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Abstract 
By March 2020, COVID-19 led to thousands of deaths and disrupted economic activity worldwide. 
As a result of narrow case definitions and limited capacity for testing, the number of unobserved 
SARS-CoV-2 infections during its initial invasion of the US remains unknown. We developed an 
approach for estimating the number of unobserved infections based on data that are commonly 
available shortly after the emergence of a new infectious disease. The logic of our approach is, in 
essence, that there are bounds on the amount of exponential growth of new infections that can 
occur during the first few weeks after imported cases start appearing. Applying that logic to data 
on imported cases and local deaths in the US through March 12, we estimated that 22,876 (95% 
posterior predictive interval: 7,451 - 53,044) infections occurred in the US by this date. By 
comparing the model's predictions of symptomatic infections to local cases reported over time, 
we obtained daily estimates of the proportion of symptomatic infections detected by surveillance. 
This revealed that detection of symptomatic infections decreased throughout February as 
exponential growth of infections outpaced increases in testing. Between February 21 and March 
12, we estimated an increase in detection of symptomatic infections, which was strongly 
correlated (median: 0.97, 95% PPI: 0.85 - 0.98) with increases in testing. These results suggest 
that testing was a major limiting factor in assessing the extent of SARS-CoV-2 transmission 
during its initial invasion of the US. 

Significance Statement 

Countries across the world observed dramatic rises in COVID-19 cases and deaths in March 
2020. In the United States, delays in the availability of diagnostic testing prompted questions 
about the extent of unobserved community transmission. Using a simulation model informed by 
reported cases and deaths, we estimated that tens of thousands of people were infected by the 
time a national emergency was declared on March 13. Our results indicate that fewer than 20% of 
locally acquired, symptomatic infections in the US were detected over a period of a month. The 
existence of a large, unobserved reservoir of infection argues for the necessity of large-scale 
social distancing that went into effect to mitigate the impacts of SARS-CoV-2 on the US. 
 
Main Text 
 
Introduction 
SARS-CoV-2 is a newly emerged coronavirus that is causing a global pandemic (1). The 
unprecedented spread of SARS-CoV-2 owes to its high transmissibility (2), pre-symptomatic 
transmission (3), and transmission by asymptomatic infections (4). An appreciable fraction of 
infections are asymptomatic (5), and many others result in mild symptoms that could be mistaken 
for other respiratory illnesses (6). These factors point to a potentially large reservoir of 
unobserved infections (7), especially in settings where capacity to test for SARS-CoV-2 has been 
limited (8). The United States is one such country in which limited testing has been a major 
concern, particularly as imported cases, and now local cases, have increased over time (9). Until 
February 27, testing criteria in the US were limited to close contacts of confirmed cases and 
those with recent travel to China (9). This means that any local infections resulting from an 
unobserved imported infection would have gone unnoticed. Community transmission occurred 
without notice while testing was still being rolled out (10, 11), albeit to an unknown extent. 

Our goal was to estimate the extent of community transmission of SARS-CoV-2 in the US that 
occurred prior to its widespread recognition. Unlike other countries where testing and 
containment measures were pursued aggressively (12, 13), rollout of testing in the US was slow 
(9) and widespread social-distancing measures did not go into effect until several weeks after the 
first reported case (14, 15). Understanding the extent of community transmission has major 
implications for the effectiveness of different options for control (16) and for anticipating the 
trajectory and impact of the pandemic (17). 
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Results 

To estimate the extent of community transmission of SARS-CoV-2 in the US, we used a 
stochastic simulation model that combined importation and local transmission processes. We 
informed model parameters with estimates from other countries, where available (Table 1), and 
estimated values of two unknown parameters by fitting the model to data on local reported deaths 
in the US (18). To model importation, we simulated observed and unobserved imported infections 
based on the number and timing of imported cases reported in the US (19) and assumptions 
about the proportion of different infection outcomes (5, 20). To model local transmission, we used 
a branching process model informed by estimates of the serial interval and reproduction number 
of SARS-CoV-2 from Singapore (3). Due to aggressive containment efforts there (12), we 
considered our model to be a conservative representation of community transmission in the US. 
To relate our model’s predictions to US data on reported cases and deaths, we also simulated the 
timing of symptom onset (3), case reporting (18), and death (21), for simulated infections for 
which those outcomes occurred. 

