑡) = 𝑓0 , 0 ≤ 𝑡 ≤ 𝑁𝑓 (4.c) 

𝑓(𝑡) = (𝑓𝑚𝑎𝑥−𝑓0) [1 − exp (−𝜇𝑓(𝑡 − 𝑁𝑓))] + 𝑓0, 𝑡 > 𝑁𝑓 (4.d) 

 

These parametrized functions are particularly useful in interpreting the effects of public 

health interventions. For instance, the transmission rate, τ(t), is particularly affected by a 

reduced circulation achieved through a general isolation or quarantine measure, while the 

fraction f(t) of asymptomatic infectious that become reported, thus isolated, cases can be 

drastically increased by a massive testing measure with focused isolation. In the above 

relations,  𝜇 is the attenuation factor for the transmission rate, N is the time in days for 

application of the public health intervention to change transmission rate, 𝜇𝑓 is the 

argument of the f(t) variation between the limits (𝑓0, 𝑓𝑚𝑎𝑥). The first time variable 

function has been previously considered, while the second one has been introduced in the 

present work, so as to allow the examination of combined measures.  
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The cumulative number of reported cases at time t, 𝐶𝑅(𝑡), which is the quantity offered 

by the actual available data, and the a priori unknown cumulative number of unreported 

cases, 𝐶𝑈(𝑡), are given by: 

 

𝐶𝑅(𝑡) = ∫ 𝜈1(𝑠)𝐼(𝑠)𝑑𝑠
𝑡

𝑡0

  (5.a) 

𝐶𝑈(𝑡) = ∫ 𝜈2(𝑠)𝐼(𝑠)𝑑𝑠
𝑡

𝑡0

  (5.b) 

 

The daily number of reported cases from the model, 𝐷𝑅(𝑡), can be obtained by computing 

the solution of the following equation: 

 
𝑑𝐷𝑅(𝑡)

𝑑𝑡
= 𝜈𝑓(𝑡)𝐼(𝑡) − 𝐷𝑅(𝑡) (6.a) 

with initial conditions 

  𝐷𝑅(𝑡0) = 𝐷𝑅0                                                                   (6.b) 

 

INVERSE PROBLEM 

Inverse problem analysis is nowadays a common practice in various science and 

engineering contexts, in which the groups involved with experimental data and numerical 

simulation synergistically collaborate so as to obtain the maximum information from the 

available data, towards the best possible use of the modelling for the problem under study. 

Here, as mentioned in the introduction, we first review an analytical parametric 

identification described in more details in [4-7], that from the initial phases of the 

epidemic evolution allows to explicitly obtain the unknown initial conditions of the 

model, while offering a reliable estimate for the transmission rate at the onset of the 

epidemy. Nevertheless, even after these estimates, a few other parameters in the model 

remain uncertain, either due to the specific characteristics of the physical conditions or 

reaction to the epidemy in each specific region, or due to lack of epidemiological 

information on the disease itself. Therefore, an inverse problem analysis was undertaken 

aimed at estimating the main parameters involved in the model, as summarized in Table 

1 below. First, for the dataset on the accumulated reported cases for China, the focus is 

on the parametrized time variation of the transmission rate (𝜏0 and 𝜇) and the fraction of 

asymptomatic infectious that become reported (𝑓0 ), in this case assumed constant, 

followed by an effort to refine the information on the average times (1/ν and 1/η) through 
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a simultaneous estimation of the five parameters. Then, employing the dataset for Brasil, 

the parametrized time variation of the transmission rate (𝜏0 and 𝜇) and the fraction of 

asymptomatic infectious that become reported (𝑓0 ), initially assumed constant, are 

estimated. In addition, due to the behaviour of the estimated CR(t) curve in this case, it is 

also attempted to estimate a possible time variation for the fraction of asymptomatic 

infectious that become reported, 𝑓(𝑡), by parametrization of an abrupt variation that 

requires just the estimation of 𝑓𝑚𝑎𝑥 and 𝑁𝑓. 

 

Table 1 –Parameter estimates on each inverse problem analysis. 

