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Abstract 

At present, novel Coronavirus (2019-nCoV, the causative agent of COVID-19) has caused 

worldwide social and economic disruption. The disturbing statistics of this infection 

promoted us to develop an effective vaccine candidate against the COVID-19. In this study, 

bioinformatics approaches were employed to design and introduce a novel multi-epitope 

vaccine against 2019-nCoV that can potentially trigger both CD
4+

 and CD
8+ 

T-cell immune 

responses and investigated its biological activities by computational tools. Three known 

antigenic proteins (Nucleocapsid, ORF3a, and Membrane protein, hereafter called NOM) 

from the virus were selected and analyzed for prediction of the potential immunogenic B and 

T-cell epitopes and then validated using bioinformatics tools. Based on in silico analysis, we 
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have constructed a multi-epitope vaccine candidate (NOM) with five rich-epitopes domain 

including highly scored T and B-cell epitopes. After predicting and evaluating of the third 

structure of the protein candidate, the best 3D predicted model was applied for docking 

studies with Toll-like receptor 4 (TLR4) and HLA-A*11:01. In the next step, molecular 

dynamics (MD) simulation was used to evaluate the stability of the designed fusion protein 

with TLR4 and HLA-A*11:01 receptors. MD studies demonstrated that the NOM-TLR4 and 

NOM-HLA-A*11:01 docked models were stable during simulation time. In silico evaluation 

showed that the designed chimeric protein could simultaneously elicit humoral and cell-

mediated immune responses.  

Keywords: COVID-19; Coronavirus; Vaccine; Epitope; Immunoinformatics 

 

List of abbreviations: 

TLR4  Toll-like receptor4 

MD Molecular dynamics 

WHO World Health Organization 

SARS Severe Acute Respiratory Syndrome 

MERS Middle East Respiratory Syndrome 

ORF Open reading frame 

MHC Major histocompatibility complex 

CTL  Cytotoxic T-lymphocytes 

HTL  Helper T-lymphocytes 

RMSD  Root mean square deviation 

ns Nanoseconds 

 

1. Introduction 

Coronavirus disease COVID-19 outbreak began in late December 2019 in Wuhan, the capital 

of Hubei Province, China (Wang et al., 2020). Scientists from all over the world are 

attempting to investigate this novel virus, known as 2019-nCoV, which is highly contagious, 

and to discover effective interventions to control and prevent the disease (Heymann, 2020; 

Huang et al., 2020). Coronaviruses are positive-sense single-stranded RNA viruses (ssRNA
+
) 

belonging to the Coronaviridae family. Human Coronaviruses HCoV-229E, HCoV-NL63, 

HCoV-OC43, and HCoV-HKU1 are observed in almost one-third of the common cold (Lim 

et al., 2016). However, recently some cases of human coronavirus infections have led to fatal 

endemics, including SARS (Severe Acute Respiratory Syndrome), MERS (Middle East 

Respiratory Syndrome) and COVID-19 that are common diseases between humans and 

animals whose belong to the genus Betacoronavirus of the Coronaviridae family (Al-Tawfiq 
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et al., 2014). So far, the novel COVID-19 has caused more than 700,000 illnesses and more 

than 33,000 deaths worldwide (Organization, 2020). The genome size of this virus is about 

30 kb and encodes structural and non-structural proteins like other coronaviruses. Structural 

proteins include S protein (Spike), E protein (Envelope), M protein (Membrane), and N 

protein (Nucleocapsid) (Ahmed et al., 2020). The increasing rate of COVID-19 disease and 

the high morbidity necessitate the development of a specific and safe vaccine candidate as 

soon as possible. There is very little known actually about the pathogenesis of the virus; 

therefore, an immunoinformatics-based approach to investigate the immunogenic epitopes 

and vaccine design using data from proteins sequencing of the COVID-19 is required. 