By March 12, there were a total of 1,514 reported cases and 39 reported deaths that resulted 
from local transmission of SARS-CoV-2 in the US. We used this information to estimate the 
probability of detecting imported symptomatic infections, ρtravel, by seeding our model with 
imported infections, simulating local transmission, and comparing simulated and reported local 
deaths. Under our baseline scenario, this resulted in a median estimate of ρtravel  = 0.39 (95% 
posterior predictive interval: 0.15 - 0.90). Simulating from January 1, we obtained 22,876 (95% 
PPI: 7,451 - 53,044) local infections cumulatively in the US by March 12 (Fig. 1A). Due to the 
exponential growth posited by our model, 2,958 (95% PPI: 956 - 7,249) local infections were 
predicted to have occurred on March 12 alone (Fig. 1B). Had we performed a simple 
extrapolation of reported cases and deaths based on ρtravel, our estimate of cumulative local 
infections by March 12 would have been only 5,018 (95% PPI: 2,350 - 12,445). This suggests 
that detection of local infections was less sensitive than detection of imported infections. 

We estimated the probability of detecting local symptomatic infections, ρlocal, by comparing our 
model’s predictions of symptomatic infections to local case reports on a daily basis. Over the 
course of February, daily estimates of ρlocal decreased from our uniform prior down to a low of 
0.033 (95% PPI: 0.012 - 0.12) on February 21, as increases in simulated local infections 
outpaced newly reported local cases (Fig. 2A). Our results indicate that detection of symptomatic 
infections was below 20% for nearly a month (median: 29 days, 95% PPI: 17 - 37 days) when 
containment still might have been feasible. As testing increased in March (Fig. 2B, red), so too 
did reported cases (Fig. 2A, red) and daily estimates of ρlocal (Fig. 2B, black). By March 12, we 
estimated ρlocal to be 0.77 (95% PPI: 0.29 - 1.00). Between February 21 (low estimate of ρlocal) 
and March 12, our daily estimates of ρlocal were well correlated with daily numbers of tests 
administered (Pearson’s correlation, median: 0.97, 95% PPI: 0.85 - 0.98). 

Successful fitting of our model was demonstrated by its predictions of local deaths by March 12 
(median: 33, 95% PPI: 9 - 74), which were consistent with the 39 reported (Fig. 3). Although we 
did not fit our model to deaths on a daily basis, 85.5% of the deaths predicted by our model 
occurred within the same range of days over which local deaths were reported (February 29 - 
March 12). This indicates that, collectively, our model’s assumptions about the timing of 
importation, local transmission, and delay between exposure and death are plausible. Deaths 
caused by COVID-19 often occur several weeks after exposure (22). Thus, our baseline model 
predicted that there would be a median of 395 (95% PPI: 125 - 948) additional deaths as a result 
of infections that occurred by March 12. Relative to deaths reported by then, this represents an 
increase by a factor of 12.2 (95% PPI: 7.03 - 21.3).  

Discussion 
Our approach used a mathematical model to leverage available data to answer a question of 
significant interest to public health during the initial phase of the COVID-19 pandemic in the US. 
The only requirements for applying this approach are basic epidemiological data and estimates of 
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standard epidemiological parameters, both of which are collected routinely during the initial 
weeks of nascent epidemics. Although other approaches – namely, serological surveys – could 
have provided more direct answers to the question of how many unobserved infections there 
were in the weeks following the arrival of SARS-CoV-2 in the US, serological assays were only 
beginning to be developed at that time (23). Relative to other approaches, ours offers the ability 
to quickly obtain provisional estimates of the number of unobserved infections early in an 
epidemic, when there still might be time to act on that information with testing and case isolation.   
Despite the advantages of our approach, there are limitations of it that should be acknowledged. 
First, our results were, in some cases, sensitive to deviations from baseline assumptions 
(Supplementary Information Text). Although most parameter scenarios we explored resulted in 
similar cumulative infections, higher values of R and earlier importation resulted in estimates in 
excess of 100,000 (Fig. S6). Second, our branching process model assumes exponential growth, 
which could be affected by social distancing (24) or the buildup of immunity (25). Neither of those 
factors were likely to have had much influence on local transmission of SARS-CoV-2 in the US 
before March 13, however. Third, our parameter assumptions were based on analyses of data 
collected outside the US. Similar information has proven useful for other pathogens though, such 
as Zika and Ebola in past public health emergencies (26, 27). Fourth, we did not make use of 
airline data to model importation (28), but future applications of our method could incorporate that 
type of information. 

The limitations of our approach mean that results from our baseline scenario should be 
interpreted cautiously. Nonetheless, based on our sensitivity analysis, we conclude that 
unobserved SARS-CoV-2 infections in the US by March 12 likely numbered in the tens of 
thousands, and quite possibly in excess of 100,000. This result, considered together with 
extensive pre-symptomatic and asymptomatic transmission of SARS-CoV-2 (3, 4), suggests that 
the US was well past the possibility of containment by March 12. Other modeling work (16) 
suggests that the feasibility of containing SARS-CoV-2 is highly sensitive to the number of 
infections that occur prior to initiation of containment efforts. Our estimate that fewer than 20% of 
local symptomatic infections were detected by surveillance for much of February suggests that a 
crucial opportunity to limit the impact of SARS-CoV-2 on the US may have been missed. 
Although the number of tests administered increased in March (9), so too did the number of 
infections and, consequently, the demand for testing. 