Country Data Parameter under estimation Data Range used in the estimation 

China 𝑓0, 𝜇, 𝜏0 January 19th  up to February 17th  

China 𝑓0, 𝜇, 𝜏0, 1/ν, 1/η January 19th  up to March 25th  

Brasil 𝑓0, 𝜇, 𝜏0 February 25th to March 29th  

Brasil 𝑓0, 𝜇, 𝜏0, 𝑓𝑚𝑎𝑥, 𝑁𝑓 February 25th to March 29th  

 

The statistical inversion approach here implemented falls within the Bayesian 

statistical framework [8-12], in which (probability distribution) models for the 

measurements and the unknowns are constructed separately and explicitly, as shall be 

briefly reviewed in what follows. 

As explained in previous works employing this model [4-7], it is assumed that in the early 

phase of the epidemic, the cumulative number of reported cases grows approximately 

exponentially, according to the following functional form: 

 

𝐶𝑅(𝑡) = 𝜒1 exp(𝜒2 𝑡) − 𝜒3 ,   𝑡 ≥ 𝑡0  (7.a) 

 

After fitting this function to the early stages of the epidemic evolution, one may extract 

the information on the unknown initial conditions, in the form [4-7]: 

 

𝑡0 =
1

𝜒2
[ln (𝜒3 ) − ln (𝜒1) (7.b) 
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𝐼0 =
𝜒3𝜒2

𝑓0𝜈
 (7.c) 

𝑈0 =
(1 − 𝑓0)𝜈

𝜂 + 𝜒2
𝐼0 (7.d) 

 

In addition, an excellent estimate for the initial transmission rate can be obtained from 

the same fitted function, in the form: 

 

𝜏0 =
𝜒2 + 𝜈

𝑆0

𝜂 + 𝜒2

(1 − 𝑓0)𝜈 + 𝜂 + 𝜒2
 (7.e) 

 

Also, the the basic reproductive number for this initial phase model is estimated as: 

 

ℛ0 =
𝜏0𝑆0

𝜈
[1 +

(1 − 𝑓0)𝜈

𝜂
] (7.f) 

 

The statistical approach for the solution of inverse problems here adopted employs 

the Metropolis-Hastings algorithm for the implementation of the Markov chain Monte 

Carlo (MCMC) method [8-9]. The MCMC method is used in conjunction with the 

numerical solution of the ordinary differential system, eqs.(1-3), for estimating the 

remaining model parameters. Consider the vector of parameters appearing in the physical 

model formulation as: 

 

PT  [P1, P2, ..., PM]      (8) 

where M is the number of parameters. For estimating P, we assume that a vector of 

measured data is available (Y) containing the measurements Yi at time ti, i = 1, …, I. 

Bayes’ theorem can then be stated as [8-9]: 

 

( ) ( )
( ) ( )

( )

prior

posterior = =
 

 


P Y P
P P Y

Y
       (9) 

 

where  posterior(P) is the posterior probability density, that is, the conditional probability 

of the parameters P given the measurements Y,  prior(P) is the prior density, that is, the 

coded information about the parameters prior to the measurements,  (Y|P) is the 

likelihood function, which  expresses the likelihood of different measurement outcomes 
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Y with P given, and  (Y) is the marginal probability density of the measurements, which 

plays the role of a normalizing constant. If different prior probability densities are 

assumed for the parameters, the posterior probability distribution may not allow an 

analytical treatment. In this case, Markov chain Monte Carlo (MCMC) methods are used 

to draw samples of all possible parameters, and thus inference on the posterior probability 

becomes inference on the samples [8-9]. The main merit of the MCMC method is about 

providing a picture of the posterior distribution, without solving the mathematical 

integrals in Bayes’ rule. The idea is to approximate the posterior distribution by a large 

collection of samples of values. This method is especially suitable when it is unfeasible 

to yield an analytical solvable posterior distribution and/or a large space of parameters is 

involved, allowing one to do Bayesian inference even in rich and complex models. The 

idea behind the Metropolis-Hasting sampling algorithm is illustrated below, and these 

steps should be repeat until it is judged that a sufficiently representative sample has been 

generated. 

1) Start the chain with an initial value, that usually comes from any prior information 

that you may have; 

2) Randomly generate a proposed jump aiming that the chain will move around and 

efficiently explores the region of the parameter space. The proposal distribution can take 

on many different forms, in this work a Gaussian random walk was employed, implying 

that the proposed jumps will usually be near the current one; 

3) Compute the probability of moving from the current value to the proposed one. 

