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Abstract  

 

Background: 

SARS-CoV-2 test kits are in critical shortage in many countries. This limits large-scale population testing 
and hinders the effort to identify and isolate infected individuals.  

Objectives:  

Herein, we developed and evaluated multi-stage group testing schemes that test samples in groups of 
various pool sizes in multiple stages. Through this approach, groups of negative samples can be 
eliminated with a single test, avoiding the need for individual testing and achieving considerable savings 
of resources.  

Study design:  

We designed and parameterized various multi-stage testing schemes and compared their efficiency at 
different prevalence rates using computer simulations. 

Results:  

We found that three-stage testing schemes with pool sizes of maximum 16 samples can test up to three 
and seven times as many individuals with the same number of test kits for prevalence rates of around 5% 
and 1%, respectively. We propose an adaptive approach, where the optimal testing scheme is selected 
based on the expected prevalence rate. 

Conclusion:  

These group testing schemes could lead to a major reduction in the number of testing kits required and 
help improve large-scale population testing in general and in the context of the current COVID-19 
pandemic.  

 

 

 

 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 20, 2020. .https://doi.org/10.1101/2020.04.10.20061176doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.10.20061176


 

3 

 

Background 

The COVID-19 pandemic is caused by the virus SARS-CoV-2 and despite drastic measures taken to limit 
disease dissemination, this pandemic will lead to a substantial death toll and an unforeseeable impact on 
health-care systems and the world economy. This shows the need for accurate data on prevalence to 
better inform political and public health decision making and to broadly identify infected individuals. So 
far, 1.6 million cases and over 100,000 deaths have been reported world-wide ([1], 10.4.2020). However, 
true prevalence rates are unknown as in most countries large-scale population testing has still not been 
introduced. Tests are often restricted to specific groups of populations, such as healthcare workers, 
individuals with known SARS-CoV-2 exposure, COVID-19 symptoms or with risk factors for severe 
diseases. 

One reason for the limited testing is the shortage of PCR testing reagents. This could be overcome by 
group testing, a method first suggested by Dorfman for testing large populations of U.S. soldiers for 
syphilis [2]. The idea of group testing involves the division of the population into small groups. For each 
group, a combined sample (‘pool’) of its members is created and tested. If the pool tests negative, it can 
be concluded that all group members are negative and no individual tests will be required. If the pool tests 
positive, further tests will have to be performed to determine which group member(s) are positive. One 
ad-hoc model of group testing, using pools of up to 10 samples, has recently been applied for SARS-
CoV-2 PCR [3]. More refined variants of group testing are for example used in HIV screening [3] [4]; but 
these pool sizes seem to exceed the sensitivity of current SARS-CoV-2 testing methods [5]. 

Herein, we develop various group testing schemes and evaluate their resource efficiency for different 
prevalence rates. We define models that are presumed practical for SARS-CoV-2 testing applications 
(small pool sizes, small number of steps) and best suited to minimize the number of tests necessary. 

 

Objectives 

We developed and evaluated multi-stage group testing schemes that test samples in groups of various 
pool sizes in multiple stages. Through this approach, groups of negative samples can be eliminated with 
a single test, avoiding the need for individual testing and achieving considerable savings of resources.  

 

Study design 

Design of testing schemes 

Multi-Stage group testing schemes P�S�(“pool size �, �stages”) were designed on the basis of two 
integers � (divisor) and � (number of stages). The initial pool size is � � ����, which is divided by � in 
each subsequent stage, resulting in pool sizes ����, ����, . . . , �� � 1in stages1,2, . . . , �. Two-stage group 
testing applies this construction with setting � � 2.  

Evaluation of testing schemes 

To compare the performance of group testing schemes, we defined a quantity called improvement factor. 
Mathematically, the improvement factor is the ratio of the population size and the expected value of the 
number of tests performed by the scheme. In other words, it is the average number of samples that can 
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be tested with a single test, when the scheme is applied to a large population. Importantly, the 
improvement factor depends on the prevalence rate 	. 

Improvement factors of two-stage testing schemes PNS2 were calculated using the formula �/�1 
  � �

 ��1 �  	����[4]. To handle multi-stage testing schemes, a PYTHON program was written by us. 
Additionally, PYTHON was used to implement a Monte-Carlo statistical method that performs multi-stage 
and matrix group testing schemes on 1M randomly generated groups of samples and averages the 
improvement factor over all groups. The two methods were compared and found to be in agreement with 
one another. 

The improvement factors for all two-/multi-stage schemes with pool sizes up to 10,000 and for the (8x12) 
matrix scheme were calculated with the above methods for all prevalence rates 	 between 0% and 30% 
in steps of 0.05%. PYTHON was used to determine the optimal testing scheme amongst these examples. 
MATPLOTLIB was used to plot heatmaps visualizing the results. 