Coincident with the March 13 declaration of a national emergency (14), social-distancing 
measures went into effect across the US (15). Our estimate of several thousand active SARS-
CoV-2 infections at that time suggests that large-scale mitigation efforts, rather than reactionary 
measures (29), were indeed necessary. Even after those efforts eventually begin to reverse 
increases in SARS-CoV-2 transmission in the US, our results show that a downturn in COVID-19 
deaths would not be expected to appear until several weeks later. Analyses of the impact of 
large-scale mitigation efforts in China (30, 31) provide reason for optimism that those measures 
can be effective. 
 
Materials and Methods 
 
We calibrated a stochastic model, including separate importation and local transmission steps, to 
two publicly available datasets on cases of COVID-19 internationally and in the United States. All 
code and data used are available at http://github.com/TAlexPerkins/sarscov2_unobserved. 
 
Data 
We obtained data on the number of imported cases and deaths from line list data compiled by the 
Models of Infectious Disease Agent Spread (MIDAS) Network (19). These data informed the 
number and timing of imported infections predicted by our importation model. We obtained data 
on the total number of US cases and deaths and total number of cases and deaths globally from 
time series compiled by the Johns Hopkins University Center for Systems Science and 
Engineering (18). These data informed our estimates of the proportion of local infections 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2020. .https://doi.org/10.1101/2020.03.15.20036582doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.15.20036582
http://creativecommons.org/licenses/by/4.0/


	

	

5	

	

detected. We also used these data in an alternative importation scenario in which the timing of 
imported infections was sampled proportional to daily global incidence. 
 
Importation model 
We considered cases associated with international travel in the MIDAS dataset to be imported. 
We removed SARS-CoV-2-positive individuals who were repatriated from the Diamond Princess 
cruise ship from our analysis, due to the fact that they were quarantined (32), leaving 153 
imported cases (including one death). We first estimated the number of imported infections based 
on the probability that an infection would be symptomatic, the probability of an imported 
symptomatic infection being detected, and the probability of death among symptomatic infections 
(case fatality risk, CFR). The CFR and the probability that an infection is symptomatic were drawn 
from beta distributions with parameters given in Table 1, with means of 2.29% and 17.9%, 
respectively. We jointly estimated the probability of detection of imported symptomatic infections, 
ρtravel, and the relative offspring number of asymptomatic infections, 𝛼, by running the importation 
and branching process models across a range of values of those parameters and calculating the 
probability of observing the number of reported deaths through March 12; this approach is 
described in more detail in the parameter calibration section below. The probability of the number 
of unobserved imported infections being between 0 and 20,000, along with the 152 observed 
cases and 1 observed death, was calculated using a multinomial distribution; the number of 
imported infections was then sampled from that distribution. We then smoothed the date of known 
imported infections with a Gaussian kernel and sampled dates of all imported infections from that 
distribution. As an alternative scenario, we distributed the timing of imported infections based on 
the timing of international incidence, with cases in China excluded after February 3, due to a ban 
on entrance by non-resident foreign nationals who had been to China within the past 14 days 
enacted on February 2. For each scenario and parameter combination, we generated 1,000 sets 
of imported infections. 

 
Transmission model 
We simulated local transmission in the United States from January 1 to March 12 using a 
branching process model, seeded by the aforementioned importation model. Each replicate draw 
of the number and timing of imported infections seeded one simulation of the branching process 
model, to maximally represent uncertainty in both importation and transmission processes. The 
number of secondary infections generated by each infection in the branching process model was 
drawn from a negative binomial offspring distribution with mean R and dispersion parameter k. 
Under our baseline scenario, we used a dispersion parameter of k = 1,000, approximating a 
Poisson distribution, due to a lack of estimates of k for SARS-CoV-2. Under alternative scenarios 
for k, we considered values of 0.15 and 0.30 to account for superspreading observed in 
outbreaks of SARS and MERS (33, 34). The number of secondary infections generated by 
asymptomatic individuals was also drawn from a negative binomial distribution, but with mean 
𝛼R, where 𝛼 in [0,1]. Whether an individual was symptomatic was determined by a Bernoulli trial 
with probability equal to the proportion of infections that were asymptomatic in that replicate. 
Each secondary infection’s exposure time was drawn from a log-normal generation interval 
distribution with mean 4.56 days. In doing so, we assumed that the generation interval followed 
the same distribution as the serial interval. 
 
