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Abstract

Repurposing existing drugs is a timely option to cope with COVID-19. We predicted therapeutic candidates
that could reverse the gene expression of coronavirus-infected host cells. Thirteen expression signatures
computed from various experimental conditions and preclinical models could be reversed by those
compounds known to be effective against SARS- or MERS-CoV, as well as the drug candidates recently
shown to be effective against SARS-CoV-2. We selected ten novel candidates to further evaluate their in
vitro efficacy against SARS-CoV-2 infection. Four compounds bortezomib, dactolisib, alvocidib and
methotrexate inhibited the formation of virus infection-induced cytopathic effect in Vero E6 cells at 1 uM,

yet such a concentration seems toxic to the cells as well. While the evaluation in other permissive cells and
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the prediction of toxicity are needed to optimize and minimize their antiviral activity and cytotoxicity,
respectively, this computational approach has the potential to rapidly and rationally identify drug candidates

against COVID-19.

Main

Since early December 2019, the newly emerged SARS-CoV-2 has infected almost 1 million people
globally'. In the United States, confirmed cases increased from a few dozen to almost 1000 within two
weeks, and this number rapidly grew to over 80,000 within one month”. Among the patients, 15% suffered
from severe acute respiratory distress syndrome (ARDS) and approximately 3% died from acute respiratory
failure, acute cardiac injury, secondary infection, and other serious complications'**. The World Health
Organization (WHO) declared this rapidly spreading and highly pathogenic COVID-19 first a global public
health emergency and then a pandemic. As SARS-CoV-2 infection continues to endanger lives, effective
therapeutics are urgently needed. Repurposing existing drugs could be an efficient and timely means of
identifying drugs that have activity against coronavirus. There are a few repurposed drugs such as
lopinavir/ritonavir, baricitinib, remdesivir and chloroquine currently under clinical investigation™®. These
drugs are expected to target key steps of viral entry, or specific proteins involved in viral replication,
including viral proteases’. In addition to viral replication, the viral pathogen associated molecular pattern
(PAMP) (e.g., immune dysfunction and endoplasmic reticulum stress, Figure 1A) could be targeted to
improve the clinical outcome *. PAMPs-mediated signaling pathways are attractive drug targets to alleviate
diseases caused by human pathogens. Therefore, effectively targeting these pathways to stop the
progression to ARDS caused by SARS-CoV-2 might save lives. Independent of SARS-CoV-2 infection, in
aging adult populations, ARDS is associated with mortality rates of 30-50%’. Thus, a methodical and
unbiased search for new drug candidates from a large drug library could uncover agents that have potential
to arrest the infection and ameliorate its effect. To accomplish this, we sought to target infection-induced

genes in the host cells, hoping to mitigate disease progression and alleviate symptoms.
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We and others'®'¢ have utilized a systems-based approach that employs gene expression profiles of disease
samples and drug-induced gene expression profiles from cell lines to discover new therapeutic candidates
for diseases. The essential idea is to identify drugs that reverse the disease gene expression signature by
suppressing the over-expressed disease genes and activating the repressed genes (Figure 1A). A disease
signature is defined as a list of differentially expressed genes between disease samples and normal control
samples. We recently found that the reversal of gene expression (namely sRGES) correlates to drug efficacy
in cancers'’, demonstrating the feasibility of applying this approach to predict drug candidates for other

diseases, including viral infection.

To utilize this approach for drug discovery against SARS-CoV-2, we first need to collect virus-related host
gene expression profiles, which were not available at the time of writing. Given the high genomic similarity
between SARS-CoV, MERS-CoV, and SARS-CoV-2, we reasoned that existing host gene expression
profiles of the samples infected by SARS- or MERS-CoV could approximate to those infected by SARS-
CoV-2. To verify this assumption, we compiled 331 virus-induced signatures from enrichR and GEO (Table
S1) and used an established pipeline to score 1740 drugs in our repurposing library regarding their reversal
of signature gene expression. Clustering of these signatures based on their drug prediction scores suggests
that signatures derived from the same virus or the virus family under the similar experimental model tend
to cluster together (Figure S1). An example cluster includes one signature derived from primary human
microvascular endothelial cells (MMVEQ01) after 48h of MERS-CoV infection (study id: GSE79218) and
another derived from melanoma cells in mice after seven days of SARS-CoV infection (study id:
GSE68820). In addition, Spearman correlation coefficient of the in vitro drug efficacy data (ECso: Half
maximal effective concentration) of SARS-CoV and MERS-CoV is up to 0.6 (Figure 1B). The clustering
and correlation results suggested that drugs predicted based on the signatures related to SARS-CoV and
MERS-CoV could also be applied for SARS-CoV-2. Therefore, we developed a pipeline to repurpose
existing drugs against MERS-CoV and SARS-CoV, and then experimentally evaluate these drugs in SARS-