N protein is the only structural protein that associates with replicase-transcriptase complexes 

and binds with genomic RNA in coronaviruses (Cong et al., 2017). This protein is 

multifunctional and one of the most crucial structural components of coronaviruses. N 

protein is a structural and antigenic protein that is involved in packaging, transcription, and 

replication coronaviruses (4). This data showed that N protein is a suitable candidate for 

targeting drug and vaccine design because this protein is conserved, antigenic and 

multifunctional (6). Leung and et al. concluded that N protein can be a suitable vaccine 

candidate against SARS-Cov because induce strong antibody and this process may trigger 

cytokine production (Leung et al., 2004). Coronaviruses M protein also has a key role in the 

assembly of virions. The SARS-CoV M protein can interact with N protein and make a 

network of interactions with the genomic RNA (He et al., 2004). Ong and et al. the COVID-

19 antigens such as S, N and M proteins introduced as a vaccine candidate (6). This protein 

has also been studied as an epitope vaccine candidate against SARS-CoV (7). 

Open reading frame 3a (ORF3a) is required for viral replication and virulence of SARS CoV. 

Severe induction of proinflammatory cytokine is a sign of SARS-CoV and MERS-CoV 

infections. ORF3a activates both pro-IL-1β gene expression and IL-1β secretion and leads to 

severe lung injury. (Siu et al., 2019). Also, ORF3a has an important role in SARS-CoV 

assembly or budding with the participation of M and E proteins (McBride and Fielding, 

2012). These proteins are not only involved in the pathogenesis of the COVID-19 virus but 

also have high antigenicity (Chan et al., 2020; Siu et al., 2019; Xu et al., 2020). In this study 

E, M, N, ORF10, ORF8, ORF3a and M proteins were evaluated by available bioinformatics 

tools for designing an efficient multi-epitope vaccine for the stimulation of immune responses 

against COVID-19 infection.  

Since the COVID-19 has been recently discovered, little immunological information is 

available. Preliminary studies based on phylogenetic analyses of the COVID-19 whole 
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genome have suggested that this virus is very similar to the SARS-CoV (79.7% Identify)(9, 

14). Given the apparent similarity between the two viruses, it could be concluded that 

previous studies on the protective immune responses against SARS-CoV may be useful for 

developing a vaccine for COVID-19. Previous studies have suggested that both humoral and 

cellular immunity play important roles in protective responses against this virus (Deming et 

al., 2007; Yang et al., 2004). Studies revealed that the formation of antibodies against the N 

protein of SARS-CoV, an immunogenic protein that is highly expressed during infection, is 

relatively common in patients infected with this virus (Liu et al., 2004; Ying et al., 2003). 

Although these antibodies are effective, they have a shorter lifespan in recovering the 

patients. In addition to the specific humoral immunity, it has been shown that the CD
4+

 and 

CD
8+

 responses provide long-lasting protection against COVID-19. These studies showed 

that besides antibody-mediated immune response, cellular immunity is critical to induce 

protectivity in these infections (Liu et al., 2017). The concept of a multi-epitope vaccine is to 

efficiently identify and assemble B and T-cell epitopes that are more capable of stimulating 

the immune system and therefore can induce more potent and effective both arms of immune 

responses. Peptides and epitopes have shown to be desirable candidates for vaccine 

development due to their relatively easy production, chemical stability, and lack of infectious 

potential (Patronov and Doytchinova, 2013). The experimental design and production of 

multi-epitope vaccines have improved dramatically in recent years. These vaccines are 

mainly made up of B-cell, CD
8+ 

cytolytic T-cell (CTLs) and CD
4+

 helper T-cells (HTLs) 

epitopes (Chiarella et al., 2009). Since the antigenic epitopes of a protein could be predicted 

and detected, therefore the whole protein is not suitable to stimulate an immune response 

(Testa and Philip, 2012; Zheng et al., 2017). During the development of a vaccine candidate 

against COVID-19, complex pathogenic mechanisms and numerous pathogenic factors 

should be considered in vaccine formulation. 