Candidates moving to regions of higher probability will be definitely accepted. 

Candidates in regions of lower probability can be accepted only probabilistically. If the 

proposed jump is rejected, the current value is tally again. For more details on theoretical 

aspects of the Metropolis-Hastings algorithm and MCMC methods and its application, 

the reader should refer to [8-12]. 

 

RESULTS AND DISCUSSION 

 

Model Validation: China 

Before proceeding to the analysis of the COVID-19 epidemic evolution within Brasil, the 

major concern in the present contribution, the need was felt in validating the proposed 

direct-inverse problem analysis approach. In this sense, due to the largest available dataset 
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on this pandemic, we have chosen to use the information from China in terms of the 

accumulated confirmed infectious cases. The data for China was extracted from [6], 

complemented by the most recent data from [13] up to March 25th, 2020. The exponential 

fit for the early phase of the China CR(t) dataset provided the estimates of the three 

parameters, 𝜒1 = 0.14936, 𝜒2 = 0.37680, 𝜒3 = 1.0, from which we have estimated 𝑡0 =

5.046. The remaining data for the initial conditions, 𝐼0 and 𝑈0, and the early stage 

transmission rate, 𝜏0, are in fact recalculated from within the MCMC algorithm, since the 

changing values of f will affect them, according to eqs. (7.c-e). The average times in the 

model were taken as 1/ν=7 and 1/η=7 days and the isolation measures were taken at N=29 

days [6]. First, experimental data from China from the period of January 19th up to 

February 17th was employed in demonstrating the estimation of three parameters, 

𝑓0, 𝜇, and 𝜏0,  assuming there is no significant time variation in the function f(t) (𝜇𝑓 = 0). 

In the absence of more informative priors, uniform distributions were employed for all 

three parameters under estimation. Table 1 presents the prior information and the initial 

guesses for the parameters. If the initial guesses were used to predict the CR(t) behavior, 

an over-estimation of the accumulated reported infected individuals would occur, 

especially in the long term, as can be noticed in Figure 1, confirming the need for a proper 

parameter estimation.  

Table 1 – Prior distributions and initial guesses for the parameters to be estimated 

𝑓0, 𝜇, and 𝜏0 (China). 

Parameter Prior distribution Initial Guess 

𝑓0 𝑈[0, 1] 0.5 

𝜇 𝑈[0, 5] 0.1 

𝜏0 𝑈[0, 1 × 10−6] 4.478 × 10−8 
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Figure 1 – Comparison of the model prediction (solid line) for the accumulated reported 

cases, CR(t), using the initial guesses from Table 1 against actual data from China from 

January 19th  up to February 17th  (dots). 

 

Figures 2.a to 2.c show the complete Markov Chains for each estimated parameter, 

respectively, 𝑓0, 𝜇, and 𝜏0. The central tendency (average value) of the posteriors here 

sampled, after neglecting the first 20,000 burning states of the chain, are called the 

estimated values. Both the estimated values and their 95% confidence intervals are 

presented in Table 2. It should be mentioned that these values are fairly close to those 

employed in [6], where τ0 was estimated as 4.51x10-8. Once a value of f0 = 0.8 was 

assumed, which means that 20% of symptomatic infectious cases go unreported, it led to 

a good agreement with the data by taking μ=0.139. Figures 2.e to 2.f, complement the 

analysis offering an overview of the respective histograms of the sampled posteriors of 

𝑓, 𝜇 and 𝜏0, where the acceptance rate was about 55%. 

 

Table 2 – Estimated values and 95% confidence intervals for three parameters, 

𝑓0, 𝜇, and 𝜏0 (China). 

Parameter Estimated values 95% confidence interval 

𝑓 0.780709 [0.779638, 0.781853] 

𝜇 0.135643 [0.135193, 1.136101] 

𝜏0 4.47793 × 10−8 [4.47793 × 10−8, 4.47793 × 10−8] 
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Figures 2 – Markov chains for the three estimated parameters, 2.a-c, and respective 

histograms of the sampled posteriors, 2.e-f. 

 

Figure 3 demonstrates the markedly improved agreement of the model results and 

actual data within this portion of the dataset, once the estimated values in Table 2 are 

employed in the direct problem solution, as can be seen from the excellent agreement 

between the estimated CR(t) (solid line) and the experimental data from China (dots).  

