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Abstract 

Repurposing existing drugs is a timely option to cope with COVID-19. We predicted therapeutic candidates 

that could reverse the gene expression of coronavirus-infected host cells. Thirteen expression signatures 

computed from various experimental conditions and preclinical models could be reversed by those 

compounds known to be effective against SARS- or MERS-CoV, as well as the drug candidates recently 

shown to be effective against SARS-CoV-2. We selected ten novel candidates to further evaluate their in 

vitro efficacy against SARS-CoV-2 infection. Four compounds bortezomib, dactolisib, alvocidib and 

methotrexate inhibited the formation of virus infection-induced cytopathic effect in Vero E6 cells at 1 µM, 

yet such a concentration seems toxic to the cells as well. While the evaluation in other permissive cells and 
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the prediction of toxicity are needed to optimize and minimize their antiviral activity and cytotoxicity, 

respectively, this computational approach has the potential to rapidly and rationally identify drug candidates 

against COVID-19. 

Main 

Since early December 2019, the newly emerged SARS-CoV-2 has infected almost 1 million people 

globally1. In the United States, confirmed cases increased from a few dozen to almost 1000 within two 

weeks, and this number rapidly grew to over 80,000 within one month2. Among the patients, 15% suffered 

from severe acute respiratory distress syndrome (ARDS) and approximately 3% died from acute respiratory 

failure, acute cardiac injury, secondary infection, and other serious complications1,3,4. The World Health 

Organization (WHO) declared this rapidly spreading and highly pathogenic COVID-19 first a global public 

health emergency and then a pandemic. As SARS-CoV-2 infection continues to endanger lives, effective 

therapeutics are urgently needed. Repurposing existing drugs could be an efficient and timely means of 

identifying drugs that have activity against coronavirus. There are a few repurposed drugs such as 

lopinavir/ritonavir, baricitinib, remdesivir and chloroquine currently under clinical investigation5,6. These 

drugs are expected to target key steps of viral entry, or specific proteins involved in viral replication, 

including viral proteases7. In addition to viral replication, the viral pathogen associated molecular pattern 

(PAMP) (e.g., immune dysfunction and endoplasmic reticulum stress, Figure 1A) could be targeted to 

improve the clinical outcome 8. PAMPs-mediated signaling pathways are attractive drug targets to alleviate 

diseases caused by human pathogens. Therefore, effectively targeting these pathways to stop the 

progression to ARDS caused by SARS-CoV-2 might save lives. Independent of SARS-CoV-2 infection, in 

aging adult populations, ARDS is associated with mortality rates of 30-50%9. Thus, a methodical and 

unbiased search for new drug candidates from a large drug library could uncover agents that have potential 

to arrest the infection and ameliorate its effect. To accomplish this, we sought to target infection-induced 

genes in the host cells, hoping to mitigate disease progression and alleviate symptoms. 
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We and others10–16 have utilized a systems-based approach that employs gene expression profiles of disease 

samples and drug-induced gene expression profiles from cell lines to discover new therapeutic candidates 

for diseases. The essential idea is to identify drugs that reverse the disease gene expression signature by 

suppressing the over-expressed disease genes and activating the repressed genes (Figure 1A). A disease 

signature is defined as a list of differentially expressed genes between disease samples and normal control 

samples. We recently found that the reversal of gene expression (namely sRGES) correlates to drug efficacy 

in cancers17, demonstrating the feasibility of applying this approach to predict drug candidates for other 

diseases, including viral infection. 

 

To utilize this approach for drug discovery against SARS-CoV-2, we first need to collect virus-related host 

gene expression profiles, which were not available at the time of writing. Given the high genomic similarity 

between SARS-CoV, MERS-CoV, and SARS-CoV-2, we reasoned that existing host gene expression 

profiles of the samples infected by SARS- or MERS-CoV could approximate to those infected by SARS-

CoV-2. To verify this assumption, we compiled 331 virus-induced signatures from enrichR and GEO (Table 

S1) and used an established pipeline to score 1740 drugs in our repurposing library regarding their reversal 

of signature gene expression. Clustering of these signatures based on their drug prediction scores suggests 

that signatures derived from the same virus or the virus family under the similar experimental model tend 

to cluster together (Figure S1). An example cluster includes one signature derived from primary human 

microvascular endothelial cells (MMVE001) after 48h of MERS-CoV infection (study id: GSE79218) and 

another derived from melanoma cells in mice after seven days of SARS-CoV infection (study id: 

GSE68820). In addition, Spearman correlation coefficient of the in vitro drug efficacy data (EC50: Half 

maximal effective concentration) of SARS-CoV and MERS-CoV is up to 0.6 (Figure 1B). The clustering 

and correlation results suggested that drugs predicted based on the signatures related to SARS-CoV and 

MERS-CoV could also be applied for SARS-CoV-2. Therefore, we developed a pipeline to repurpose 

existing drugs against MERS-CoV and SARS-CoV, and then experimentally evaluate these drugs in SARS-

CoV-2 (Figure 1C). 
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Figure 1. Study workflow and biological processes dysregulated by viral infection. A, An illustration 
of reversing the expression of host genes comprising multiple biological processes (highlighted with colors) 
induced by coronavirus infection. Drug-induced gene expression profiles are taken from the LINCS 
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database. A good candidate should activate the repressed biological processes and inhibit the upregulated 
processes. B, Correlation of the published antiviral activities of 30 drugs (pEC50, -log10 transformed EC50 
value in mol/L) against MERS- and SARS-CoV. C, Study workflow including creation of disease 
signatures, prediction of drug candidates, selection of a final drug list, and in vitro validation. One disease 
signature composed by the differentially expressed genes of each comparison led to one drug prediction 
list. Only the signature resulting in a prediction list where known positive drugs were enriched on the top 
was considered as a valid signature.  D, Dysregulated pathways after SARS infection at 7h compared with 
2h in lungs. E, The enrichment of top six dysregulated pathways in primary human microvascular 
endothelial (MMVE001) cells through 0h to 48h in MERS-CoV infection (left) and in mock (right). Only 
one study was selected for D and E, respectively, and the dysregulated pathways and their dynamics for 
other studies are available in supplementary materials (Figure S2 and S3, Extended Data 1). 
 