We presume that schemes are clinically feasible if their pool size is less or equal than 16 and their 
number of stages is less or equal than 4.  

A selection of presumed clinically feasible and optimal multi-stage schemes P3S3, P9S3, P4S2 and 
P16S3 was made. Also, the schemes P32S2, P10S2 and the matrix scheme were considered as they 
appeared in earlier literature [6,7]. MATPLOTLIB was used to plot their improvement factors for 
prevalence rates between 0% and 30%. Data for prevalence rates over 30% was not plotted, since all 
testing schemes perform worse than individual testing in these cases. 

 

Results 

Design of group testing schemes 

We designed group testing schemes with the goal of testing large numbers of samples more efficiently. 
Samples are not tested individually from the start but rather arranged into groups (‘pools’) and then tested 
together. All samples in pools that are tested negative must be negative and no individual testing is 
needed. All samples in pools that are tested positive are further processed according to the design of the 
testing scheme. 

A commonly used approach is two-stage testing [2], where pools containing for example 3 individual 
samples (P3, “pool of 3”) are tested first, and in a second stage (S2, “2 stages”) samples in positive pools 
are tested individually (Fig 1A). 

The resource efficiency of group testing stems from the fact that for low prevalence rates it is likely that a 
group of samples will not contain a positive sample and thus negative samples are eliminated in groups.  

Group testing schemes can be refined in various ways. We expanded the design to multi-stage testing 
schemes. Here, pools that are tested positive are split in multiple stages into smaller pools before 
eventually performing individual tests. We used integer powers ��(e.g. 4�: 1, 4, 16, ...) of pool sizes and 
divided them by the fixed number � (divisor) after each stage. For example, a testing scheme that we call 
P16S3 (“pool of 16, 3 stages”) has the divisor � � 4, meaning that pool sizes are divided by 4 at each 
stage: It uses pools of 16 samples in the first stage, pools of 4 samples in the second stage and individual 
testing in the third stage (Fig 1B).  
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There are obvious variants, which are more complicated, such as using different divisors at each stage, 
but we did not consider these here. 

Evaluation of different two- and multi-stage group testing schemes 

To evaluate and compare the performance of different group testing schemes, we defined the 
improvement factor compared to individual testing. The improvement factor describes how many more 
samples can be tested using the same (limited) number of ressources. Simplistically speaking, an 
improvement factor of 10 indicates that 20,000 tests are sufficient to test an average population of 
200,000 individuals. 

The improvement factor of each scheme depends on the prevalence rate. A calculation shows that for a 
prevalence rate 	 and a pool size � the improvement factor for two-stage testing is �/�1 
  � �  ��1 �

 	���. Hence, if the prevalence rate approaches 0, the improvement factor approaches the pool size N.  
Multi-stage testing schemes have the same asymptotic behaviour although explicit formulas for their 
improvement factor become more complicated. 

We next compared the improvement factors of each testing scheme assuming different prevalence rates 
up to 30%. Results for selected prevalence rates (1%, 7.5% and 20%) are visualised in Figure 2. 

The data showed that group testing is more efficient than individual testing for prevalence rates under 
30%. As expected, large pool sizes and more stages are preferable for lower prevalence rates, small pool 
sizes and fewer stages are preferable for higher prevalence rates, indicating that there is no group testing 
scheme that is optimal for all prevalence rates. 

For prevalence rates under 12%, multi-stage schemes had higher improvement factors than two-stage 
schemes. For prevalence rates around 1%, simple three-stage schemes such as P9S3 or P16S3 (Fig 1B) 
yielded improvement factors of around 7. 

At prevalence rates of around 1%, group testing schemes with very large pool sizes and many stages, for 
example P81S5, are optimal in the mathematical sense but clinically impractical for several reasons: First, 
PCR testing is not arbitrarily sensitive. Pooling positive with negative samples dilutes the positive 
samples, which increases the risk of false negative results. However, recent research indicates that 
pooling of 16 samples does not seem to substantially impact test sensitivity of SARS-Cov-2 PCR tests [5]. 
Second, the number of stages should be reasonable. Each additional stage increases the workload and 
the risk of human error. Furthermore, stages have to be processed sequentially, increasing the time to get 
the diagnosis. Therefore, we decreased complexity and restricted our further analysis to schemes with 
pool sizes up to 16 samples and a maximum of 4 stages. 