In the present study, we aimed to design a novel multi-epitope fusion protein (Nucleocapsid, 

ORF3a, and Membrane protein or NOM) containing more efficient antigenic epitopes-rich 

domains. The biological activity of the engineered fusion protein was assessed by 

bioinformatics tools using the interaction between the vaccine candidate and the innate 

immune system receptor (TLR4) and cellular immune system receptor (HLA-A*11:01). We 

strongly believe that the outcome of the present report will provide a potential vaccine 

candidate against 2019-nCoV. 

 

2. Materials and methods 
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In this study, we designed a suitable vaccine candidate against COVID-19, by exploiting the 

programs of reverse vaccinology (Fig. 1) 

 

2.1. Retrieval of protein sequences 

At first, the amino acid sequences of proteins were retrieved from the National Centre for 

Biotechnology Information (NCBI) at www.ncbi.nlm.nih.gov in FASTA format and 

performed for subsequent analysis (Table 1).  

 

2.2. Selection of antigenic proteins 

We selected six proteins of COVID-19 virus (Table 1) that have an essential role in virulence 

and replication of the virus, and previous studies have highlighted the necessity of these 

proteins in coronaviruses function. After the antigenic analysis of these proteins, three 

proteins of N, ORF3a, and M were selected for final analysis. 

2.3. Prediction of T-cell (HLA class I and II) epitopes 

1d sequence-based screening server RANKPEP was used to identify T-cell epitopes (Reche 

and Reinherz, 2007). This server predicts peptide binders to MHC molecules from protein 

sequences using the position-specific scoring matrix (PSSM). We have selected all HLA 

class I alleles from the selection panel of RANKPEP server for prediction of epitopes of HLA 

class I. To prediction of epitopes of HLA class II, we considered DRB1*0101, DRB1*0301, 

DRB1*0401, DRB1*0701, DRB1*0801, DRB1*1101, DRB1*1301, and DRB1*1501 that 

cover HLA variability of over 95% of the human population worldwide (Kruiswijk et al., 

2020).  

 

2.4. B-cell epitopes (linear) identification 

For the prediction of B-cell epitopes, the amino acid sequence was analyzed using BepiPred 

and Kolaskar & Tongaonkar Antigenicity (http://www.iedb.org/) servers (Ponomarenko et 

al., 2010). Bepipred for linear epitope prediction uses both hidden Markov model and amino 

acid propensity scales methods. Kolaskar and Tongaonkar evaluate the protein for B cell 

epitopes using the physicochemical properties of the amino acids and their frequencies of 

occurrence in recognized B cell epitopes (Kolaskar and Tongaonkar, 1990; Mirza et al., 

2016). 

 

2.5. Selection of epitope-rich domains and the final sequence 

Acc
ep

te
d 

M
an

us
cr

ipt

http://www.ncbi.nlm.nih.gov/
http://tools.iedb.org/bcell/help#Kolaskar-Tongaonkar
http://www.iedb.org/


6 
 

According to the prediction results of the servers used, B cell epitopes and HLA class I and II 

epitopes that have had high scores were extracted and combined to generate multi-epitope 

protein. B cell and T cell epitope-rich domains of N, ORF3a and M proteins were selected 

and joined to each other with an AAA linker.  

 

2.6. Antigenicity and allergenicity evaluation  

Antigenicity of designed recombinant protein predicted using the VaxiJen v2.0 server. The 

VaxiJen classified antigens based on auto cross-covariance (ACC) transformation of protein 

sequences into uniform vectors of principal amino acid properties which is a novel 

alignment-independent method and overcome the limitations of alignment-dependent 

sequence methods (Doytchinova and Flower, 2007). The prediction of vaccine candidate 

allergenicity is essential. The allergenicity of the designed protein was computed by 

AllerTOP (http://www.ddg-pharmfac.net/AllerTOP/). AllerTOP method predicts recombinant 

protein allergenicity on auto cross-covariance ACC that describe residue hydrophobicity, 

size, abundance, helix- and β-strand forming propensities (Dimitrov et al., 2013). AllerTOP 

v.2 has the highest accuracy (88.7 %) compared to several servers for allergen prediction 

(Dimitrov et al., 2013).  