CoV-2 (Figure 1C).
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Figure 1. Study workflow and biological processes dysregulated by viral infection. A, An illustration
of reversing the expression of host genes comprising multiple biological processes (highlighted with colors)
induced by coronavirus infection. Drug-induced gene expression profiles are taken from the LINCS



database. A good candidate should activate the repressed biological processes and inhibit the upregulated
processes. B, Correlation of the published antiviral activities of 30 drugs (pECso, -logio transformed ECsg
value in mol/L) against MERS- and SARS-CoV. C, Study workflow including creation of disease
signatures, prediction of drug candidates, selection of a final drug list, and in vitro validation. One disease
signature composed by the differentially expressed genes of each comparison led to one drug prediction
list. Only the signature resulting in a prediction list where known positive drugs were enriched on the top
was considered as a valid signature. D, Dysregulated pathways after SARS infection at 7h compared with
2h in lungs. E, The enrichment of top six dysregulated pathways in primary human microvascular
endothelial (MMVEOQ01) cells through Oh to 48h in MERS-CoV infection (left) and in mock (right). Only
one study was selected for D and E, respectively, and the dysregulated pathways and their dynamics for
other studies are available in supplementary materials (Figure S2 and S3, Extended Data 1).

In total, 430 samples infected by either MERS- or SARS-CoV under different models (e.g., cell line, mouse
models) across multiple time points from public repositories were used for the identification of disease
signatures (Table S1, 12 studies in total). Their expression profiles were created using either microarray or
RNA-Sequencing. Depending on the profiling platform, data processing and signature creation methods
varied (see Methods). The previous clusters are highly confounded by post-infection time points (Figure
S1), meaning the disease signature and their predicted drugs are strikingly different under different time
points. Therefore, we enumerated all the possible comparisons (Figure 1C), including (1) comparisons
between infection and mock at each time point, (2) comparisons between different time points within the
infection or the mock group (e.g., time point 1 vs. time point 0, time point 2 vs. time point 1), and (3)
comparisons both between time points and between infection vs. mock. These comparisons revealed
different virus-related biological processes and their dynamic regulation. For instance, analysis of SARS-
CoV infected lung tissue data showed that various biological processes, including viral gene expression,
DNA replication, nuclear division, lymphocytes differentiation and translation-related processes, were
activated (Figure 1D, S2 and Extended Data 1). In contrast, interleukin and autophagy-related processes
were repressed in infected samples (Figure 1D, S2 and Extended Data 1). Interestingly, some processes
were only activated after a certain time point (e.g., 24 h in Fig 1E) in infected samples, while such patterns
were not observed in mock samples (Figure 1E and S3), suggesting that only some of the comparisons

captured the biology of critical viral infection processes.



For each comparison, we computed a disease signature to characterize the infection status, followed by the
prediction of which drugs may have activity. As we could not directly evaluate the quality and pathologic
relevance of each disease signature, we turned to validating their action using those drugs that are positive
in vitro MERS/SARS testing (41 positive drugs in total, 30 with ECso values, Table S2). Among 215
MERS-CoV or SARS-CoV infection signatures, 13 signatures led to the drug list, where positive drugs are
highly enriched on the top (Extended Data 2). Moreover, ECs of these drugs significantly correlated with
sRGES (Figure 2A and Figure S4). In contrast, for the HIN1 infection signatures, we didn’t observe any
significant enrichment of anti-coronavirus positive drugs (Extended Data 2). The recent clinical data
suggested that the combination of two drugs lopinavir/ritonavir present clinical benefits to patients with
coronavirus'®!°. Both drugs were profiled in LINCS® individually; however, none of them could induce
substantial gene expression change (absolute z score < 2) under 10 uM concentration in cancer cell lines;
therefore, neither was predicted as a hit. We next found another dataset where HepaRG cells were treated
by ritonavir under 10 different concentrations (from 9 nM to 300 uM). We observed that ritonavir could
reverse nearly all the 13 disease signatures under high concentration (i.e., 10 uM to 200 uM) (Figure S5).
Together, we reasoned that those highly ranked drugs with greater negative sRGES in these valid

comparisons could be new therapeutic candidates.