The desired model validation is then illustrated in Figure 4, confirming the 

excellent agreement of China's full dataset (period from January19th till March 22nd) 

with the mathematical model predictions, after adopting the estimated values for the 

parameters in Table 2. It should be recalled that non-informative priors were adopted for 

the three parameters, as presented in Table 1, and except for the transmission rate, when 

eq.(7.e) provides an excellent initial guess, the remaining guesses were completely 
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arbitrary, such as in the analysis for a less complete dataset, as will be discussed in the 

next section. 

 

 

Figure 3 – Comparison of the estimated CR(t) (black line) with its 95% confidence 

interval limits against the actual data for China from January19th  up to February17th 

(red dots). 

 

 

Figure 4 – Comparison of the theoretical model for CR(t) with the three estimated 

parameter values (solid line), against the complete dataset for China from January 19th 

up to March 25th (red dots). 

 

Although the present estimated parameters have led to a good prediction of the second 

half of the China epidemic evolution data, there are still uncertainties associated with the 

average times here assumed both equal to 7 days, according to [6]. This choice was based 

on early observations of the infected asymptomatic and symptomatic patients in Wuhan, 

but more recent studies have been refining the information on the epidemic evolution and 
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the disease itself, such as in [14-17]. For this reason, we have also implemented a 

statistical inverse analysis with the full dataset of China, but now seeking the estimation 

of five parameters, so as to simultaneously estimate the average times (1/ν and 1/η). Both 

uniform and Gaussian distributions were adopted for the two new parameters, with initial 

guesses of 1/ν=7 days and 1/η=7 days, and N=29 days, as employed in [6]. Table 3 

provides the estimated values and 95% confidence intervals for all five parameters, with 

Gaussian priors for the two average times with data obtained from [14,17]. The most 

affected parameter in comparison with the previous estimates is the average time 1/η, 

which is also the one with widest confidence interval. This behaviour is also evident from 

the Markov chains for this parameter, now simultaneously estimated. Figure 5 compares 

the theoretical predictions with the model incorporating the five estimated parameters as 

in Table 3, against the full CR(t) dataset for China, confirming the improved agreement. 

 

Table 3 – Estimated values and 95% confidence intervals for five parameters, 

𝑓0, 𝜇, 𝜏0, 1/ν and 1/η (China). 

Parameter Estimated values 95% confidence interval 

𝑓  0.718491 [0.711595, 0.723138] 

𝜇  0.132032 [0.131789, 0.13227] 

𝜏0  4.47793 × 10−8 [4.47793 × 10−8, 4.47793 × 10−8] 

1/ν 6.20798 [6.12574, 6.25764] 

1/η 11.2784 [10.4379, 12.3593] 

 

 

Figure 5 – Comparison of the theoretical model for CR(t) with the five estimated 

parameter values (black line), against the complete dataset for China from January 19th 

up to March 25th (red dots). 
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Model Application: Brasil 

The CR(t) data for the accumulated reported infectious in Brasil, from February 25th, 

when the first infected individual was reported, up to March 29th, is presented in the 

Appendix. First, the exponential phase of the evolution was fitted, taking the data from 

day 10 to 25, yielding the estimates of the three parameters, 𝜒1 = 0.42552, 𝜒2 =

0.293696, 𝜒3 = 3.2335, from which we have estimated 𝑡0 = 6.90514. The remaining 

data for the initial conditions, 𝐼0 and 𝑈0, and the early stage transmission rate, 𝜏0, are in 

fact recalculated from within the MCMC algorithm, since the changing values of 𝑓0 will 

affect them, according to eqs. (7.c-e). The average times in the model were taken as 1/ν= 

6.21 days and 1/η= 11.28 days, which were obtained from the MCMC simulation on the 

full dataset for China, as discussed in the previous section. Also, the Brazilian government 

took isolation measures starting on N=21 days. Then, the statistical inverse problem 

analysis was employed to estimate the three parameters, 𝑓0, 𝜇, and 𝜏0,  again assuming 

there is still no significant time variation in the function f(t) (𝜇𝑓 = 0). Once more, in the 

absence of more informative priors, uniform distributions were employed for all three 

parameters under estimation. Table 4 presents the estimated values and 95% confidence 

intervals for the three parameters. It is clear that the transmission rate attenuation factor, 𝜇, 

is much less pronounced in the Brazilian case, in comparison to the China data behavior, 

which is possibly due to mild public health measures of isolation, or low overall adhesion 

to more severe proposed sanitary measures, at this early phase of the epidemic evolution. 