 

In total, 430 samples infected by either MERS- or SARS-CoV under different models (e.g., cell line, mouse 

models) across multiple time points from public repositories were used for the identification of disease 

signatures (Table S1, 12 studies in total). Their expression profiles were created using either microarray or 

RNA-Sequencing. Depending on the profiling platform, data processing and signature creation methods 

varied (see Methods). The previous clusters are highly confounded by post-infection time points (Figure 

S1), meaning the disease signature and their predicted drugs are strikingly different under different time 

points. Therefore, we enumerated all the possible comparisons (Figure 1C), including (1) comparisons 

between infection and mock at each time point, (2) comparisons between different time points within the 

infection or the mock group (e.g., time point 1 vs. time point 0, time point 2 vs. time point 1), and (3) 

comparisons both between time points and between infection vs. mock. These comparisons revealed 

different virus-related biological processes and their dynamic regulation. For instance, analysis of SARS-

CoV infected lung tissue data showed that various biological processes, including viral gene expression, 

DNA replication, nuclear division, lymphocytes differentiation and translation-related processes, were 

activated (Figure 1D, S2 and Extended Data 1). In contrast, interleukin and autophagy-related processes 

were repressed in infected samples (Figure 1D, S2 and Extended Data 1). Interestingly, some processes 

were only activated after a certain time point (e.g., 24 h in Fig 1E) in infected samples, while such patterns 

were not observed in mock samples (Figure 1E and S3), suggesting that only some of the comparisons 

captured the biology of critical viral infection processes. 



 

For each comparison, we computed a disease signature to characterize the infection status, followed by the 

prediction of which drugs may have activity. As we could not directly evaluate the quality and pathologic 

relevance of each disease signature, we turned to validating their action using those drugs that are positive 

in vitro MERS/SARS testing (41 positive drugs in total, 30 with EC50 values, Table S2). Among 215 

MERS-CoV or SARS-CoV infection signatures, 13 signatures led to the drug list, where positive drugs are 

highly enriched on the top (Extended Data 2). Moreover, EC50 of these drugs significantly correlated with 

sRGES (Figure 2A and Figure S4). In contrast, for the H1N1 infection signatures, we didn’t observe any 

significant enrichment of anti-coronavirus positive drugs (Extended Data 2). The recent clinical data 

suggested that the combination of two drugs lopinavir/ritonavir present clinical benefits to patients with 

coronavirus18,19. Both drugs were profiled in LINCS20 individually; however, none of them could induce 

substantial gene expression change (absolute z score < 2) under 10 µM concentration in cancer cell lines; 

therefore, neither was predicted as a hit. We next found another dataset where HepaRG cells were treated 

by ritonavir under 10 different concentrations (from 9 nM to 300 µM). We observed that ritonavir could 

reverse nearly all the 13 disease signatures under high concentration (i.e., 10 µM to 200 µM) (Figure S5). 

Together, we reasoned that those highly ranked drugs with greater negative sRGES in these valid 

comparisons could be new therapeutic candidates. 

 

To obtain the final drug prediction, as it’s not trivial to merge disease signatures derived from different 

platforms and biological conditions, instead of  merging them, we calculated the consensus score of all the 

drug prediction lists derived from individual valid disease signatures,. We took the median of the ranks 

across multiple comparisons for each drug, and ranked them based on their median rank (Extended Data 3). 

Mechanism of action (MoA) enrichment analysis of the final ranked drug list revealed a few significant 

drug classes including CDK inhibitors, mTOR inhibitors and NF-κB pathway inhibitors (Figure 2B). Lately, 

Jeon et al.21 tested the antiviral efficacy of 35 FDA-approved drugs against SARS-CoV-2, among which 14 

positive drugs overlapped with our screening library. These drugs were also significantly enriched at the 



top of our prediction (Figure 2C, p = 1.39E-4), further validating our predictions. Interestingly, three anti-

parasite drugs pyrvinium, ivermectin, niclosamide were ranked among the top 30.  Both ivermectin, and 

niclosamide could inhibit the replication of SARS-CoV-2 in vitro21,22  and pyrvinium and niclosamide were 

effective in MERS and SARS23,24.  

 

We manually inspected the top candidates and selected ten representative candidates according to their 

reversal scores (Figure 2D), clinical applicability, MoA, administration routes and safety (Table S3). Finally, 

we evaluated their cytotoxicity and ability of the prevention of cytopathic effect (CPE) in the Vero E6 cell 

line (Table 1). Instead of measuring EC50, we used more stringent criteria, which required a 4-day complete 

prevention of CPE observed under the microcopy. Six of the proposed drugs showed less than 10 µM 

minimum concentration that could completely prevent CPE. However, five of them presented unfavorable 

cytotoxicity at their effective concentration. In the following confirmatory experiment, we examined the 

efficacy and toxicity for the four most effective drugs (CPE preventing concentration <= 1 µM), bortezomib, 

methotrexate, nvp-bez235 and alvocidib as well as chloroquine, a drug being used as the first-line treatment 

for SARS-CoV-2. None of the predicted drugs could completely prevent CPE, though chloroquine could at 

the dose of 15 µM. 