In addition to exposure, we simulated three additional outcomes, and the timing thereof, in a 
subset of infections. 
• Symptom onset: The number of new symptomatic infections on day t was drawn from a 

binomial distribution with the number of trials equal to the number of infections with time of 
potential symptom onset on day t, and the probability of success equal to the proportion of 
infections that are symptomatic. For infections that were simulated to result in symptoms, the 
time of symptom onset was drawn from a Weibull incubation period distribution with mean 
7.07 (3) and added to each individual’s exposure time. 
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• Case reporting: The number of cases reported on day t was drawn from a binomial 
distribution with the number of trials equal to the number of infections with time of potential 
case reporting on day t, and the probability of success equal to the proportion of infections 
that are symptomatic. This accounts for the delay in reporting, but not underreporting, which 
is addressed below when we calculate the probability that a symptomatic infection is 
detected, ρlocal. The time of potential case reporting was drawn from a gamma distribution of 
the period between symptom onset and case reporting with mean 6 days, and added to each 
infection’s time of symptom onset. 

• Death: The number of deaths on day t was drawn from a binomial distribution with the 
number of trials equal to the number of infections that could have experienced death on day t, 
and the probability of success equal to the case fatality risk. The time of death was drawn 
from a log-normal distribution of time from symptom onset to death with mean 14 days (35), 
and added to each individual’s time of symptom onset. 

 
All parameter values, and their associated distributions, are described in Table 1. Where 
parameter distributions were described in the literature using medians and interval measures of 
spread, we used the optim function in R to estimate parameters of those distributions that 
matched distribution moments reported by those studies. In that sense, all parameters in our 
analysis were treated as random variables, with associated uncertainty accounted for throughout 
our analysis. For the delay between symptom onset and case notification, we fitted a gamma 
distribution to data on the delay between symptoms and reporting for 26 US cases in the MIDAS 
line list data; the gamma distribution fitted the data better than negative binomial or log-normal 
distributions according to AIC (133.5, 134.6, and 134.0, respectively) (Fig. S1). Our mean 
estimate of 6.0 for this delay is in line with previous estimates from China of 5.8 by Li et al. (36) 
and 5.5 by Bi et al. (37). Three key parameters – R, the serial interval, and the incubation period 
– were taken from a single reference (3) to ensure that those estimates were consistent with each 
other. That is important because R and the serial interval jointly control the epidemic growth rate 
(38), so taking estimates of R and the serial interval from different studies could have led to 
unrealistic projections of epidemic growth rate. 
 
We estimated how the probability of detecting locally acquired, symptomatic infections, ρlocal, 
changed over time. These estimates were based on the number of symptomatic cases reported 
each day, C(t), and our model’s predictions for the number of symptomatic infections that could 
have been reported each day, S(t), after accounting for a delay between symptom onset and 
reporting. We assumed a uniform prior for ρlocal, and on each day estimated a posterior equal to 
ρlocal(t) ~ Beta(1+C(t), 1+S(t)-C(t)). We then smoothed over each of 1,000 replicates of 
independent daily draws of logit-transformed values of ρlocal(t) using the smooth.spline function in 
the stats package in R, using weekly knots (Fig. S2). 

To understand how many deaths may occur after the time period of our analysis based on 
infections occurring through then, we set R=0 from March 13 onwards and simulated our model 
forward to May 31. This allowed any infections occurring by March 12 enough time to result in 
death, for the proportion expected to result in that outcome. 

Parameter calibration 
Due to a lack of prior estimates for two parameters, we jointly estimated the proportion of 
imported symptomatic infections that were detected, ρtravel, and the relative infectiousness of 
asymptomatic infections, 𝛼. We fitted these parameters to the total number of deaths resulting 
from locally acquired SARS-CoV-2 infections in the US by March 12. To approximate a likelihood 
for given values of ρtravel and 𝛼, we simulated 200 replicate time series of imported infections, 
each based on the same value of ρtravel, and then simulated local transmission using the same 
value of 𝛼 for each of the 200 replicates. For each of these 200 replicate simulations, we 
calculated the cumulative number of infections, ID, that, based on their timing, could have resulted 
in death by March 12. We then calculated the likelihood of the reported number of deaths, D, 
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according to a binomial distribution in which D is the number of successes among ID trials that 
each have probability of success IFR, where IFR is equal to the CFR times one minus the 
probability of being asymptomatic. Each of the 200 replicates used independent draws from the 
uncertainty distributions of other model parameters, so we took the average of the 200 likelihoods 
to obtain a single marginal likelihood for a given value of ρtravel and 𝛼. After calculating this 
marginal likelihood across a grid of values between 0 (or 0.01 for ρtravel) and 1 in increments of 
0.05 for each parameter, we smoothed this marginal likelihood surface using the bicubic.grid 
function in the akima package in R (39) to create a gridded marginal likelihood surface with a 
0.001 x 0.001 mesh. Finally, we drew samples from the posterior probability distribution of these 
parameters by resampling from this smoothed marginal likelihood surface, which implicitly 
assumed a uniform prior on the two parameters. We repeated this calibration procedure for each 
scenario that we explored, obtaining different estimates for ρtravel and 𝛼 for each of our sensitivity 
analyses. 
 