Performance of presumed clinically feasible group testing schemes 

We determined the improvement factor of P3S2, P9S3, P4S2 and P16S4 for prevalence rates up to 30% 
(Figure 3 A+B) and compared results with previously described schemes, namely the two-stage testing 
schemes with pool sizes of 10 (P10S2, [6]), or 32 (P32S2, [5]). We also assessed the matrix testing 
scheme [7] using a matrix of 96 samples (12x8) that groups samples in rows (8 pools comprising 12 
samples) and columns (12 pools comprising 8 samples) a method that has also been used for epitope 
mapping in immunology research application [8]. 

We summarized the optimal testing schemes for different prevalence rates (Table 1): 
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For low prevalence rates (0-3.5%), P16S3 is optimal among all the schemes we consider feasible, with 
improvement factors between 16 down to 3.8. For medium prevalence rates (3.5-12%), it becomes 
advantageous to reduce the pool size to 9 and perform 3 stages (P9S3), giving an improvement factor 
from 3.8 down to 1.5. For high prevalence rates between 12% and 30%, the pool size should be further 
reduced to three samples with 2 stages (P3S2), yielding an improvement factor from 1.5 down to 1. Once 
the prevalence rate is 30% and above, individual testing should be performed. 

In summary, we showed that among all presumed clinically feasible testing schemes multi-stage schemes 
are preferable to two-stage schemes for prevalence rates of under 12%. For prevalence rates up to 3.5% 
P16S3 is preferable. From 3.5% up to 12% P9S3 performs best. However, for prevalence rates above 
12% the two-staged testing scheme P3S2 is preferable. 

 

Discussion 

We introduced multi-stage group testing schemes which are highly efficient methods to test large 
numbers of samples and assessed their improvement factor  depending on different prevalence rates. We 
found that three-stage schemes performed optimally for prevalence rates up to 12% and that initial pool 
sizes of 16 were best for prevalence rates up to 3.5% (P16S3, improvement factor 16 to 3.8) and pools of 
9 samples for rates between 3.5% and 12% (P9S3,  improvement factor 3.8 to 1.5). For prevalence rates 
between 12 and 30%, two-stage testing with pools of 3 samples performed best (P3S2,  improvement 
factor 1.5 to 1). This suggests that an adaptive approach is necessary where the scheme is chosen 
depending on the estimated prevalence rate. The multi-stage group testing schemes defined in this paper 
outperform other approaches to group testing in the literature [7]. 

The high efficiency of multi-stage group testing allows for large-scale testing of populations. To estimate 
the potential savings of tests we can use real-world data [1] (dated 10.04.2020). In order not to 
overestimate the prevalence rate, we considered data from countries which have performed large-scale 
population testing, namely South Korea and Germany. In South Korea a total of 503,051 people have 
been tested, of which 10,450 were positive. This gives an estimate for the underlying prevalence rate of 
2%. At this prevalence rate the multi-stage testing scheme P16S3 is optimal and would allow for testing 
about five times as many individuals with the same number of tests. In Germany, a total of 1,317,887 
people were tested, of which 118,235 were positive. This gives a higher prevalence rate of around 9%. In 
this case the multi-stage scheme P9S3 is optimal; it would enable the testing of an additional 80% of 
individuals (compared to only 30% improvement based on the P10S2 scheme suggested in [6]). Note that 
these numbers have a selection bias, as individuals with COVID-19 symptoms were more likely to be 
tested. By introducing large-scale testing, established true prevalence rates will probably be lower, which 
would automatically yield even better improvement factors of the testing schemes.  

Our analysis and predictions are in silico observations and have to be confirmed in real life. In particular, 
these testing schemes will have to be established in a similar fashion as other novel individual laboratory 
testings with the aim of assessing and limiting potential false positive or negative results.  The practical 
feasibility of our methods is supported by observations of Yelin et al. which indicate that pooling up to 16 
samples for SARS-Cov-2 PCR testing could potentially not decrease test sensitivity [5].  If further 
laboratory analyses show that the scheme P16S3 is not implementable and that pool sizes of 16 samples 
increase the false negative rate significantly, the scheme P9S3 presents a viable alternative. Here, 
improvement factors are comparable (7.2 vs. 6 for 1% prevalence rate) while almost halving the pool size.  
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However, it has been described that the viral load depends on the disease stage and is high during the 
early phase [9]. Thus, larger pool sizes could be used for this subpopulation. Additionally,  individuals with 
higher and lower likelihood of infection could be combined into different pools to improve testing efficiency 
by choosing the appropriate testing scheme. 

As these group-testing schemes are agnostic towards practical application, they can be used in different 
settings. In the course of the current COVID-19 pandemic and in view of the shortage of PCR testing kits, 
these multiple-stage schemes would allow for large-scale population testing and prevalence estimations. 
Also, efforts are made to determine sero-prevalence of anti-SARS-CoV-2 antibodies as potential markers 
of previous infection and immunity and broad population testing will soon become necessary. Here, 
multiple-stage testing could be employed and it has been shown for anti-HIV antibody testing that ELISA 
tests of pooled serum samples can be performed without a significant decrease in sensitivity or specificity 
[10].  