 



 

Figure 2. Meta drug analysis and candidate evaluation. A, an example of a validated signature derived 
from differentially expressed genes between 48h and 12h after MERS-CoV infection in the MMVE001 cell 
line (GSE79218 dataset). The left panel shows the enrichment of positive drugs (p value was computed by 
Wilcoxon rank sums test, see Methods). The curve shows enrichment density, and each bar under the curve 
represents the rank of a positive drug on the prediction list. The right panel shows the correlation between 
sRGES and EC50 (in mol/L, log10 transformed) of the positive controls. Each point indicates a positive drug. 
B, enriched MoA (blue dots) and their FDR based on meta drug ranking. Dot size corresponds to the number 
of drugs associated with the MoA. C, external validation using published anti-COVID-19 efficacy of FDA-
approved drugs21. D, heatmap of the summarized infection signature and the summarized reversal effects 
of 10 selected candidates and two negative examples (see Methods). Red color indicates up-regulated genes 
and blue indicates down-regulated genes. 
 

Table 1. Efficacy and toxicity of selected drugs in SARS-CoV-2 

 MoA Primary Indication 
CPE 

Preventing*1 
(µM) 

Toxic*2 
(µM) 

Repeat*3 CPE 
Preventing 

(µM) 

Repeat 
Toxic (µM) 

Bortezomib Proteasome 
inhibitor Multiple myeloma 0.05 0.002 > 30 > 30 

Puromycin 
Protein 
synthesis 
inhibitor 

Antibiotic 20 0.002 -*4 - 

Methotrexate 
Dihydrofolate 
reductase 
inhibitor 

Rheumatoid arthritis 0.78 > 25 > 30 30 



 MoA Primary Indication 
CPE 

Preventing*1 
(µM) 

Toxic*2 
(µM) 

Repeat*3 CPE 
Preventing 

(µM) 

Repeat 
Toxic (µM) 

Methylene-
blue 

Guanylyl 
cyclase 
inhibitor 

Methemoglobinemia 20 5 - - 

Tyloxapol 
NF-kB 
pathway 
inhibitor 

Bronchopulmonary 
secretions with 
mucus and pus 

> 100 20 - - 

Nisoldipine 
Calcium 
channel 
blocker 

Hypertension 6.25 0.2 - - 

Nvp-bez235 PI3K/MTOR 
inhibitor 

Advanced Solid 
Malignancies 1 1 > 30 7.5 

Fluvastatin HMGCR 
inhibitor Hypercholesterolemia 3.125 0.2 - - 

Alvocidib CDK 
inhibitor 

Acute myeloid 
leukemia 0.05 0.002 > 30 3.75 

Dasatinib 
SRC/ABL 
kinase 
inhibitor 

Leukemia 3.125 1.6 - - 

Chloroquine*5 
Endosomal 
acidification 
inhibitor 

Malaria - - 15 > 30 

*1, the lowest concentration of a drug to prevent CPE. 
*2, the lowest concentration of a drug showing cytotoxicity. 
*3, when repeated, drug treatment time was shorter (2 hours) than the previous test (3 hours). 
*4, not tested. 
*5, the positive control of this assay. 
 

Discussion 

In this work, we investigated host gene expression change after coronavirus infection to characterize the 

infection signatures for drug discovery against SARS-CoV-2. Thirteen out of 215 disease signatures led to 

the prediction where published SARS or MERS drug candidates could be recovered. Those uninformative 

signatures might be due to variation of models or experimental conditions. For example, samples using 

virus strains (dORF6, BatSRBD) in GSE4796 might be different from the wild SARS type. Samples using 

ferret as the model for immune response investigation in study GSE22581 might require additional 



deconvolution of profiles to dissect the response in host cells. In study GSE79218, as viral infection 

pathways were activated in human microvascular endothelial cells only after 24 h post-infection of MERS 

(Figure 1E), the signature from the comparison between 24 h and 0h could not capture the biology of viral 

infection, thus failed to recover known drugs. Those findings also reiterate the challenge of choosing 

appropriate experimental models and the right time points for drug treatment in COVID-1925. 

 

We then developed a consensus score for each drug based on their potency to reverse these thirteen 

signatures. The prediction was externally validated by a recent drug screening against SARS-CoV-221. The 

validation justified the approach of reversal of host cell gene expression derived from SARS-CoV or 

MERS-CoV infection. Ten drugs were proposed and their antiviral efficacy and cytotoxicity in the Vero 

E6 cell line were further examined. We observed that four drugs prevented CPE under 1 µM, but also were 

toxic at this concentration. We initially only excluded those highly toxic compounds such as topoisomerase 

inhibitors, but didn’t attempt to evaluate their cytotoxicity since all those candidates are FDA approved 

drugs with established safety profiles.  

 

Genes related to mitotic G2/M cell cycle such as MELK, KIF14, BIRC5 were enriched (Figure 2D), thus 

reversal of the expression of these genes might induce apoptosis and cytotoxicity. On the other side, several 

immune signaling related genes such as CCL2, CXCL2 and NFKBIA were down-regulated by the virus, 

thus reversal of the expression of these genes may augment the host response to fight viral infection. Our 

initial efficacy study neither checked their ability of inhibiting viral replications nor used the model that 

has necessary immune environment (e.g., Vero cells are interferon-deficient). For example, the candidate 

methotrexate, a chemotherapeutic at high doses and, an immune suppressor at lower doses, being used to 

treat rheumatoid arthritis (RA), showed considerable in vitro antiviral effect. Methotrexate could down 

regulate genes related to G2/M cell cycle, and up regulate genes related to cytokine signaling. This is not 

surprising as studies have shown some of the interferon related pathways that govern inflammation overlap 

with cancer26. Recently, another RA drug, tocilizumab, an IL-6 antibody, was applied to treat severe patients 



infected by SARS-CoV-2 to protect them from life-threatening lung damage caused by cytokine storm. 