For instance, in the analysis of the Italy epidemic evolution reported in [6], with data from 

January 31st to March 8th, a comparable low attenuation factor of  𝜇 = 0.032 was 

identified. It is also possible to observe the lower value of the parameter 𝑓0, in comparison 

to the value obtained for the China dataset, which represents that only around 30% of the 

infected symptomatic individuals become in fact reported cases. This result could reflect 

an initial protocol of not thoroughly testing the mildly symptomatic individuals or just a 

lack of enough testing kits. This fact shall be discussed again further ahead when the 

impact of public health measures is analysed. Figure 6 illustrates the good agreement of 

Brasil's full dataset (period from February 25th till March 29th) with the mathematical 

model predictions, after adopting the estimated values for the parameters in Table 4. The 

theoretical CR(t) curve is plotted together with the 95% confidence interval bounds for 

this simulated evolution. It should be recalled that non-informative priors were adopted 

for the three parameters, as in the China example, and except for the transmission rate, 
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when eq. (7.e) provides an excellent initial guess, the remaining guesses were completely 

arbitrary. The initial conditions of the SIRU model are themselves dependent on the 

estimated parameters, thus the resulting initial values become I0= 19.6146, U0= 5.77965, 

ℛ0= 4.96694. The initial value for the susceptible individuals is S0= 211.3x106, 

 

Table 4 – Estimated values and 95% confidence intervals for three parameters, 

𝑓0, 𝜇, and 𝜏0 (Brasil). 

Parameter Estimated values 95% confidence interval 

𝑓0 0.300567 [0.298584, 0.302429] 

𝜇  0.0554277 [0.0548846, 0.0561299] 

𝜏0  1.66755 × 10−9 [1.66755 × 10−9, 1.66755 × 10−9] 

 

 

Figure 6 – Comparison of the theoretical model for CR(t) with the three estimated 

parameter values (black line) and the respective 95% confidence intervals (gray area), 

against the complete dataset for Brasil from February 25th up to March 29th (red dots). 

 

Next, this parameter estimation is employed in the prediction of the COVID-19 evolution 

in Brasil. Five scenarios were here explored: (i) the present public health interventions 

remain unchanged; (ii) a stricter isolation is implemented from now on, further reducing 

the transmission rate; (iii) an attenuation on the social isolation policy, leading to an 

increased transmission rate; (iv) an increment on the fraction of reported cases, through a 

massive blood testing campaign, for instance, forcing more unreported cases to become 
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reported ones, thus isolating them earlier; (v) a combination of public health measures 

acting on both reducing the transmission rate and on increasing the conversion factor of 

unreported to reported cases; 

In the first scenario, it is assumed that no further public health interventions are 

implemented, other than those already reflected by the data which should be fully 

maintained throughout the control period, and the epidemics should evolve from the 

present stage, under the parameters above identified. Figure 7.a shows the evolution of 

the accumulated reported, CR(t), and unreported, CU(t), infectious individuals up to 150 

days. Due to the fairly low value of 𝑓0 ≈ 0.30, the number of unreported infectious cases 

is quite high, reaching around 84,968 individuals, while the reported cases should reach 

36,514 individuals, thus a total of infected symptomatic individuals of 121,482. No 

predictions on casualties are here proposed, since these are highly dependent on age 

structure, social-economical conditions, and health system response. Figure 7.b presents 

the predicted evolution of the daily reported infectious cases, which shows a peak at 

around t=47 days of about 1,067 reported cases. 

 

 

 

Figure 7.a – Comparison of the theoretical model for CR(t) (black curve) and CU(t) (red 

curve) with the three estimated parameter values from the available dataset for Brasil 

from February 25th up to March 29th. 
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Figure 7.b – Prediction of the daily reported data distribution, DR(t), with the three 

estimated parameter values from the available daily reported cases dataset for Brasil 

from February 25th up to March 29th (red dots). 