Sensitivity analysis 
In addition to the alternative importation models, we also undertook a one-at-a-time sensitivity 
analysis for each parameter shown in Table 1, with the exception of the calibrated parameters 
(the last two rows). These last two parameters were re-calibrated as described in the previous 
section for each new parameter set and importation timing combination. Including the baseline 
scenario, there were a total of 18 scenarios (i.e., the baseline plus two explored values for each 
of seven parameters plus one additional scenario with different importation timing). For some 
parameter values explored in sensitivity analyses, we did not directly use literature estimates, but 
instead chose values which were plausible minima or maxima for that parameter; these are 
indicated by “lower” or “higher” in Table 1. For the dispersion parameter, we wanted to explore a 
value that allowed for superspreading but that generated less overdispersion than was observed 
for SARS; this formed our intermediate value in the sensitivity analysis. All baseline values were 
taken directly from literature estimates, with the exception of reporting delay, which was 
calibrated as described in the branching process model section. For that parameter, we obtained 
the low and high scenarios by multiplying the shape parameter by 0.5 and 1.5, respectively, while 
keeping the rate parameter the same. In this way, the reporting delay is the sum of one, two, or 
three identically distributed gamma random variables in the low, baseline, and high scenarios, 
respectively. 
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Figures and Tables 

 
Figure 1. Local infections of SARS-CoV-2 in the US by March 12. These results derive from our 
baseline scenario and show A) cumulative and B) daily incidence of all local infections, including 
observed and unobserved. In B, black shows the median and gray shading shows the 95% PPI.  
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Figure 2. Comparison of symptomatic infections and reported cases. A) Local symptomatic 
infections predicted under the baseline scenario increased exponentially, whereas reported cases 
increased more sharply in March. B) Based on this, we estimated how the probability of detecting 
local symptomatic infections changed daily in the US. Black lines show the median and gray 
shading shows the 95% PPI.  
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Figure 3. Deaths over time. Our baseline model’s predictions were A) consistent with reported 
deaths through March 12 (dashed line) and B) indicate that many more deaths should be 
expected after then based solely on infections that occurred by March 12. Results to the right of 
the dashed line do not reflect additional deaths that would result from new infections occurring 
March 13 or after. The black line shows the median and gray shading shows the 95% PPI.  
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Table 1. Model parameters. All time periods are given in days. 

Parameter Baseline  
(alternatives) 

Distribution Reference/reason 

Reproduction 
number, R 

1.97 (1.5, 2.7) Negative 
binomial 

Tindale et al. (3) (lower, Wu et 
al. (40)) 

Dispersion, k 1,000 (0.15, 0.3) See above in 
Sensitivity 
analysis section 

Poisson-like (SARS-like (34), 
less overdispersed) 

Asymptomatic 
proportion 

0.178 (0.1, 0.5)  Beta Mizumoto et al. (5) (lower, 
higher) 

Case fatality risk, 
CFR 

0.023 (0.012, 
0.034) 

Beta China CDC report (3) (Dorigatti 
et al. (41), WHO Statement (42)) 

Generation interval 
[meanlog, sdlog] 

[1.50, 0.206] 
([1.39, 0.568], 
[1.92, 0.432]) 

Log-normal Tindale et al. (3) (Nishiura et al. 
(43), Li et al. (36)) 

Incubation period 
[shape, scale] 

[1.88, 7.97] 
([1.24, 5.38], 
[2.45, 6.26]) 

Weibull Tindale et al. (3) (Guan et al. 
(33), Lauer et al. (41)) 

Delay in reporting 
following symptom 
onset [shape, rate] 

[3.43, 0.572] 
([1.72, 0.572], 
[5.15,0.572]) 

Gamma Calibrated - see transmission 
model section for description of 
approach 

Period from 
symptom onset to 
death [meanlog, 
sdlog] 

[2.57, 0.370] 
([2.19, 0.501], 
[3.02, 0.403]) 