 

2.7. The physicochemical parameters 

The analyzed parameters consisted of the molecular weight, theoretical pI, amino acid 

composition, atomic composition, extinction coefficient, estimated half-life, instability index, 

aliphatic index and grand average of hydropathicity that were evaluated by ProtParam online 

server (http://us.expasy.org/tools/ protparam.html) (Gasteiger et al., 2005). 

 

2.8. Secondary and tertiary structure prediction 

GOR was used for the designed protein secondary structure prediction (https://npsa-

prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html) (Kloczkowski et al., 

2002). GOR4 predict protein secondary structure using information theory. 

The tertiary structure was built using the Galaxy web. GalaxyWEB server 

(http://galaxy.seoklab.org/ tbm) is based on the TBM method. This server detects similar 

proteins and alignment with the target sequence, then make the model and finally perform 

model refinement (Shin et al., 2014).  

 

2.9. Tertiary structure refinement and validation 
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The best-modeled structure was refined using the Galaxy Refine server at 

(http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE). Galaxy refined the model by 

molecular dynamics simulation. This method showed one of the best performances in 

improving protein structure quality.  

Analysis of the final 3D model was made using Molprobity, ProSA and Ramachandran plot. 

Ramachandran plot obtained from RAMPAGE calculates torsional angles residue-by-residue 

in protein and indicates that residues are in allowed, favored or outlier regions (Oberholser, 

2010). ProSA web used to recognize the errors in the generated 3D models using atomic 

coordinates of the model. ProSA web was created Z-score (overall model quality) and a plot 

of residue energies of proteins (Wiederstein and Sippl, 2007). Clash analysis is very 

important for the validation of proteins. MolProbity is a structure-validation web service that 

calculates the clash score, Protein-geometry score, Poor rotamers, Ramachandran plot, and 

Molprobity score.  

 

2.10. Defining discontinuous B-cell epitopes of designed protein 

The interaction between antigen epitopes and antibodies is very essential to eliminate the 

infection. Conformational epitopes are the most important and the most prevalent epitopes 

that are recognized by antibodies. All conformational epitope prediction methods require the 

3D structures of proteins. Discontinuous epitopes of recombinant protein predicted using the 

ElliPro server. This web-based predicts discontinuous epitopes based on protein-antibody 

interactions. ElliPro server predicts conformational and linear B cell epitopes using 

Thornton's method and by MODELLER program or BLAST search of PDB predict and 

visualize of antibody epitopes (Ponomarenko et al., 2008).  

 

2.11. Obtaining and preparing the structures of immune receptors and NOM 

recombinant protein 

The crystallographic structures of TLR4 (PDB ID: 2Z62 (Kim et al., 2007)) and HLA-

A*11:01 (PDB ID: 5WJL (Culshaw et al., 2017)) were obtained from the PDB database 

(Berman et al., 2000). The structures were cleaned and crystallographic waters and co-

crystallized molecules were deleted and only the monomer forms of each receptor were kept. 

Then, the structures of the two receptors and the NOM protein were prepared by the Dock 

prep tool in UCSF Chimera software (Pettersen et al., 2004) where hydrogen atoms and 

charge were added to the structures to make them ready for the next step. In the next step, to 

stabilize and relax the structures in an aqueous physiological environment, each of the 
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monomer form of the receptors and the NOM protein were simulated for 100 ns. The details 

of the MD simulation will be explained later. 

 

2.12. Protein-Protein molecular docking and refinement 

After the MD simulation of each receptor and the NOM recombinant protein, the last frame 

of the trajectory of each simulation was extracted and used as the input structures for protein-

protein molecular docking. The PatchDock webserver (Schneidman-Duhovny et al., 2005) 

with default parameters was used to predict the best positions and orientations where the two 

proteins can have the highest number of favorable interactions. Afterward, the top 10 

solutions were subjected to Firedock webserver (Andrusier et al., 2007; Mashiach et al., 

2008) to refine the interaction of protein-protein complexes resulted from molecular docking. 