To obtain the final drug prediction, as it’s not trivial to merge disease signatures derived from different
platforms and biological conditions, instead of merging them, we calculated the consensus score of all the
drug prediction lists derived from individual valid disease signatures,. We took the median of the ranks
across multiple comparisons for each drug, and ranked them based on their median rank (Extended Data 3).
Mechanism of action (MoA) enrichment analysis of the final ranked drug list revealed a few significant
drug classes including CDK inhibitors, mTOR inhibitors and NF-xB pathway inhibitors (Figure 2B). Lately,
Jeon et al.?' tested the antiviral efficacy of 35 FDA-approved drugs against SARS-CoV-2, among which 14

positive drugs overlapped with our screening library. These drugs were also significantly enriched at the



top of our prediction (Figure 2C, p = 1.39E-4), further validating our predictions. Interestingly, three anti-
parasite drugs pyrvinium, ivermectin, niclosamide were ranked among the top 30. Both ivermectin, and

2122

niclosamide could inhibit the replication of SARS-CoV-2 in vitro and pyrvinium and niclosamide were

effective in MERS and SARS>*?*,

We manually inspected the top candidates and selected ten representative candidates according to their
reversal scores (Figure 2D), clinical applicability, MoA, administration routes and safety (Table S3). Finally,
we evaluated their cytotoxicity and ability of the prevention of cytopathic effect (CPE) in the Vero E6 cell
line (Table 1). Instead of measuring ECso, we used more stringent criteria, which required a 4-day complete
prevention of CPE observed under the microcopy. Six of the proposed drugs showed less than 10 uM
minimum concentration that could completely prevent CPE. However, five of them presented unfavorable
cytotoxicity at their effective concentration. In the following confirmatory experiment, we examined the
efficacy and toxicity for the four most effective drugs (CPE preventing concentration <=1 uM), bortezomib,
methotrexate, nvp-bez235 and alvocidib as well as chloroquine, a drug being used as the first-line treatment
for SARS-CoV-2. None of the predicted drugs could completely prevent CPE, though chloroquine could at

the dose of 15 pM.
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Figure 2. Meta drug analysis and candidate evaluation. A, an example of a validated signature derived
from differentially expressed genes between 48h and 12h after MERS-CoV infection in the MMVEQO01 cell
line (GSE79218 dataset). The left panel shows the enrichment of positive drugs (p value was computed by
Wilcoxon rank sums test, see Methods). The curve shows enrichment density, and each bar under the curve
represents the rank of a positive drug on the prediction list. The right panel shows the correlation between
sRGES and ECs (in mol/L, logio transformed) of the positive controls. Each point indicates a positive drug.
B, enriched MoA (blue dots) and their FDR based on meta drug ranking. Dot size corresponds to the number
of drugs associated with the MoA. C, external validation using published anti-COVID-19 efficacy of FDA-
approved drugs®'. D, heatmap of the summarized infection signature and the summarized reversal effects
of 10 selected candidates and two negative examples (see Methods). Red color indicates up-regulated genes
and blue indicates down-regulated genes.

Table 1. Efficacy and toxicity of selected drugs in SARS-CoV-2

CPE .+ Repeat™ CPE
. L .« Toxic . Repeat
MoA Primary Indication Preventing (uM) Preventing Toxic (uM)
(uM) (uM)
Bortezomib L 1OL8SOME il myeloma 0.05 0.002 >30 > 30
inhibitor
Protein
Puromycin synthesis Antibiotic 20 0.002 -4 -
inhibitor
Dihydrofolate
Methotrexate  reductase Rheumatoid arthritis 0.78 >25 >30 30

inhibitor




CPE ,  Repeat™ CPE

. - .4 Toxic" . Repeat
MoA Primary Indication Preventing’! Preventing .
M Toxic (WM
(M) (uM) (M) (uM)
Guanylyl
g/llszhylene- cyclase Methemoglobinemia 20 5 - -
inhibitor
NF-kB Bronchopulmonary
Tyloxapol pathway secretions with > 100 20 - -
inhibitor mucus and pus
Calcium
Nisoldipine channel Hypertension 6.25 0.2 - -
blocker
PI3K/MTOR  Advanced Solid
Nvp-bez235 4 ibitor Malignancies ! ! =30 73
. HMGCR .
Fluvastatin inhibitor Hypercholesterolemia 3.125 0.2 - -
Alvocidib CDK Acute myeloid 0.05 0.002 > 30 3.75
inhibitor leukemia
SRC/ABL
Dasatinib kinase Leukemia 3.125 1.6 - -
inhibitor
Endosomal
Chloroquine™  acidification =~ Malaria - - 15 >30
inhibitor

", the lowest concentration of a drug to prevent CPE.

"2, the lowest concentration of a drug showing cytotoxicity.

3, when repeated, drug treatment time was shorter (2 hours) than the previous test (3 hours).
* not tested.

"3, the positive control of this assay.