Log-normal Wang et al. (21) (Mizumoto et al. 
(5) time from hospitalization to 
death as plausible lower bound, 
Dorigatti et al. (41, 45)) 

Proportions of 
symptomatic 
imported infections 
detected, 𝜌#$%&'( 

0.387 [0.154-
0.870] 

Calibrated This is the calibrated estimate in 
baseline scenario; it is 
recalibrated in each sensitivity 
scenario 

Relative 
infectiousness of 
asymptomatic 
infections, α 

0.602 [0.0460-
0.981] 

Calibrated This is the calibrated estimate in 
baseline scenario; it is 
recalibrated in each sensitivity 
scenario 
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Supplementary Information Text 
 

Imported infection predictions and estimates of imported case detection probability 
By March 12, there were a total of 152 reported cases and one reported death in the US that 
were classified as imported on the basis of international travel to areas with known SARS-CoV-2 
transmission (19). By jointly estimating ρtravel and the relative infectiousness of asymptomatic 
infections, α, we obtained a median estimate of 0.39 (95% PPI: 0.15 - 0.90) for ρtravel under our 
baseline scenario. This resulted in a median of 452 (95% PPI: 206 - 1068) imported infections. 
Under the alternative importation timing scenario, where importation timing was based on 
international case reports, we obtained a median estimate of 1.00 (95% PPI: 0.98 - 1.00) for ρtravel 
and 187 (95% PPI: 174 - 202) imported infections. An estimate of ρtravel = 1.00 implies that all 
symptomatic imported infections were detected, but it still means that asymptomatic infections 
would have been undetected. Whereas the baseline importation scenario resulted in most 
importations happening in March and a few throughout February and January, the alternative 
importation scenario resulted in many importations still happening in March but a large proportion 
of them also happening around late January (Fig. S3). 
 

Posterior predictive check against reported local cases 
Using our estimate of ρlocal(t), we simulated the number of reported cases through time and 
compared this with the actual number of reported cases. By March 12, our model predicted that 
there should have been 1,546 (95% PPI: 476 - 3,611) reported cases, commensurate with the 
actual number of 1,514 reported cases (Fig. S4). As expected, this confirms that our estimates of 
ρlocal(t) were consistent with the model and the data. 
 

Sensitivity analysis of unknown parameters  
Estimates of the proportion of imported symptomatic infections that were detected, ρtravel, and the 
infectiousness of asymptomatic infections relative to symptomatic infections, 𝛼, varied based on 
the values of the other parameters. In general, higher values for parameters expected to increase 
transmission (e.g., R) were associated with higher estimates of ρtravel (Table S1). Compared to a 
baseline median estimate of ρtravel = 0.39 (95% PPI: 0.15 - 0.90) with R = 1.97, the estimate of 
ρtravel was 0.83 (95% PPI: 0.47 - 0.99) with R = 2.7 and 0.08 (95% PPI: 0.04 - 0.19) with R = 1.5. 
For a shorter serial interval with a mean of 4.7 days, the estimate was ρtravel = 0.52 (95% PPI: 
0.19 - 0.96), and with a longer mean serial interval of 7.5 days, the estimate was 0.06 (95% PPI: 
0.03 - 0.14). The estimated value of ρtravel was also lower if the CFR was low (ρtravel = 0.20, 95% 
PPI: 0.08 - 0.53), compared to the scenario with a higher CFR (ρtravel = 0.54, 95% PPI: 0.21 - 
0.96). Higher ρtravel estimates correspond to fewer undetected imported infections; therefore, 
fewer undetected importations are required to account for the observed number of local deaths 
through March 12 if the CFR is high, R is high, or the serial interval is short. In addition, when we 
based the timing of importations on international incidence (excluding China after travel 
restrictions were implemented on February 3) the estimate of ρtravel was 1.00 (95% PPI: 0.98 - 
1.00) due to the increased probability of early importations – and more time for local infections to 
increase – under this scenario. There was greater uncertainty in our 𝛼 estimates under most 
sensitivity scenarios, and in most scenarios the estimates of ρtravel and 𝛼 were positively 
correlated (Fig. S5). 
 
Sensitivity analysis of cumulative infections 
Because ρtravel and 𝛼 were estimated for each parameter-sensitivity scenario, cumulative 
infections were relatively similar under the low, baseline, and high scenarios for many 
parameters. Cumulative infections were most sensitive to assumptions about R, the serial 
interval, and the timing of imported infections (Fig. S6, Table S2). The former two affect how 
quickly local infections increase, and the latter affects how much time they have to increase. 
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Cumulative infections were also somewhat sensitive to assumptions about case fatality risk and 
the delay between exposure and death, because assumptions about those parameters influenced 
estimates of ρtravel and 𝛼, which were based on reported deaths. 
 