The top two complexes from Coronavirus NOM protein-TLR4 and NOM recombinant 

protein-HLA-A*11:01 complexes were chosen based on global energies. These four 

complexes were then taken to the next step, MD simulation.  

2.13. Molecular dynamics simulation 

After performing the protein-protein molecular docking and finding the best orientations of 

the vaccine candidate and the receptor proteins to interact with one another, the two best-

scored complexes were subjected to MD simulation. All of the MD simulations were done by 

GROMACS 2018 package (Abraham et al., 2015) and OPLS-AA force field (Jorgensen et 

al., 1996). The monomer form of each protein and also the docked complexes were placed in 

the center of a triclinic box with a distance of 1 nm from all edges and solvated with TIP3P 

water model (Jorgensen et al., 1983). Then, sodium and chloride ions were added to produce 

a neutral physiological salt concentration of 150 mM. Each system was energy minimized, 

using the steepest descent algorithm, until the Fmax was found to be smaller than 10 kJ.mol
-

1
nm

-1
. All of the covalent bonds were constrained using the Linear Constraint Solver 

(LINCS) algorithm (Hess et al., 1997) to maintain constant bond lengths. The long-range 

electrostatic interactions were treated using the Particle Mesh Ewald (PME) method (Darden 

et al., 1993; Essmann et al., 1995) and the cut off radii for Coulomb and Van der Waals short-

range interactions were set to 0.9 nm. Then 100 ps NVT (constant number of particles (N), 

volume (V), and temperature (T)) and 300 ps NPT (constant number of particles (N), pressure 

(P), and temperature (T)) equilibrations were performed for each system. After the necessary 

equilibrations, 100 ns of production run were performed for each of the four complexes. 

Finally, simulations were carried out under the periodic boundary conditions (PBC), set at 

XYZ coordinates to ensure that the atoms had stayed inside the simulation box, and the 
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subsequent analyses were then performed using GROMACS utilities, VMD (Humphrey et 

al., 1996) and USCF Chimera, and also the plots and the figures were created using Daniel’s 

XL Toolbox (v 7.3.2) add-in (Kraus, 2014) and EzMol (Reynolds et al., 2018). All of the 

computations were performed on an Ubuntu desktop PC, with a [Intel(R) Xeon(R) CPU E5-

2630 v3 + NVIDIA GeForce GTX 1080] configuration. 

 

2.14. MMPBSA binding free energy 

The binding free energies of the protein-protein complexes were calculated by Molecular 

Mechanics-Poisson–Boltzmann Solvent-Accessible surface area, MMPBSA method 

(Kollman et al., 2000) using g_mmpbsa package (Kumari et al., 2014). In this method, the 

binding free energy is the result of the free energy of the complex minus the sum of the free 

energies of the ligand and the protein. In our case, the NOM recombinant protein is defined 

as the ligand and the immune receptors are defined as the receptors. The MMPBSA 

calculation was done for every ns of each simulation trajectories. 

ΔGbind = ΔGcomplex – (ΔGligand + ΔGReceptor) 

 

3. Results and discussion  

3.1. Defining T-cell epitopes 

The results of several studies have shown that strong virus-specific T-cell response is 

required for the elimination of respiratory virus infections such as SARS-CoV and influenza 

A and para-influenza. These studies conclude that future vaccine interventions should also 

consider strategies to enhance T cell response to provide robust long-term memory 

(Channappanavar et al., 2014; Janice Oh et al., 2012). Studies have shown that high levels of 

T cell responses against N protein were found 2 years after the patient's recovery (Peng et al., 

2006). Antibodies are essential to combat SARS-CoV infection, and the body needs SARS-

CoV specific CD4
+
 T helper cells to produce these specific antibodies. Also, CD8

+
 cytotoxic 

T cells are important for recognizing and killing infected cells, especially in the lungs of 

infected individuals. We used the Rankpep server which covers almost all HLA supertypes to 

predicted different epitops from N, ORF3a and M proteins sequence according to HLA I and 

HLA II alleles. Antigenic epitopes with high binding affinity score were predicted that are 

summarized in table 2a-b.  