Discussion

In this work, we investigated host gene expression change after coronavirus infection to characterize the
infection signatures for drug discovery against SARS-CoV-2. Thirteen out of 215 disease signatures led to
the prediction where published SARS or MERS drug candidates could be recovered. Those uninformative
signatures might be due to variation of models or experimental conditions. For example, samples using
virus strains (dAORF6, BatSRBD) in GSE4796 might be different from the wild SARS type. Samples using

ferret as the model for immune response investigation in study GSE22581 might require additional



deconvolution of profiles to dissect the response in host cells. In study GSE79218, as viral infection
pathways were activated in human microvascular endothelial cells only after 24 h post-infection of MERS
(Figure 1E), the signature from the comparison between 24 h and Oh could not capture the biology of viral
infection, thus failed to recover known drugs. Those findings also reiterate the challenge of choosing

appropriate experimental models and the right time points for drug treatment in COVID-19%,

We then developed a consensus score for each drug based on their potency to reverse these thirteen
signatures. The prediction was externally validated by a recent drug screening against SARS-CoV-2?!. The
validation justified the approach of reversal of host cell gene expression derived from SARS-CoV or
MERS-CoV infection. Ten drugs were proposed and their antiviral efficacy and cytotoxicity in the Vero
E6 cell line were further examined. We observed that four drugs prevented CPE under 1 uM, but also were
toxic at this concentration. We initially only excluded those highly toxic compounds such as topoisomerase
inhibitors, but didn’t attempt to evaluate their cytotoxicity since all those candidates are FDA approved

drugs with established safety profiles.

Genes related to mitotic G2/M cell cycle such as MELK, KIF14, BIRC5 were enriched (Figure 2D), thus
reversal of the expression of these genes might induce apoptosis and cytotoxicity. On the other side, several
immune signaling related genes such as CCL2, CXCL2 and NFKBIA were down-regulated by the virus,
thus reversal of the expression of these genes may augment the host response to fight viral infection. Our
initial efficacy study neither checked their ability of inhibiting viral replications nor used the model that
has necessary immune environment (e.g., Vero cells are interferon-deficient). For example, the candidate
methotrexate, a chemotherapeutic at high doses and, an immune suppressor at lower doses, being used to
treat rheumatoid arthritis (RA), showed considerable in vitro antiviral effect. Methotrexate could down
regulate genes related to G2/M cell cycle, and up regulate genes related to cytokine signaling. This is not
surprising as studies have shown some of the interferon related pathways that govern inflammation overlap

with cancer’®. Recently, another RA drug, tocilizumab, an IL-6 antibody, was applied to treat severe patients



infected by SARS-CoV-2 to protect them from life-threatening lung damage caused by cytokine storm.
Further analysis of drug-induced in vivo profiles revealed that methotrexate and tocilizumab could stimulate
several interferon-stimulated genes for virus blocking (Figure S6), but chloroquine could stimulate less,
suggesting a different MoA (e.g. pH dependent control of viral entry). We are interested in testing

methotrexate on other interferon sufficient cell lines in the future.

Notably, all four effective drugs (proteasome inhibitor bortezomib, PI3K-mTOR inhibitor nvp-bez235
(dactolisib), CDK inhibitor alvocidib and antimetabolite methotrexate) are being used for cancer treatment.
In several independent screening efforts, similar drugs (AXL receptor tyrosine kinase inhibitor Gilteritinib,
CDK inhibitor Abemaciclib) are identified*'?’. Although those anti-cancer drugs might reverse the host
expression and prevent CPE, because they are often toxic or have severe side effects, they are not

appropriate to treat patients weakened by SARS-CoV-2.

For this work, in addition to the known limitations of the LINCS datasets (e.g., a limited coverage of the
transcriptome), another limitation lies in the use of drug-induced gene expression profiles derived from
cancer cells that are different from those infected cells. This partially explains why anti-viral drugs were
not predicted as hits. The limited resources and the immeasurable damage of this pandemic call for the

urgent needs of studying existing drugs in infectious disease models.

In conclusion, thanks to the open science initiatives, we were able to leverage the open resources to
rationally predict drug candidates that might reverse coronavirus-induced transcriptomic change, and
validated in silico and in vitro. The unbiased search of drug candidates based on reversal of gene expression
could offer an effective and rapid means to propose candidates for further experimental testing, yet more
layers of information such as toxicity, validation experimental setting and clinical applicability could be
incorporated to find better therapeutics. The prediction list would be of some value to those labs who have

the capability to investigate a few compounds, especially during this urgent time.



Methods

Disease signatures

We obtained a total of 430 samples for “SARS” or “MERS” related data from ArrayExpress, Gene
Expression Omnibus (GEO) and Sequence Read Archive (SRA). The meta information of each sample was
manually annotated, including virus strain, model, organism, and time point. The expression matrix for
each microarray data was downloaded via the GEOquery R package. The matrix was further filtered by
removing the probes with expression only in half of the samples. Expression values were normalized using
quantile normalization and log, transformation was applied for each matrix. The probe values were
collapsed based on Entrez Gene ID. The Significance Analysis of Microarrays (SAM) method was used to
compute differentially expressed (DE) genes with criteria fold change > 1 and false discovery rate (FDR)
< 0.05). Gene symbols of other organisms were converted to HUGO gene symbols. For RNA-Seq datasets,
raw sequence data were downloaded from SRA and processed with the TOIL pipeline®®*’. EdgeR was used
to compute DE genes using the same criteria as used for microarray data. Gene ontology enrichment
analysis of DE genes for each comparison was performed using the clusterprofiler R package. Further, gene
set enrichment (ssGSEA) for each biological process was performed using ssGSEA method in the GSVA
R package. For the infection group, we enumerated all the comparisons across all time points, and the
corresponding comparison was performed in the mock group as well. The DE genes that were uniquely
present in the infection group were selected for further analysis. We also compared DE genes between
infection and mock at each time point, together with consistently dysregulated genes from time point 0 to

the end.