Further analysis of drug-induced in vivo profiles revealed that methotrexate and tocilizumab could stimulate 

several interferon-stimulated genes for virus blocking (Figure S6), but chloroquine could stimulate less, 

suggesting a different MoA (e.g. pH dependent control of viral entry). We are interested in testing 

methotrexate on other interferon sufficient cell lines in the future. 

 

Notably, all four effective drugs (proteasome inhibitor bortezomib, PI3K-mTOR inhibitor nvp-bez235 

(dactolisib), CDK inhibitor alvocidib and antimetabolite methotrexate)  are being used for cancer treatment. 

In several independent screening efforts, similar drugs (AXL receptor tyrosine kinase inhibitor Gilteritinib, 

CDK inhibitor Abemaciclib) are identified21,27. Although those anti-cancer drugs might reverse the host 

expression and prevent CPE, because they are often toxic or have severe side effects, they are not 

appropriate to treat patients weakened by SARS-CoV-2.  

  

For this work, in addition to the known limitations of the LINCS datasets (e.g., a limited coverage of the 

transcriptome), another limitation lies in the use of drug-induced gene expression profiles derived from 

cancer cells that are different from those infected cells. This partially explains why anti-viral drugs were 

not predicted as hits. The limited resources and the immeasurable damage of this pandemic call for the 

urgent needs of studying existing drugs in infectious disease models.  

 

In conclusion, thanks to the open science initiatives, we were able to leverage the open resources to 

rationally predict drug candidates that might reverse coronavirus-induced transcriptomic change, and 

validated in silico and in vitro. The unbiased search of drug candidates based on reversal of gene expression 

could offer an effective and rapid means to propose candidates for further experimental testing, yet more 

layers of information such as toxicity, validation experimental setting and clinical applicability could be 

incorporated to find better therapeutics. The prediction list would be of some value to those labs who have 

the capability to investigate a few compounds, especially during this urgent time. 



 
 

Methods 

Disease signatures 

We obtained a total of 430 samples for “SARS” or “MERS” related data from ArrayExpress, Gene 

Expression Omnibus (GEO) and Sequence Read Archive (SRA). The meta information of each sample was 

manually annotated, including virus strain, model, organism, and time point. The expression matrix for 

each microarray data was downloaded via the GEOquery R package. The matrix was further filtered by 

removing the probes with expression only in half of the samples. Expression values were normalized using 

quantile normalization and log2 transformation was applied for each matrix. The probe values were 

collapsed based on Entrez Gene ID. The Significance Analysis of Microarrays (SAM) method was used to 

compute differentially expressed (DE) genes with criteria fold change > 1 and false discovery rate (FDR) 

< 0.05). Gene symbols of other organisms were converted to HUGO gene symbols. For RNA-Seq datasets, 

raw sequence data were downloaded from SRA and processed with the TOIL pipeline28,29. EdgeR was used 

to compute DE genes using the same criteria as used for microarray data. Gene ontology enrichment 

analysis of DE genes for each comparison was performed using the clusterprofiler R package. Further, gene 

set enrichment (ssGSEA) for each biological process was performed using  ssGSEA method in the GSVA 

R package. For the infection group, we enumerated all the comparisons across all time points, and the 

corresponding comparison was performed in the mock group as well. The DE genes that were uniquely 

present in the infection group were selected for further analysis. We also compared DE genes between 

infection and mock at each time point, together with consistently dysregulated genes from time point 0 to 

the end. 

Drug signatures 

Drug gene expression profiles have been widely used in our previous studies. Briefly, a full matrix 

comprising 476,251 signatures and 22,268 genes including 978 landmark genes was downloaded from the 



LINCS website30 as of September 2013. The meta-information of the signatures (for example, cell line, 

treatment duration, treatment concentration) was retrieved via LINCS Application Program Interfaces. The 

matrix and metadata are now available via GSE92742 in GEO. The signature derived from the comparison 

of expressions between the samples treated with the perturbagen of interest and vehicle control, represents 

gene expression change upon treatment. We further downloaded the LINCS drug information from the 

Drug Repurposing Hub. Only small-molecule with high-quality gene expression profiles (is_gold=1, 

annotated in the meta-information) and listed in the drug repurposing hub were further analyzed.  

Reversal correlation 

The computation of RGES and the summarization RGES were detailed elsewhere and recently implemented 

as a standalone R package31. Briefly, we quantified the reversal of disease gene expression as RGES 

(Reversal Gene Expression Score), a measure modified from the connectivity score developed in other 

studies20. To compute RGES scores, we first rank genes based on their expression values in each drug 

signature. An enrichment score/s for each set of up- and down-regulated disease genes were computed 

separately using a Kolmogorov–Smirnov-like statistic, followed by the merge of scores from both sides 

(up/down). The score is based on the amount to which the genes (up or down-regulated) at either the top or 

bottom of a drug-gene list ranked by expression change after drug treatment. One compound may have 

multiple available expression profiles because they have been tested in various cell lines, drug 

concentrations, treatment durations, or even different replicates, resulting in multiple RGES for one drug-

disease prediction. We termed this score summarized RGES (sRGES). We set a reference condition (i.e., 

concentration of 10 µM, treatment duration of 24 hours) and used a model to estimate a new RGES if the 

drug profile under the reference condition was not available. We did not weight the LINCS cell lines. Those 

comparisons, where maximum of the absolute sRGES is less than 0.25 were considered as insignificant 

predictions.  