 

3.2. Defining linear B-cell epitopes 
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Successful vaccination against viruses such as measles and rubella reflects the importance of 

protective antibodies. Protection against virus infection such as Coronaviruses depends on 

the simulation of neutralizing antibodies in addition to the T cell-mediated immunity. While 

cytotoxic lymphocytes can kill infected cells, antibodies have the potential to eliminate 

infected cells and prevent the infectious virus from infecting a cell (neutralization). SARS-

CoV-specific Neutralizing antibodies block viral entry (Dörner and Radbruch, 2007; Hsueh et 

al., 2004). In this study, for the linear epitope prediction, the Bepipred server was 

employed. Bepipred analysis revealed several continuous predicted epitopes of N, ORF3a 

and M proteins. For cross-checking the predicted epitopes, the sequence of all three proteins 

was also predicted by Kolaskar & Tongaonkar Antigenicity. The linear B-cell epitopes are 

represented in Table3. Given that both cellular and humoral immune responses are essential 

against coronaviruses infection (Janice Oh et al., 2012), finally, epitopes that were shared 

between B cell and T-cell were selected. 

 

3.3. Selected targets for designing the final vaccine 

The main strategy in the present study was to design and construct a novel multi-epitope 

protein from COVID-19 based on in silico methods to elicit humoral and cellular immune 

responses. Due to the low immunogenicity of the epitope, we chose epitope-rich domains to 

generate a more diverse and robust response (Wieser et al., 2010). Based on in silico analysis, 

five epitope-rich domains including highly scored and shared epitopes between T and B-cell 

epitopes were selected and joined to each other with a three AAA linker (Table 4). The 

schematic diagram of designed vaccine domains with linker's sites has been shown in Figure 

2.  

 

3.4. Vaccine features 

3.4.1. Assessment of antigenicity and allergenicity 

Prediction of the vaccine candidate antigenicity represents a numerical criterion for the 

capability of the vaccine to bind to the B- and T-cell receptors and increase the immune 

response in the host cell. VaxiJen v2.0 was used to predict the antigenicity of the designed 

protein. VaxiJen analysis of NOM protein showed potent antigenicity 0.5999 with a 0.4% 

threshold. The results indicate that the designed protein sequences without adjuvant are 

antigenic.  
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Allergen proteins induce an IgE antibody response (Dimitrov et al., 2013). The designed 

vaccine candidate must not show an allergic reaction to the body. The allergenicity of the 

sequence was predicted using the Allertop tool. Based on prediction approaches in Allertop, 

this protein was not recognized as an allergen.  

 

3.4.2. The physicochemical parameters and protein secondary structure prediction 

Primary structure analysis NOM designed protein (337 aa) has a molecular weight of 

37513.57 D. The total number of positively charged residues (Arg+Lys) and negatively 

charged residues (Asp+Glu) were 19 and 32 respectively. The theoretical isoelectric point 

(PI) was calculated at 9.62. The instability index (< 40) indicates that the designed protein 

has high stability for the initiation of an immunogenic reaction. The instability index (II) was 

35.75 which classifies the protein as stable. The aliphatic index of NOM recombinant protein 

was calculated 97.92 and indicates this protein has stability in several temperatures. 

Natively unfolded protein regions and alpha-helix are important forms of structural antigens 

that can be arranged in their native structure and thus identified by antibodies that are 

produced in response to infection. (Shey et al., 2019). The composition of the predicted 

secondary structure of the NOM multi-epitope vaccine candidate was 43.92% (alpha helix), 

16.02% (extended strand), and 40.06% (random coil). All this information indicates the 

designed protein is suitable as a vaccine candidate. 

 

3.4.3. Tertiary structure prediction and validation 

Three-dimensional structure was modeled by GalaxyWEB for our designed protein (Fig. 3a). 