In summary, we identified group testing schemes that are more efficient than individual testing methods 
most laboratories currently employ under different prevalence rates. These findings can have the 
potential to significantly increase the mass testing efficiency in the context of the current COVID-19 
pandemic. 
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Table 1 

 

Scheme Maximum 
pool size 

Minimum 
number of 
samples  

Number of 
stages 

Best for prevalence rates of 
(Improvement factor) 

 

Individual Testing 1 1 1 30% and above 

P3S2 3 3 2 12-30% (1.5-1) 

P9S3 9 9 3 3.5-12% (1.5-3.8) 

P4S2 4 4 2 - 

P16S3 16 16 3 0.-3.5% (16-3.8) 

P10S2 10 10 2 - 

Matrix 12 96 2 - 

 

Table 1: Detailed summary of testing schemes and improvement factors for various prevalence 

rates Schemes which are compatible with our desiderata for clinical practicability (pool size ≦ 16 and low 

number of stages ≦ 4) and their properties. We show which scheme has the best performance for any 

underlying prevalence rate. 
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Figure legends  

 

Figure 1: Schematic visualization of different group testing approaches 

Scheme P3S2 (left) is applied to 18 samples (circles) with 16 negatives (white) and 2 positives (red) 
samples. The spatial arrangement of the tests is irrelevant. Stage 1: 6 groups of 3 samples each are 
combined into pools (rectangles) and tested (blue for negative, red for positive). Stage 2: all samples 
belonging to a negative pool are considered negative and not further tested (grey). All samples from 
positive pools are tested individually.  

In total, 18 samples were tested with 12 tests (1.5 samples per test). With lower prevalence rates, P3S2 
can, on average, test up to 3 samples with 1 test.  

Scheme P16S3 (right) is applied to 32 samples, one of which is positive. Stage 1: 2 groups of 16 samples 
are pooled and tested. Stage 2: All samples in the negative group must be negative and are hence not 
tested further. Samples in the positive group are pooled into 4 subgroups of 4 samples and each pool is 
tested. Stage 3: The remaining 4 samples in the one positive pool are tested individually.  

In total, 32 samples were tested with 10 tests (3.2 samples per test). With lower prevalence rates, P16S3 
can, on average, test up to 16 samples with 1 test. 

 

Figure 2: Performance of various multi-stage schemes under prevalence rates of 1%, 7.5% and 
20%.  

Each square represents a multi-stage scheme P�S� with pool size � � ����, divisor � (x-axis) and 
� stages (y-axis). Color intensity represents the improvement factor, i.e. the average number of subjects 
tested with a single test (darker is higher). Dashed lines indicate the cut-off with respect to the maximal 
initial pool size of 16. Dotted lines indicate the cut-off with respect to the maximal number of stages of 4. 

A: For 1% prevalence rate, among all schemes, P81S5 performs best (improvement factor 8.4). Among 
schemes with a pool size limited by 16, P16S5 performs best (improvement factor 7.3). Finally, among 
schemes which are additionally limited to less than 5 stages, P16S3 performs best (improvement factor 
7.1) testing 7.1 subjects with just one test, while still being practical. B: For 7.5% prevalence rate, P9S3 
performs best (improvement factor 2). C: For a 20% prevalence rate, it is preferable to use a low number 
of stages. P3S3 performs best (improvement factor 1.22). 

 

Figure 3: Improvement factors of different schemes for prevalence rates below 30% 

A: Improvement factors of the different schemes for prevalence rates below 5%. For prevalence rates 
below 3.5% scheme P16S3 is favorable, leading to an improvement factor of between 3-16-fold. Above 
3.5% scheme P9S3 becomes favorable, giving improvement factors of around 3-fold. Note that for very 
low prevalence rates the improvement factors of multi-level schemes converge towards the maximum 
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pool size, making schemes such as P10S1, P16S3 and P32S2 highly efficient. P32S2 is shown with a 
dashed line since its large maximum pool size may affect the reliability of the tests. For prevalence rates 
< 0.5% it rapidly converges towards an improvement factor of 32-fold. 

B: Improvement factors of the different schemes for prevalence rates between 5-30%. The data shows 
that for prevalence rates below 12% scheme P9S3 gives the largest improvement rate, whereas above 
12% scheme P3S2 becomes favorable. For prevalence rates of 30% and above all schemes considered 
here do not offer an advantage over individual testing. Schemes with a large maximum pool size (P10S2, 
P32S2, Matrix) offer lower improvement rates and are hence unfavorable in this regime. 
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