Signatures validation and selection 

Drugs with known in vitro activity against two coronaviruses (i.e., SARS-CoV and MERS-CoV) served as 

positive controls for signature validation. Qualified signatures should meet the following criteria: (1) 

derived from SARS-CoV or MERS-CoV infection experiments; (2) the number of differentially expressed 

genes was greater than 50 (mapped to LINCS); (3) the maximum absolute sRGES prediction was greater 

than 0.25; (4) the sRGES of positive drugs was enriched at the top (one side Wilcoxon rank-sum test p < 

0.05, FDR < 0.25); (5) the sRGES and the average EC50 value of positive drugs were highly correlated 

(Spearman r >= 0.4, p < 0.05). 

Clustering of virus predictions 

We downloaded the compiled virus-perturbed signatures from EnrichR (323 in total). Since the EnrichR 

dataset did not include any MERS signatures, we manually added the signatures of two MERS datasets 

(GSE79218, GSE79172, 8 in total) computed from the comparison between the infection group and the 

mock group, separately. Only the virus signature containing more than 50 LINCS landmark genes was 

selected. Each virus signature was queried against the LINCS library using the established pipeline. Only 

those signatures where the maximum of the absolute sRGES was greater than 0.25 were chosen for the 

following analysis. Viruses were clustered based on the sRGES scores using pvclust32 (distance method: 

spearman correlation, nboot = 100).  

Ritonavir correlation analysis 

We found one RNA-Seq dataset (SRA: SRX4939022) for HepaRG cells treated with multiple compounds 

including ritonavir under multiple concentrations (ranging from 9 nM to 300 µM). We processed 90 profiles 

in the plate (2D_RG_PLATE2) consisting of 10 concentrations (each concentration has 9 profiles). The 

log2 TPM of each profile was subtracted by the median of log2 TPM of all DMSO-treated samples in this 

plate, resulting in one drug-induced gene expression profile. The spearman correlation between the drug-

induced gene expression and the disease gene expression used for the LINCS prediction was computed. 

The negative correlation means a reversal relation. Ritonavir was originally developed as an inhibitor of 



HIV protease and now often used at a low dose with other protease inhibitors to boost the antiviral effect. 

Our analysis suggests that ritonavir could only reverse the disease signature at a very high dose. 

Reversal infection signature visualization 

For better visualization of the selected drug candidates’ reversal of coronavirus induced gene expression 

changes, we combined validated infection signatures into one meta signature, and summarized drug profiles 

from different experiments into one profile. Dysregulated genes were included into the meta infection 

signature if 25% quantile of log2 fold changes was less than -1 or 75% quantile was greater than 2. For each 

drug, all profiles (z-scores, level 5) in L1000 measured at 10 µM were extracted (including different cell 

lines and treatment times). The value of each gene in the summarized profile was defined as the median of 

the head or tail 25% (depending on which absolute value is larger) if this quantile absolute value was greater 

than 1, we defined it as the median of the z-scores of this gene across all the profiles extracted. The matrix 

was composed of the meta signature genes and signatures of selected drug candidates. We also included 

the profiles of two drugs predicted as negative hits, and ordered the rows by the fold change of infection 

signature genes. A heatmap was used to visualize the effect of selected drugs in reversing virus-induced 

genes. 

When visualizing the transcriptome datasets (for Figure S6) from GEO 

(https://www.ncbi.nlm.nih.gov/geo/), we processed the gene expression matrix the same as the disease 

signature creation aforementioned. Then all gene log2 fold change values were converted to ranking 

percentages. Finally, a clustermap was computed for genes of our interest, colored in red (up-regulation) 

and blue (down-regulation). 

Gene Ontology (GO) Enrichment Analysis 

The processed compound transcriptome profile was categorized into up- and down-regulated genes, with a 

threshold of log2 fold change greater than 1 or less than -1, respectively. Then each group of genes was 

submitted to Enrichr33 (https://amp.pharm.mssm.edu/Enrichr/) to compute the Gene Ontology enrichment. 

GO terms with p-value less than 0.05 and adjusted p-value less than 0.2 were taken as significant. 



 

Cell culture, virus infection and drug evaluation 

Tissue Cultures and Virus 

Vero E6 cells [CRL:1586, ATCC] were grown in Eagle's minimal essential medium (EMEM) 

supplemented with penicillin (100 units/ml), streptomycin (100 µg/ml), and 10% fetal bovine serum 

(FBS). SARS-CoV-2 (US_WA-1 isolate), the 3rd passage in Vero E6 cells from the original CDC (Atlanta) 

material and sequence confirmed, was used throughout the study. The titer of the viral stock was 7.5 × 107 

50% tissue culture infectious doses (TCID50)/ml. All experiments involving using infectious virus were 

conducted at the University of Texas Medical Branch in an approved biosafety level 3 laboratory. 