Drug signatures

Drug gene expression profiles have been widely used in our previous studies. Briefly, a full matrix

comprising 476,251 signatures and 22,268 genes including 978 landmark genes was downloaded from the



LINCS website™ as of September 2013. The meta-information of the signatures (for example, cell line,
treatment duration, treatment concentration) was retrieved via LINCS Application Program Interfaces. The
matrix and metadata are now available via GSE92742 in GEO. The signature derived from the comparison
of expressions between the samples treated with the perturbagen of interest and vehicle control, represents
gene expression change upon treatment. We further downloaded the LINCS drug information from the
Drug Repurposing Hub. Only small-molecule with high-quality gene expression profiles (is_gold=l,

annotated in the meta-information) and listed in the drug repurposing hub were further analyzed.
Reversal correlation

The computation of RGES and the summarization RGES were detailed elsewhere and recently implemented
as a standalone R package®'. Briefly, we quantified the reversal of disease gene expression as RGES
(Reversal Gene Expression Score), a measure modified from the connectivity score developed in other
studies®®. To compute RGES scores, we first rank genes based on their expression values in each drug
signature. An enrichment score/s for each set of up- and down-regulated disease genes were computed
separately using a Kolmogorov—Smirnov-like statistic, followed by the merge of scores from both sides
(up/down). The score is based on the amount to which the genes (up or down-regulated) at either the top or
bottom of a drug-gene list ranked by expression change after drug treatment. One compound may have
multiple available expression profiles because they have been tested in various cell lines, drug
concentrations, treatment durations, or even different replicates, resulting in multiple RGES for one drug-
disease prediction. We termed this score summarized RGES (sRGES). We set a reference condition (i.e.,
concentration of 10 uM, treatment duration of 24 hours) and used a model to estimate a new RGES if the
drug profile under the reference condition was not available. We did not weight the LINCS cell lines. Those
comparisons, where maximum of the absolute SRGES is less than 0.25 were considered as insignificant

predictions.



Signatures validation and selection

Drugs with known in vifro activity against two coronaviruses (i.e., SARS-CoV and MERS-CoV) served as
positive controls for signature validation. Qualified signatures should meet the following criteria: (1)
derived from SARS-CoV or MERS-CoV infection experiments; (2) the number of differentially expressed
genes was greater than 50 (mapped to LINCS); (3) the maximum absolute SRGES prediction was greater
than 0.25; (4) the SRGES of positive drugs was enriched at the top (one side Wilcoxon rank-sum test p <
0.05, FDR < 0.25); (5) the sRGES and the average ECso value of positive drugs were highly correlated

(Spearman r >= 0.4, p < 0.05).
Clustering of virus predictions

We downloaded the compiled virus-perturbed signatures from EnrichR (323 in total). Since the EnrichR
dataset did not include any MERS signatures, we manually added the signatures of two MERS datasets
(GSE79218, GSE79172, 8 in total) computed from the comparison between the infection group and the
mock group, separately. Only the virus signature containing more than 50 LINCS landmark genes was
selected. Each virus signature was queried against the LINCS library using the established pipeline. Only
those signatures where the maximum of the absolute SRGES was greater than 0.25 were chosen for the
following analysis. Viruses were clustered based on the SRGES scores using pvclust’? (distance method:

spearman correlation, nboot = 100).

Ritonavir correlation analysis

We found one RNA-Seq dataset (SRA: SRX4939022) for HepaRG cells treated with multiple compounds
including ritonavir under multiple concentrations (ranging from 9 nM to 300 uM). We processed 90 profiles
in the plate (2D_RG_PLATE?2) consisting of 10 concentrations (each concentration has 9 profiles). The
log> TPM of each profile was subtracted by the median of log, TPM of all DMSO-treated samples in this
plate, resulting in one drug-induced gene expression profile. The spearman correlation between the drug-
induced gene expression and the disease gene expression used for the LINCS prediction was computed.

The negative correlation means a reversal relation. Ritonavir was originally developed as an inhibitor of



HIV protease and now often used at a low dose with other protease inhibitors to boost the antiviral effect.

Our analysis suggests that ritonavir could only reverse the disease signature at a very high dose.