Sensitivity analysis of local case detection probability 
The proportion of symptomatic infections detected over time followed a similar pattern under all 
parameter sensitivity scenarios, with low values of ρlocal throughout late February followed by 
increases in March (Fig. S7). Long delays in case detection (9 days) were associated with the 
lowest proportion of symptomatic infections detected; in that scenario, ρlocal mostly did not exceed 
10%.  
 

Sensitivity analysis of the ratio of deaths after and before March 12 
The ratio of deaths expected March 13 and after, relative to before then, was higher with changes 
in parameters that resulted in faster growth in local infections and later arrival of imported 
infections (Fig. S8, Table S3). The proportion of deaths expected to occur after March 12 also 
increased with increases in the delay between symptom onset and death (Table S3). 
Overdispersion (lower k) did not drastically alter our estimates of ρtravel or 𝛼 (Table S1) or the 
number of cumulative infections (Table S2), but it did extend the lower and upper bounds on the 
range of the ratio of deaths after and before March 12 (Table S3).  
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Figure S1. Distribution of the delay between symptom onset and reporting for 26 US cases. The 
curve shows the maximum-likelihood fit of a gamma distribution (shape = 3.43, rate = 0.572) to 
those data.  
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Figure S2. Comparison of daily estimates of ρlocal(t) with and without smoothing. The two panels 
compare A) raw estimates with no smoothing and B) smoothed estimates with splines. We used 
the smoothed estimates in our analysis given that they are more indicative of general trends in 
case detection.  
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Figure S3. Assumptions about timing of imported infections. Imported cases that have been 
reported are shown in gray, and the red line shows the baseline distribution of timing of imported 
infections that we based on a Gaussian kernel smooth of those data. The blue line shows an 
alternative distribution of timing of imported infections based on patterns of international 
incidence.  
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Figure S4. The number of cases reported in the US compared to the number our model predicts 
were reported.  
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Figure S5. Samples (104) from the joint posterior distribution of the proportion of imported 
symptomatic infections detected (ρtravel) and the relative infectiousness of asymptomatic infections 
(α) under different parameter-sensitivity scenarios. 
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Figure S5 (continued). Samples (104) from the joint posterior distribution of the proportion of 
imported symptomatic infections detected (ρtravel) and the relative infectiousness of asymptomatic 
infections (α) under different parameter-sensitivity scenarios.  

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

10
20
30

count

Serial interval − Low

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

50
100
150
200

count

Serial interval − High

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

10

20

30

count

Time to death − Low

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

25
50
75
100

count

Time to death − High

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

10
20
30
40

count

Reporting delay − Low

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

10
20
30
40

count

Reporting delay − High

Pr
op

or
tio

na
l i

nf
ec

tio
us

ne
ss

 o
f a

sy
m

pt
om

at
ic

s 
(α

)

Proportion of symptomatic infections detected in travelers (ρtravel)

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 26, 2020. .https://doi.org/10.1101/2020.03.15.20036582doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.15.20036582
http://creativecommons.org/licenses/by/4.0/


	

	

24	

	

 

Figure S6. Posterior predictive distributions of cumulative infections by March 12 under different 
parameter sensitivity scenarios. Unlike other parameters, importation timing was not described in 
terms of simple numerical values; in that case, “mid” refers to our baseline assumption that the 
timing of unobserved imported infections followed the timing of observed imported cases, and 
“high” refers to the alternative scenario that their timing followed international incidence patterns.  
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Figure S7. Median and 95% posterior predictive interval of the probability of detecting a local 
symptomatic infection, ρlocal(t), after accounting for delays in reporting. Each panel represents a 
different parameter-sensitivity scenario.  
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Figure S7 (continued). Median and 95% posterior predictive interval of the probability of 
detecting a local symptomatic infection, ρlocal(t), after accounting for delays in reporting. Each 
panel represents a different parameter-sensitivity scenario.  
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Figure S8. Posterior predictive distributions of the ratio of deaths after and before March 12 
under different parameter sensitivity scenarios. Unlike other parameters, importation timing was 
not described in terms of simple numerical values; in that case, “mid” refers to our baseline 
assumption that the timing of unobserved imported infections followed the timing of observed 
imported cases, and “high” refers to the alternative scenario that their timing followed international 
incidence patterns.  
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Table S1. Median estimates and 95% posterior predictive intervals of the marginal distributions of 
proportion of imported symptomatic infections detected (ρtravel) and the relative infectiousness of 
asymptomatic infections (α) under different parameter-sensitivity scenarios. 