Drug screening by cell-based assay 

A slightly modified Vero E6-based standard micro-neutralization assay was used to rapidly evaluate the 

drug efficacy against SARS-CoV-2 infection. Briefly, confluent Vero E6 cells grown in 96-wells microtiter 

plates were pre-treated with serially 2-folds diluted individual drugs for two hours before infection with 

100 infectious SARS-CoV-2 particles in 100 µl EMEM supplemented with 2% FBS. Vero E6 cells treated 

with parallelly diluted dimethyl sulfoxide (DMSO) with or without virus were included as positive and 

negative controls, respectively. After cultivation at 37 °C for 4 days, individual wells were observed under 

the microcopy for the status of virus-induced formation of CPE. The efficacy of individual drugs was 

calculated and expressed as the lowest concentration capable of completely preventing virus-induced CPE 

in 100% of the wells. The toxicity to the treated cells was assessed by observing floating cells and altered 

morphology of adhered Vero E6 cells in wells under the microcopy. All compounds were ordered from 

Selleckchem or Cayman Chemical. All compounds were dissolved in 100% DMSO as 10 mM stock 

solutions and diluted in culture media. 

 



Software tools and statistical methods 

All the analysis was conducted in R (v3.5.1) or Python (v3.7) programming language. The ggplot2, 

pheatmap and seaborn packages were used for data visualization. Student’s t-test was performed for 

normally distributed data and Wilcoxon rank-sum test was used for other types of data to compute the p-

value.  
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Figure S1. Hierarchical clustering of virus infection signatures 
based on their drug prediction results. Significant SARS/MERS 
clusters with approximately unbiased (AU) p-values no less than 95% 
were highlighted with red rectangles. Red and green numbers indicate 
AU and bootstrap probability (BP) p-values, respectively. Edge numbers 
are shown in grey. Among the 291 virus-induced signatures, only those 
that mapped to at least 50 LINCS landmark genes were used in this 
analysis. 
 
  