Reversal infection signature visualization

For better visualization of the selected drug candidates’ reversal of coronavirus induced gene expression
changes, we combined validated infection signatures into one meta signature, and summarized drug profiles
from different experiments into one profile. Dysregulated genes were included into the meta infection
signature if 25% quantile of log, fold changes was less than -1 or 75% quantile was greater than 2. For each
drug, all profiles (z-scores, level 5) in L1000 measured at 10 uM were extracted (including different cell
lines and treatment times). The value of each gene in the summarized profile was defined as the median of
the head or tail 25% (depending on which absolute value is larger) if this quantile absolute value was greater
than 1, we defined it as the median of the z-scores of this gene across all the profiles extracted. The matrix
was composed of the meta signature genes and signatures of selected drug candidates. We also included
the profiles of two drugs predicted as negative hits, and ordered the rows by the fold change of infection
signature genes. A heatmap was used to visualize the effect of selected drugs in reversing virus-induced
genes.

When visualizing  the transcriptome datasets (for  Figure S6) from GEO

(https://www.ncbi.nlm.nih.gov/geo/), we processed the gene expression matrix the same as the disease

signature creation aforementioned. Then all gene log2 fold change values were converted to ranking
percentages. Finally, a clustermap was computed for genes of our interest, colored in red (up-regulation)

and blue (down-regulation).

Gene Ontology (GO) Enrichment Analysis

The processed compound transcriptome profile was categorized into up- and down-regulated genes, with a
threshold of log2 fold change greater than 1 or less than -1, respectively. Then each group of genes was

submitted to Enrichr®® (https://amp.pharm.mssm.edu/Enrichr/) to compute the Gene Ontology enrichment.

GO terms with p-value less than 0.05 and adjusted p-value less than 0.2 were taken as significant.



Cell culture, virus infection and drug evaluation

Tissue Cultures and Virus

Vero E6 cells [CRL:1586, ATCC] were grown in Eagle's minimal essential medium (EMEM)
supplemented with penicillin (100 units/ml), streptomycin (100 pg/ml), and 10% fetal bovine serum
(FBS). SARS-CoV-2 (US_WA-1 isolate), the 3™ passage in Vero E6 cells from the original CDC (Atlanta)
material and sequence confirmed, was used throughout the study. The titer of the viral stock was 7.5 x 10’
50% tissue culture infectious doses (TCIDsp)/ml. All experiments involving using infectious virus were
conducted at the University of Texas Medical Branch in an approved biosafety level 3 laboratory.

Drug screening by cell-based assay

A slightly modified Vero E6-based standard micro-neutralization assay was used to rapidly evaluate the
drug efficacy against SARS-CoV-2 infection. Briefly, confluent Vero E6 cells grown in 96-wells microtiter
plates were pre-treated with serially 2-folds diluted individual drugs for two hours before infection with
100 infectious SARS-CoV-2 particles in 100 ul EMEM supplemented with 2% FBS. Vero E6 cells treated
with parallelly diluted dimethyl sulfoxide (DMSO) with or without virus were included as positive and
negative controls, respectively. After cultivation at 37 °C for 4 days, individual wells were observed under
the microcopy for the status of virus-induced formation of CPE. The efficacy of individual drugs was
calculated and expressed as the lowest concentration capable of completely preventing virus-induced CPE
in 100% of the wells. The toxicity to the treated cells was assessed by observing floating cells and altered
morphology of adhered Vero E6 cells in wells under the microcopy. All compounds were ordered from
Selleckchem or Cayman Chemical. All compounds were dissolved in 100% DMSO as 10 mM stock

solutions and diluted in culture media.



Software tools and statistical methods

All the analysis was conducted in R (v3.5.1) or Python (v3.7) programming language. The ggplot2,
pheatmap and seaborn packages were used for data visualization. Student’s t-test was performed for
normally distributed data and Wilcoxon rank-sum test was used for other types of data to compute the p-

value.
Data and code availability

Authors declare that all data used in this study are available within the article and its supplementary
information files. Any other specific files can be provided from the corresponding author upon reasonable
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Figure S1. Hierarchical clustering of virus infection signatures
based on their drug prediction results. Significant SARS/MERS
clusters with approximately unbiased (AU) p-values no less than 95%
were highlighted with red rectangles. Red and green numbers indicate
AU and bootstrap probability (BP) p-values, respectively. Edge numbers
are shown in grey. Among the 291 virus-induced signatures, only those
that mapped to at least 50 LINCS landmark genes were used in this

analysis.



Table S1. Data sets used in this study for disease signature creation.