 

Parameter 
varied 

 

Scenario 

Prob. symptomatic infections 
detected (ρtravel) 

Relative asymptomatic 
infectiousness (α) 

Baseline  0.39 (0.15 - 0.90) 0.61 (0.04 - 0.98) 

Asymptomatic 
prop. 

Low 0.47 (0.21 - 0.93) 0.55 (0.03 - 0.98) 

Asymptomatic 
prop. 

High 0.29 (0.01 - 0.81) 0.79 (0.10 - 0.99) 

R Low 0.08 (0.04 - 0.19) 0.63 (0.04 - 0.99) 

R High 0.83 (0.47 - 0.99) 0.23 (0.01 - 0.89) 

Dispersion, k Moderate 0.41 (0.13 - 0.96) 0.54 (0.03 - 0.98) 

Dispersion, k High 0.41 (0.11 - 0.95) 0.53 (0.03 - 0.98) 

Reporting delay Low 0.39 (0.15 - 0.90) 0.60 (0.04 - 0.98) 

Reporting delay High 0.39 (0.15 - 0.90) 0.61 (0.04 - 0.98) 

CFR Low 0.20 (0.08 - 0.53) 0.64 (0.05 - 0.99) 

CFR High 0.54 (0.21 - 0.96) 0.54 (0.04 - 0.98) 

Serial interval Low 0.52 (0.19 - 0.96) 0.54 (0.04 - 0.97) 

Serial interval High 0.06 (0.03 - 0.14) 0.61 (0.04 - 0.98) 

Incubation 
period 

Low 0.50 (0.20 - 0.96) 0.57 (0.04 - 0.98) 

Incubation 
period 

High 0.44 (0.17 - 0.93) 0.58 (0.03 - 0.98) 

Time to death Low 0.58 (0.23 - 0.97) 0.51 (0.03 - 0.97) 

Time to death High 0.15 (0.06 - 0.36) 0.61 (0.04 - 0.98) 

Importation 
timing 

High 1.00 (0.98 - 1.00) 0.13 (0.11 - 0.14) 
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Table S2. Median estimates and 95% posterior predictive intervals of cumulative infections under 
different parameter sensitivity scenarios. 

Parameter varied Scenario Cumulative infections (95% PPI) 

Baseline  22,876 (7,452 - 53,044) 

Asymptomatic prop. Low 22,766 (5,990 - 59,034) 

Asymptomatic prop. High 32,690 (11,761 - 83,405) 

R Low 11,762 (5,647 - 21,247) 

R High 108,732 (23,662 - 465,651) 

Dispersion, k Moderate 18,834 (1,263 - 77,270) 

Dispersion, k High 16,434 (625 - 104,016) 

Reporting delay Low 21,852 (6,804 - 55,042) 

Reporting delay High 22,081 (6,870 - 54,402) 

CFR Low 45,976 (16,534 - 102,414) 

CFR High 15,994 (4,399 - 47,112) 

Serial interval Low 26,154 (6,824 - 77,847) 

Serial interval High 12,996 (7,446 - 21,914) 

Incubation period Low 17,068 (5,029 - 48,375) 

Incubation period High 20,069 (6,162 - 50,064) 

Time to death Low 14,309 (4,292 - 37,606) 

Time to death High 54,962 (23,087 - 113,704) 

Importation timing International incidence 148,853 (83,039 - 258,418) 
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Table S3. Median estimates and 95% posterior predictive intervals of the ratio of deaths after and 
before March 12 under different parameter sensitivity scenarios. 

 

Parameter varied 

 

Scenario 

Ratio of future deaths to death 
by March 12 

Baseline  
12.1 (7.2 - 20.6) 

Asymptomatic prop. Low 13.5 (8.9 - 22) 

Asymptomatic prop. High 10.4 (3.6 - 19.5) 

R Low 5.4 (3.4 - 8.3) 

R High 29.6 (20.6 - 46.4) 

Dispersion, k Moderate 12.2 (5.7 - Inf) 

Dispersion, k High 11.9 (6.2 - 25.5) 

Reporting delay Low 12.2 (6.9 - 21.1) 

Reporting delay High 12.1 (7 - 21.4) 

CFR Low 12.5 (7 - 20.8) 

CFR High 12 (7 - 21) 

Serial interval Low 13.6 (7.5 - 23.1) 

Serial interval High 6 (3.9 - 9.3) 

Incubation period Low 8.9 (5.3 - 14.9) 

Incubation period High 10.6 (6 - 18.4) 

Time to death Low 6.5 (3.8 - 11.3) 

Time to death High 30 (16.7 - 51.6) 

Importation timing International incidence 7.7 (6.5  - 8.8) 
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