A_CA_04_2009_7dayMOI−10^5_GSE37569

cSARS_Bat_SRBD_60Hour_GSE37827

RSV_4Hour_GSE3397

SARS−CoV_MA15_Day7−C57BL−6_GSE40824

SARS−dORF6_60Hour_GSE47962

SARS−CoV_MA15_Day7−PFU−10^3_GSE33266

A_CA_04_2009_4dayMOI−10^4_GSE37569

cSARS_Bat_SRBD_24Hour_GSE37827

MERS_MMVE001_48Hour_GSE79218

SARS−CoV_MA15_Day7−C57BL6_GSE50878

Dhori_Virus_12Hour_GSE17400

HCoV−EMC2012_3Hour_GSE45042

SARS−CoV_24Hour_GSE47961

SARS−ddORF6_24Hour_GSE47961

icSARS_CoV_48Hour_GSE37827

HHV8_72Hour−LEC_GSE16354

HCV_JFH1_120Hour−Huh7_5_1_GSE29889

RSV−A2_24Hour−B6.129PF1_J_GSE18170

SARS−CoV_72Hour_GSE47961

SARS−CoV_96Hour_GSE47962

MERS_MDC001_3Hour_GSE79172

SARS−CoV_36Hour_GSE47962

SARS−dORF6_36Hour_GSE47962

SARS−CoV_MA15_Day4−PFU−10^5_GSE33266

SARS−CoV_MA15_Day2−PFU−10^3_GSE33266

SARS−CoV_MA15_Day2−PFU−10^4_GSE33266

HCV_JFH−1_48Hour_GSE20948

SARS−BatSRBD_Day7_GSE50000

MERS_MDC001_0Hour_GSE79172

SARS−ddORF6_84Hour_GSE47961

HCoV−EMC2012_0Hour_GSE45042

SARS−BatSRBD_72Hour_GSE47962

hMPV_6Hour_GSE8961

A_CA_04_2009_7dayMOI−10^6_GSE37569

MERS_MDC001_12Hour_GSE79172

SARS−BatSRBD_0Hour_GSE47961

SARS−BatSRBD_48Hour_GSE47962

SARS−dORF6_48Hour_GSE47962

hMPV_48Hour_GSE8961

hMPV_72Hour_GSE8961

SARS−CoV_84Hour_GSE47962

SARS−BatSRBD_96Hour_GSE47962

SARS−CoV_0Hour_GSE47961

SARS−CoV_MA15_Day2−C57BL6_GSE50878

SARS−dORF6_36Hour_GSE47960

SARS−CoV_48Hour_GSE47962

SARS−CoV_0Hour_GSE47962

SARS−CoV_12Hour_GSE47960

SARS−dORF6_12Hour_GSE47960

icSARS_CoV_12Hour_GSE33267

RSV_48Hour_GSE32138

icSARS_CoV_60Hour_GSE37827

SARS−dORF6_72Hour_GSE47960

SARS−CoV_84Hour_GSE47960

SARS−BatSRBD_84Hour_GSE47961

SARS−ddORF6_72Hour_GSE47961

icSARS−Cov_Day1_GSE50000

Norwalk_Virus_HG23_GSE15520

Rabies_CVS−11_7day−Spinalcord_GSE30577

MERS_MMVE001_36Hour_GSE79218

HCV_JFH1_168Hour−Huh7_GSE29889

SARS−ddORF6_60Hour_GSE47961

MERS_MMVE001_12Hour_GSE79218

MERS_MMVE001_24Hour_GSE79218

SARS−BatSRBD_36Hour_GSE47962

SARS−dORF6_0Hour_GSE47960

icSARS−Cov_Day7_GSE50000

SARS−CoV_MA15_Day4−C57BL−6_GSE40824

Rabies_CVS−11_7day−Brain_GSE30577

SARS−BatSRBD_72Hour_GSE47960

SARS−CoV_96Hour_GSE47961

icSARS_CoV_54Hour_GSE37827

SARS−dORF6_96Hour_GSE47962

MERS_MDC001_24Hour_GSE79172

MERS_MMVE001_0Hour_GSE79218

0.0 0.2 0.4 0.6 0.8 1.0

C
luster m

ethod: average
D

istance:  spearm
an

Height

100

100
95

100
100

100
90

79
79

97
85

92
88

49
100

79
96

97
99

80
97

94
67

83
93

97
100

98
79

72
81

74
73

100
83

75
87

59
90

85
94

49
65

89
82

84
95

95
83

85
72

71
89

92
95

73
98

76
70

83
98

70
61

81
88

86
92

87
90

89
90

61
55

au

100

100
92

100
100

100
75

52
77

96
65

92
65

51
100

58
71

98
99

98
89

74
53

33
96

64
96

55
15

67
53

13
43

94
83

9
12

38
69

9
47

50
3

7
30

8
33

68
21

47
31

45
15

11
29

11
71

12
12

11
68

8
30

13
37

8
39

6
13

18
15

18
7

bp

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52
53

54
55

56
57

58
59

60
61

62
63

64
65

66
67

68
69

70
71

72
73

edge #



 
Table S1. Data sets used in this study for disease signature creation. 

S. 
No. Accession Platform Disease/ 

Infection Organism Model Time 
points 

Number of 
samples PMID 

1 GSE17400 GPL570 MOCK, DOHV and 
SARS Homo sapiens Calu-3 3 27 20090954 

2 GSE30589 GPL570 SARS and MOCK Homo sapiens 
Vero E6, Vero E6 
DeltaE, MA-104 and 
MA-104 DeltaE 

4 33 22028656 

3 GSE45042 GPL6480  MOCK and EMC Homo sapiens Calu-3 6 33 23631916 
24846384 

4 GSE47960 GPL6480 
MOCK, SARS, H1N1, 
SARS-BatSRBD and 
SARS-dORF6 

Homo sapiens HAE 11 163 23935999 

5 GSE79218 GPL13497 MOCK and MERS Homo sapiens MMVE001 5 49  

6 GSE79172 GPL13497 MOCK and MERS Homo sapiens MDC001 5 29 28830941 

7 GSE22581 GPL3738 MOCK and SARS Canis lupus Ferret Lung 3 9 21035159 

8 GSE36016 GPL7202 MOCK and SARS Mus musculus lung WT, lung IFNAR1 
and lung STAT 3 36  

9 GSE68820 GPL7202 MOCK and SARS Mus musculus lung wt and lung TLR3 3 52 26015500 

10 GSE30351 GPL6480 JFH1 Homo sapiens Huh7 2 7  

11 GSE71063 GPL570 HIV Homo sapiens patients  2 40 26935044 

12 SRP166108 Illumina 
HiSeq  Homo sapiens HepaRG  50  

 
 



 
Figure S2. Gene ontology enrichment of differentially expressed genes obtained among different time 
points in MOCK group of samples. Gene ontology terms enriched in MOCK infected samples in (A) lung 
tissues without any knockout and (B) lung tissues with TLR3 knockout in GSE68820, and (C) MMVE001 cell 
lines in GSE79172. Terms enriched in MOCK infected samples are mostly cell cycle related. The size of the 
circles represents the ratio of genes in each process and color of the circle represents the regulation 
(Upregulated- red and downregulated- green) of genes.  
 



 
Figure S3. Gene set enrichment of the biological biological processes at different time points. Variations of 
gene set enrichment (ssGSEA) of biological processes obtained at different time points in MOCK (A) and 
SARS infected (B) lung tissue with TLR3 mutant. Similarly, variation of ssGSEA of biological processes 
obtained at different time points in MOCK (C) and SARS infected (D) lung tissue in GSE68820, and MOCK 
(E) and MERS (F) infected MDC001 cell lines in GSE79172. The enrichment of expression of genes involved 
in these processes was increasing in SARS/MERS infected tissue but found to be consistent in MOCK samples 
with time.  
 
 
Table S2. Positive control drugs with known activity against MERS-CoV/SARS-CoV/SARS-CoV-2. 

Name MERS EC50 µM SARS EC50 µM COVID-19 EC50 
µM MoA PMID 

amodiaquine 6.21 1.27 NA* Antiparasitic agent 32006468 

astemizole 4.88 5.59 NA Neurotransmitter inhibitor 32006468 
bisindolylmaleimide-
ix 

inhibition 74% @ 
10uM NA NA PKC inhibitor 25653449 



Name MERS EC50 µM SARS EC50 µM COVID-19 EC50 
µM MoA PMID 

bufalin inhibition > 90% 
@ 10 nM NA NA inhibit MERS-CoV entry by blocking clathrin-

mediated endocytosis 25653449 

chloroquine 3 NA 1.13 Endosomal acidification inhibitor 32006468 

chlorpromazine 4.9 NA NA Neurotransmitter inhibitor 32006468 

clomipramine 9.33 13.23 NA Neurotransmitter inhibitor 32006468 

dasatinib 5.46 2.1 NA ABL1 inhibitor 32006468 

disulfiram NA NA NA MERS-CoV PL-pro inhibitor 32006468 

emetine 0.34 NA NA Inhibits RNA, DNA and protein synthesis 32006468 

fluphenazine 5.86 21.43 NA Neurotransmitter inhibitor 32006468 

fluspirilene 7.47 5.96 NA Neurotransmitter inhibitor 32006468 

gemcitabine 1.21 4.95 NA DNA metabolism inhibitor 32006468 

GW-5074 inhibition 52% @ 
10uM NA NA Raf inhibitor 25653449 

imatinib 17.68 9.82 NA ABL1 inhibitor 32006468 

loperamide 4.8 5.9 NA antidiarrheal opioid receptor agonist 32006468 

lopinavir 8 24.4 NA HIV-1 inhibitor 32006468 

mefloquine 7.41 15.55 NA Antiparasitic agent 32006468 

mg-132 NA NA NA cys-protease m-calpain inhibition 22787216 

monensin 3.27 NA NA Antibacterial 32006468 
mycophenolate-
mofetil 1.54 NA NA Immune suppressant, antineoplastic, antiviral 32006468 