S- Accession Platform Dlsea§e/ Organism Model Tl.m ¢ Number of PMID
No. Infection points samples
1 GSE17400 GPL570 g/[AORCsK DOHV and Homo sapiens Calu-3 3 27 20090954
Vero E6, Vero E6
2 GSE30589 GPL570 SARS and MOCK Homo sapiens DeltaE, MA-104 and 4 33 22028656
MA-104 DeltaE
. 23631916
3 GSE45042 GPL6480 MOCK and EMC Homo sapiens Calu-3 6 33 14846384
MOCK, SARS, HIN1,
4 GSE47960 GPL6480 SARS-BatSRBD and Homo sapiens HAE 11 163 23935999
SARS-dORF6
5 GSE79218 GPL13497 MOCK and MERS Homo sapiens MMVEO001 5 49
6 GSE79172 GPL13497 MOCK and MERS Homo sapiens MDC001 5 29 28830941
7 GSE22581 GPL3738 MOCK and SARS Canis lupus Ferret Lung 3 9 21035159
8  GSE36016 GPL7202 MOCK and SARS Mus musculus  1un8 WT, lung IFNART 3 36
and lung STAT
9 GSE68820 GPL7202 MOCK and SARS Mus musculus lung wt and lung TLR3 3 52 26015500
10 GSE30351 GPL6480 JFH1 Homo sapiens Huh7 2 7
11 GSE71063 GPL570 HIV Homo sapiens patients 2 40 26935044
12 SRPI66108 llumina Homo sapiens  HepaRG 50

HiSeq
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Figure S2. Gene ontology enrichment of differentially expressed genes obtained among different time
points in MOCK group of samples. Gene ontology terms enriched in MOCK infected samples in (A) lung
tissues without any knockout and (B) lung tissues with TLR3 knockout in GSE68820, and (C) MMVEO001 cell
lines in GSE79172. Terms enriched in MOCK infected samples are mostly cell cycle related. The size of the
circles represents the ratio of genes in each process and color of the circle represents the regulation
(Upregulated- red and downregulated- green) of genes.
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Figure S3. Gene set enrichment of the biological biological processes at different time points. Variations of
gene set enrichment (ssGSEA) of biological processes obtained at different time points in MOCK (A) and
SARS infected (B) lung tissue with TLR3 mutant. Similarly, variation of ssGSEA of biological processes
obtained at different time points in MOCK (C) and SARS infected (D) lung tissue in GSE68820, and MOCK
(E) and MERS (F) infected MDCO001 cell lines in GSE79172. The enrichment of expression of genes involved
in these processes was increasing in SARS/MERS infected tissue but found to be consistent in MOCK samples

with time.

Table S2. Positive control drugs with known activity against MERS-CoV/SARS-CoV/SARS-CoV-2.

COVID-19 EC50

Name MERS EC50 utM  SARS EC50 pM MoA PMID

amodiaquine 6.21 1.27 NA* Antiparasitic agent 32006468
astemizole 4.88 5.59 NA Neurotransmitter inhibitor 32006468
}’;Sind"lylmaleimide' %T;}Iﬁ‘m TR @ A NA PKC inhibitor 25653449




COVID-19 EC50

Name MERS EC50 tM  SARS EC50 pM M MoA PMID

bufalin %h;l(a)lgijll >90% NA NA gz(ljli);tté\(/iﬂisds(;ccy(gls iesntry by blocking clathrin- 25653449
chloroquine 3 NA 1.13 Endosomal acidification inhibitor 32006468
chlorpromazine 49 NA NA Neurotransmitter inhibitor 32006468
clomipramine 9.33 13.23 NA Neurotransmitter inhibitor 32006468
dasatinib 5.46 2.1 NA ABLI inhibitor 32006468
disulfiram NA NA NA MERS-CoV PL-pro inhibitor 32006468
emetine 0.34 NA NA Inhibits RNA, DNA and protein synthesis 32006468
fluphenazine 5.86 21.43 NA Neurotransmitter inhibitor 32006468
fluspirilene 7.47 5.96 NA Neurotransmitter inhibitor 32006468
gemcitabine 1.21 4.95 NA DNA metabolism inhibitor 32006468
GW-5074 i;:)}:li;i[ﬁ‘m W@ A NA Raf inhibitor 25653449
imatinib 17.68 9.82 NA ABLI inhibitor 32006468
loperamide 4.8 5.9 NA antidiarrheal opioid receptor agonist 32006468
lopinavir 8 24.4 NA HIV-1 inhibitor 32006468
mefloquine 7.41 15.55 NA Antiparasitic agent 32006468
mg-132 NA NA NA cys-protease m-calpain inhibition 22787216
monensin 3.27 NA NA Antibacterial 32006468
Eﬁgg lh enolate- 1.54 NA NA Immune suppressant, antineoplastic, antiviral 32006468
niclosamide NA 2 NA Antiparasitic agent 15215127
nitazoxanide NA NA 2.12 antiprotozoal, type I IFN inducer 32020029
ouabain isr:)hrill;\i/}ion 70% @ NA NA imnz(ijl:;tté\(/iﬂisds(;ccy(gls iesntry by blocking clathrin- 25653449
penciclovir NA NA 95.96 Inhibition of virus DNA synthesis 32020029
phenazopyridine 1.93 NA NA Analgesic 32006468
promethazine 11.8 7.54 NA Neurotransmitter inhibitor 32006468
pyrvinium-pamoate 1.84 NA NA Anthelmintic 32006468
ribavirin NA NA 109.5 ribonucleic analog 32020029
ritonavir 249 NA NA HIV protease inhibitor 31924756
saracatinib 2.9 2.4 NA Src family of tyrosine kinases inhibitor 32006468
SB-203580 i;:)}:li;i[ﬁ‘m BR@  \a NA p38 MAPK inhibitor 25653449
selumetinib g‘sh}:’g’iloz;[ NA NA MEK 1, ERK1/2 inhibitor 25653449
sirolimus nhibition 61% @ - Na NA MTOR inhibitor 25653449
tamoxifen 10.11 92.88 NA Estrogen receptor inhibitor 32006468
terconazole 12.2 15.32 NA Sterol metabolism inhibitor 32006468
thiothixene 9.29 5.31 NA Neurotransmitter inhibitor 32006468
toremifene 12.91 11.96 NA Estrogen receptor inhibitor 32006468
trametinib g‘sh}:’g’iloz;[ NA NA MEK1/2 inhibitor 25653449
triflupromazine 5.75 6.39 NA Neurotransmitter inhibitor 32006468
U-0126 inhibition 51% @ 5 NA MEK1/2 inhibitor 25653449