Next, the second scenario explores the implementation of more strict isolation and 

sanitary measures to reduce the transmission rate by assuming, after day N2=40 (eq.10.c), 

50% improvement with respect to the value of 𝜇 here identified , thus around, 𝜇2=0.0831, 

still below that achieved in China (0.132), hopefully still feasible in Brasil. The time 

variable transmission rate is then computed from: 

 

𝜏(𝑡) = 𝜏0 , 0 ≤ 𝑡 ≤ 𝑁 (10.a) 

𝜏(𝑡) = 𝜏0 exp(−𝜇(𝑡 − 𝑁)) , 𝑁 < 𝑡 ≤ 𝑁2 (10.b) 

𝜏(𝑡) = 𝜏0 exp(−𝜇(𝑁2 − 𝑁)) exp(−𝜇2(𝑡 − 𝑁2)) , 𝑡 > 𝑁2 (10.c) 

 

The changes in the accumulated reported and unreported cases, as shown in Figure 8, are 

quite significant. The predicted number of unreported symptomatic infectious cases is 

now much lower reaching after 150 days around 67,360 individuals, while the reported 

cases should reach 28,947 individuals, with an impressive reduction to a total of around 

96,307 infectious cases. The predicted evolution of the daily reported infectious cases 

would then show a peak at around t=45 days of about 1,013 reported cases. 
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Figure 8 – Comparison of the theoretical model for CR(t) (blue curve) and CU(t) (red 

curve) with the three estimated parameter values from the available dataset for Brasil 

from February 25th up to March 29th, and improving by 50% the transmission rate 

attenuation parameter, to become 𝜇2 = 0.0831, after day N2=40. 

 

Through the third scenario, one can predict the consequences of relaxing the public health 

measures that affect transmission rate, for instance by relaxing somehow the isolation and 

sanitary measures. This is simulated here by reducing the identified transmission rate 

attenuation factor, by assuming, after day N2=40, half the value of 𝜇 here identified, thus 

around, 𝜇2=0.0277. The changes in the accumulated reported and unreported 

symptomatic cases, as shown in Figure 9, are marked changed to worse. The predicted 

number of unreported infectious cases is now much lower reaching after 150 days around 

147,815 individuals, while the reported cases should reach 63,521 individuals, with a 

drastic increase to a total of around 211,336 infectious cases. The predicted evolution of 

the daily reported infectious cases would then show a peak at around t=56 days of about 

1,300 reported cases. 

 

20 40 60 80 100 120 140
t, days

10000

20000

30000

40000

50000

60000

70000

CR t , CU t

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 3, 2020. .https://doi.org/10.1101/2020.03.31.20049130doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.31.20049130


 

 

Figure 9 – Comparison of the theoretical model for CR(t) (black curve) and CU(t) (red 

curve) with the three estimated parameter values from the available dataset for Brasil 

from February 25th up to March 29th, and halving the transmission rate attenuation 

parameter, to become 𝜇2 = 0.0277, after day N2=40. 

 

Besides acting on the transmission rate along time, public health measures may also be 

effective in reducing the ratio of reported to unreported infectious case, since the reported 

cases are directly isolated and thus interrupting the contamination path, as analyzed in the 

fourth scenario. For instance, increasing the fraction of reported and unreported infectious 

cases parameter, to become 𝑓 = 0.7185, the value previously obtained from the China 

dataset. Therefore, Figure 10 shows the behavior of both CR(t) and CU(t), which 

according to the value of 𝜇𝑓 = 0.5, occurring after the day Nf=40, leads to the crossing of 

reported and unreported cases that can be observed. The predicted number of unreported 

infectious cases is now reaching, after 150 days, around 40,894 individuals, while the 

reported cases should reach 60,531 individuals, with an also marked reduction to a total 

of around 101,425 infectious cases. The predicted evolution of the daily reported 

infectious cases would then show a peak at around t=47 days of about 2,341 reported 

cases. Although this peak value is higher than for the base case (1,067), before further 

public health intervention, a number of these are of mild symptomatic cases that were 

moved from the unreported to the reported cases evolution, thus isolated earlier.  
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Figure 10 – Comparison of the theoretical model for CR(t) (black curve) and CU(t) (red 

curve) with the three estimated parameter values from the available dataset for Brasil 

from February 25th up to March 29th, and increasing the fraction of reported and 

unreported symptomatic infectious cases parameter, to become 𝑓 = 0.7185, starting 

after day N2=40 with 𝜇𝑓=0.5. 