niclosamide NA 2 NA Antiparasitic agent 15215127 

nitazoxanide NA NA 2.12 antiprotozoal, type I IFN inducer 32020029 

ouabain inhibition 70% @ 
50 nM NA NA inhibit MERS-CoV entry by blocking clathrin-

mediated endocytosis 25653449 

penciclovir NA NA 95.96 Inhibition of virus DNA synthesis 32020029 

phenazopyridine 1.93 NA NA Analgesic 32006468 

promethazine 11.8 7.54 NA Neurotransmitter inhibitor 32006468 

pyrvinium-pamoate 1.84 NA NA Anthelmintic 32006468 

ribavirin NA NA 109.5 ribonucleic analog 32020029 

ritonavir 24.9 NA NA HIV protease inhibitor 31924756 

saracatinib 2.9 2.4 NA Src family of tyrosine kinases inhibitor 32006468 

SB-203580 inhibition 45% @ 
10uM NA NA p38 MAPK inhibitor 25653449 

selumetinib inhibition >= 
95% @ 10uM NA NA MEK1, ERK1/2 inhibitor 25653449 

sirolimus inhibition 61% @ 
10uM NA NA MTOR inhibitor 25653449 

tamoxifen 10.11 92.88 NA Estrogen receptor inhibitor 32006468 

terconazole 12.2 15.32 NA Sterol metabolism inhibitor 32006468 

thiothixene 9.29 5.31 NA Neurotransmitter inhibitor 32006468 

toremifene 12.91 11.96 NA Estrogen receptor inhibitor 32006468 

trametinib inhibition >= 
95% @ 10uM NA NA MEK1/2 inhibitor 25653449 

triflupromazine 5.75 6.39 NA Neurotransmitter inhibitor 32006468 

U-0126 inhibition 51% @ 
10uM NA NA MEK1/2 inhibitor 25653449 

* “NA” indicates not available. 
 



 
Figure S4. SARS/MERS signatures validation using known active drugs (positive controls). The first and 
third columns show enrichment density and barcode, with p values shown at upper right. The curve shows 
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enrichment density, and each bar under the curve represents the rank of a positive drug among all the drugs in 
one prediction. The second and last columns list the correlation between sRGES and EC50 (in M, log10 
transformed) of the positive controls, with Spearman R and p value shown at lower right. Each point indicates a 
positive control drug. 
 
 

 
Figure S5. Ritonavir profiles measured under different concentrations. Each row indicates an infection 
signature, each column indicates a ritonavir profile under a different concentration annotated as the colorbar on 
the right side. The heatmap shows the spearman correlation coefficients between drug signatures and disease 
signatures. Blue means a better reversal effect. 
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Figure S6. Heatmap showing the interferon-stimulated genes expression (rank percentage in the whole 
transcriptome) in infection (GSE68820), chloroquine (GSE71063), methotrexate (GSE56426) and tocilizumab 
(GSE25160) treated mice or patients. Red color indicates up-regulated genes and blue indicates down-regulated 
genes. 
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Table S3. Antiviral effect and other information of the selected candidates. 

Name Median 
Rank (CoV) 

Median Rank 
(MOCK) Clinical Phase Route of 

Administration Targets MoA Indication 

Bortezomib 3 23 Launched Intravenous 

PSMA1-8 
PSMB1-11 
PSMD1-2 
RELA 

NFkB pathway 
inhibitor 
Proteasome 
inhibitor 

Multiple myeloma, 
mantle cell lymphoma 

Puromycin 18 128 Launched Oral 60S ribosomal 
proteins 

Protein synthesis 
inhibitor  

Methotrexate 37 356 Launched Oral DHFR 
Dihydrofolate 
reductase 
inhibitor 

Gestational 
choriocarcinoma, 
hydatidiform mole, 
acute lymphoblastic 
leukemia, psoriasis, 
rheumatoid arthritis 

Methylene blue 57 153 Launched Intravenous ACHE 

Guanylyl cyclase 
inhibitor 
nitric oxide 
production 
inhibitor 

Methemoglobinemia 

Tyloxapol 106 293 Launched Inhalant LPL 
NFKB2 

NFkB pathway 
inhibitor  

Nisoldipine 108 245 Launched Oral 

Voltage-
dependent L-
type calcium 
channels 

Calcium channel 
blocker Hypertension 

Nvp-bez235 178 173 Phase 2 Oral 
ATR 
MTOR 
PI3Ks 

mTOR inhibitor 
PI3K inhibitor  

Fluvastatin 283 362 Launched Oral HMGCR HMGCR 
inhibitor 

Hypercholesterolemia, 
congenital heart 
defects 

Alvocidib 290 823 Phase 2 Intravenous 

CDK1-2 
CDK4-9 
EGFR 
PYGM 

CDK inhibitor  

Dasatinib 378 1103 Launched Oral 

ABL1/2 
Src family 
kinases 
EPHA2 
KIT 
PDGFRB 
SRMS 
STAT5B 

Bcr-Abl kinase 
inhibitor 
Ephrin inhibitor 
KIT inhibitor 
PDGFR tyrosine 
kinase receptor 
inhibitor 
Src family 
inhibitor 

Chronic myeloid 
leukemia, acute 
lymphoblastic 
leukemia 

 
 
 


	COVID-19_srges_MAIN_200406_BC
	COVID-19_srges_SUPP_200406