10uM

* “NA” indicates not available.
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Figure S4. SARS/MERS signatures validation using known active drugs (positive controls). The first and
third columns show enrichment density and barcode, with p values shown at upper right. The curve shows
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enrichment density, and each bar under the curve represents the rank of a positive drug among all the drugs in
one prediction. The second and last columns list the correlation between SRGES and EC50 (in M, logl10
transformed) of the positive controls, with Spearman R and p value shown at lower right. Each point indicates a
positive control drug.

concentration

] III BN Ll - concentration

FUE b5 [ <to0nm
l 100-1000nm
0 1000-10000nm
>10000nm
-0.5
-,

Figure S5. Ritonavir profiles measured under different concentrations. Each row indicates an infection
signature, each column indicates a ritonavir profile under a different concentration annotated as the colorbar on
the right side. The heatmap shows the spearman correlation coefficients between drug signatures and disease
signatures. Blue means a better reversal effect.
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Figure S6. Heatmap showing the interferon-stimulated genes expression (rank percentage in the whole
transcriptome) in infection (GSE68820), chloroquine (GSE71063), methotrexate (GSE56426) and tocilizumab
(GSE25160) treated mice or patients. Red color indicates up-regulated genes and blue indicates down-regulated
genes.



Table S3. Antiviral effect and other information of the selected candidates.

Median Median Rank . Route of s
Name Rank (CoV) (MOCK) Clinical Phase Administration Targets MoA Indication
PSMA1-8 NFkB pathway
. PSMBI-11 inhibitor Multiple myeloma,
Bortezomib 3 23 Launched Intravenous PSMD1-2 Proteasome mantle cell lymphoma
RELA inhibitor
Puromycin 18 128 Launched Oral 608 ! bosomal .Pro.t em synthesis
proteins inhibitor
Gestational
Diiroe  Shoocinons,
Methotrexate 37 356 Launched Oral DHFR reductase Y N
S acute lymphoblastic
inhibitor . L
leukemia, psoriasis,
rheumatoid arthritis
Guanylyl cyclase
inhibitor
Methylene blue 57 153 Launched Intravenous ACHE nitric oxide Methemoglobinemia
production
inhibitor
LPL NFkB pathway
Tyloxapol 106 293 Launched Inhalant NFKB2 inhibitor
Voltage-
. . dependent L- Calcium channel .
Nisoldipine 108 245 Launched Oral type calcium blocker Hypertension
channels
ATR S
Nvp-bez235 178 173 Phase 2 Oral MTOR mTOR inhibitor
PI3K inhibitor
PI3Ks
Hypercholesterolemia,
Fluvastatin 283 362 Launched Oral HMGCR HMGCR congenital heart
inhibitor
defects
CDK1-2
Alvocidib 290 823 Phase 2 Intravenous gg;(};w CDK inhibitor
PYGM
ABL1/2 Ber-Abl kinase
Src family inhibitor
. Ephrin inhibitor . .
kinases S Chronic myeloid
EPHA2 KIT inhibitor leukemia, acute
Dasatinib 378 1103 Launched Oral PDGFR tyrosine Lo
KIT Kinase recentor lymphoblastic
PDGFRB Linase recep leukemia
inhibitor
SRMS Sre famil
STATSB re jamiy

inhibitor
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