 

Finally, in the fifth scenario, the combination of public health measures acting on both 

the transmission rate and on the conversion factor or unreported to reported cases is 

analyzed for Brasil. Therefore, let us consider after day N2=40, 50% improvement with 

respect to the value of 𝜇 here identified, thus around, 𝜇2=0.0831, and simultaneously 

increase the fraction of reported and unreported infectious cases, to become 𝑓 = 0.7185, 

also starting after day N2=40, with 𝜇𝑓=0.5. The changes in the accumulated reported and 

unreported cases, as shown in Figure 11, are the most encouraging in the present analysis. 

The predicted number of unreported infectious cases is now reaching after 150 days 

around 36,770 individuals, while the reported cases should reach 50,006 individuals, with 

a marked decrease to a total of around 86,777 infectious cases, about 30% reduction with 

respect to the base case. The predicted evolution of the daily reported infectious cases 

would then show a peak at around t=46 days of about 2,196 reported cases. Again, though 

this peak value is higher than for the base case, before the public health improvements, a 

number of these are of mild symptomatic cases that were moved from the unreported to 

the reported cases evolution, thus moved to monitored isolation earlier, and not 

necessarily requiring hospitalization. 
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Figure 11 – Comparison of the theoretical model for CR(t) (black curve) and CU(t) (red 

curve) with the three estimated parameter values from the available dataset for Brasil 

from February 25th up to March 29th, and combining public health measures, towards 

improving by 50% the transmission rate attenuation parameter, to become 𝜇2 = 0.0831, 

after day N2=40, and increasing the fraction of reported and unreported symptomatic 

infectious cases parameter, to become 𝑓 = 0.7185, starting after day N2=40 with 

𝜇𝑓=0.5. 

 

Though the three parameters estimation provides a fairly good reproduction of the 

behaviour of the CR(t) curve for Brasil, one may observe a change in the pattern of the 

evolution around day 30, that could not be entirely followed by the proposed model. It is 

also a known fact that the initial amount of kits for blood testing that were purchased by 

the Brazilian government were finished around this time, and before being fully 

supplemented, there could have been a reduction on the number of executed exams of the 

symptomatic individuals, that might have affected the partition of reported to unreported 

cases by the end of this period covered by the present dataset. Therefore, the more general 

model including the time variation of the partition f(t), eqs.(4.c,d),  is here implemented 

for a more refined inverse problem analysis. It is then expected that a reduction on the f 

value can be identified (𝑓𝑚𝑎𝑥<𝑓0), with an abrupt variation on the exponential behaviour, 

here assumed as a sharp functional time dependence (large 𝜇𝑓). Therefore, an additional 

statistical inverse problem analysis is undertaken, this time for estimating five parameters, 

namely, 𝑓0, 𝜇, 𝜏0, 𝑓𝑚𝑎𝑥 , and 𝑁𝑓 , aimed at improving the overall agreement with the CR(t) 

data behaviour, with a possible reduction on the partition of the reported and unreported 
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infectious cases. With uniform distributions for all five parameters, taking the previous 

estimates for the three first parameters, an arbitrary guesses for 𝑓𝑚𝑎𝑥 , and 𝑁𝑓, the five 

estimated parameters are shown in Table 5, together with the 95% confidence interval for 

each parameter. Figure 12 shows the theoretical CR(t) curve obtained with the five 

parameters estimation, plotted together with the 95% confidence interval bounds for this 

simulated evolution.  

 

Table 5 – Estimated values and 95% confidence intervals for five parameters, 

𝑓0, 𝜇, 𝜏0, 𝑓𝑚𝑎𝑥, and 𝑁𝑓  (Brasil). 

Parameter Estimated values 95% confidence interval 

𝑓  0.303671 [0.302624, 0.304697] 

𝜇  0.0389639 [0.0388438, 0.0390961] 

𝜏0  1.66755 × 10−9 [1.66755 × 10−9, 1.66755 × 10−9] 

𝑓𝑚𝑎𝑥 0.156734 [0.156146, 0.157217] 

𝑁𝑓 30.4197 [30.3522, 30.4915] 

 

One can see the marked reduction on the f(t) parameter from the estimates in Table 5, 

which results in the increase of the unreported to reported infectious cases, as is shown in 

Figure 13.a for CR(t) and CU(t) predictions up to 150 days. Clearly, the reduction on the 

testing, and thus on the isolation of reported infectious individuals, leads to an impressive 

increase on the total number of infected individuals after 150 days (723,698 cases), 

including unreported (609,125) and reported cases (114,572). Figure 13.b presents the 

predicted evolution of the daily reported infectious cases, which shows a peak at around 

t=61 days of about 2,672 reported cases. 

Hopefully this difficulty with the availability of enough testing kits that occurred around 

day 30 has been already solved and the desirable increase on the number of tests and 

reported cases will be apparent from the next few entries in the accumulated reported 

cases. From the present results it is quite clear that the reduction on the testing has 

unfortunate consequences on the epidemic evolution. At the end of this report, the 

predicted results for CR(t) provided the value of 5438 reported cases, in comparison to 

the officially announced value of 5717 cases on March 31st, 2020.  
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Figure 12 – Comparison of the theoretical model for CR(t) with the five estimated 

parameter values (black line) and the respective 95% confidence intervals (gray area), 

against the complete dataset for Brasil from February 25th up to March 29th (red dots). 

 

 

 

Figure 13.a – Comparison of the theoretical model for CR(t) (black curve) and CU(t) 

(red curve) with the five estimated parameter values from the available dataset for 

Brasil from February 25th up to March 29th. 
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Figure 13.b – Prediction of the daily reported data distribution, DR(t), with the five 

estimated parameter values from the available daily reported cases dataset for Brasil 

from February 25th up to March 29th (red dots). 

 

CONCLUSIONS 

 

The present work implements a mixed analytical-statistical inverse problem analysis to 

the prediction of epidemics evolution, with focus on the COVID-19 progression in Brasil. 

A SIRU-type model is implemented for the direct problem solution, while a mixture of 

an analytical parametric estimation for the early phase epidemic exponential behavior 

with a Bayesian inference approach for the entire period, are considered for the inverse 

problem analysis. The evolution of the COVID-19 epidemy in China is considered for 

validation purposes, by taking the first part of the dataset to estimate parameters, and 

retaining the rest of the evolution data for direct comparison with the predicted results, 

with excellent agreement. Then, the same approach is applied to the Brazilian case, this 

time employing the available time series so far for the parametric estimates, and then 

offering an evolution prediction. Also, some public health intervention measures are 

critically examined, in addition to those already implemented, permitting the inspection 

of their impact on the overall dynamics of the disease proliferation. Clearly, a 

combination of public health interventions can offer a considerable impact reduction on 

the disease progression within Brasil, as illustrated by the implemented modelling. It was 

also analyzed the negative impact due to the scarcity of testing kits during a period, which 

if not solved and even incremented, would lead to an increase on the ratio of unreported 

to reported symptomatic cases, and consequently on a dramatic epidemic evolution. 
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Further improvement on the modelling is envisioned by enriching the model with latency 

effects, age structure discrimination, spatial demographic distribution dependence, and 

recovery factor differentiation among isolated and non-isolated patients.  
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APPENDIX 

 

Table A.1 - Data for Brasil - accumulated reported cases, CR(t), and casualties. 

 

DATE Death Infected 

24/02/2020 0 0 

25/02/2020 0 1 

26/02/2020 0 1 

27/02/2020 0 1 

28/02/2020 0 1 

29/02/2020 0 2 

01/03/2020 0 2 

02/03/2020 0 2 

03/03/2020 0 2 

04/03/2020 0 3 

05/03/2020 0 8 

06/03/2020 0 13 

07/03/2020 0 19 

08/03/2020 0 25 

09/03/2020 0 25 

10/03/2020 0 34 

11/03/2020 0 52 

12/03/2020 0 77 

13/03/2020 0 151 

14/03/2020 0 151 

15/03/2020 0 200 

16/03/2020 0 234 

17/03/2020 1 346 

18/03/2020 4 529 

19/03/2020 7 640 

20/03/2020 11 970 

21/03/2020 18 1178 

22/03/2020 25 1546 

23/03/2020 34 1924 

24/03/2020 46 2247 

25/03/2020 57 2433 

26/03/2020 77 2985 

27/03/2020 92 3417 

28/03/2020 111 3904 

29/03/2020 136 4256 
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