This model was used for evaluation and refinement. For validation of the model, ProSA-web, 

Ramachandran plot and Molprobity were used that compare and analyze the protein structure. 

The ProSA Web determined Z-score for the best predicted 3D model (Fig.3b). The Z-score of 

the NOM predicted model was -4.42, which is within the range of scores typically found for 

native proteins of similar size. The Ramachandran plot indicates that most of the residues are 

found in the favored and allowed regions (99.7%) and only 0.3% in the outlier region, this 

shows that the quality of the designed model is satisfactory. Phe 282, Asn311, Tyr228, 

Lys194, Asp223, Ser229, Ser4, His197, Tyr68 residues were observed in the outlier regions 

of Ramachandran plot. (Fig.3c). In MolPrabity analysis, the all-atom clash score was 9.37, 

the Molprabity score was 2.21. All structural images were created using PyMol (The PyMOL 

Molecular Graphics System, Version 1.1, Schrödinger, LLC).  
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3.4.4. Defining discontinuous B-cell epitopes 

Ellipro Server was used for predicting conformational B-cell epitopes from the 3D structure 

of NOM recombinant protein. Discontinuous B-cell epitopes were predicted with scores 

ranging from0.679 to 0.945. Amino acid residues, the number of residues, sequence location 

as well as their scores have been listed in Tables 5. The graphical representation of the 

discontinuous epitopes has been displayed in Figure 4. 

 

3.4.5. Establishing the stability of the initial structures 

A vaccine can interact with different receptors of the immune system. We have docked 

designed final constructs (NOM) with TLR4 and HLA-A*11:01 receptors. The interaction 

between these receptors and NOM recombinant protein induce different immune responses. 

To achieve a stable and relaxed state of the NOM recombinant protein and the immune 

receptors, a MD simulation of 100 ns was performed for each structure. These simulations 

ensure that the structures are stable enough to be used for protein-protein molecular docking. 

After 100 ns of the production run, as it is shown in figure 5, the RMSD (Root Mean Square 

Distance) values of the monomers show that the backbone structure of TLR4 (PDB ID: 2Z62) 

is very rigid and stable. The structure of the NOM recombinant protein also reached stability 

after about 25 ns after a considerable structural change. The backbone structure of the HLA-

A*11:01 (PDB ID: 5WJL), however, showed big spikes in the RMSD values but all three 

structures were visually inspected and were considered stable enough for the next step of the 

project.  

 

3.4.6. Protein-protein molecular docking 

To find the best orientation for optimal interaction of the NOM protein with the immune 

receptors we decided to use protein-protein molecular docking. We used PatchDock 

webserver which concentrates on recognizing and matching patterns of the surfaces of the 

proteins to put them in the best possible positions. Afterward, the top 10 best solutions were 

subjected to the Firedock webserver to refine the docked structures. The FireDock algorithms 

refine the docked complexes by side-chain rearrangement and soft rigid-body optimization. 

The ranking of the docked complexes is based on short-range, long-range, attractive and 

repulsive interaction energies between the residues of the two proteins, which are all summed 

up in the global energy or the binding energy of the complexes. We considered global energy 

as the main criterion for choosing the best complexes and chose the two top-scored solutions 
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with the best global energy. As it is shown in Table 6, the solution numbers 5 and 6 from the 

NOM-TLR4 complex and the solution numbers 2 and 3, from NOM-HLA-A*11:01 complex, 

were chosen for further calculations. The total energy plots of the simulations are shown in 

Fig. 6. The results showed a strong interaction between designed protein amino acids and 

receptors. The interactions between the binding receptors and the docked NOM protein were 

visualized using the UCSF Chimera program. Residues of HLA-A*1101(GLU
53

, ASN
174

, 

GLY
56

, ASN
174

, GLU
53

, PRO
57

) participated in the interaction with ARG
49

, SER
97

, GLN
91

, 

MET
102

, ARG
49

 and GLN
91

 residues of the candidate vaccine. Also, nine residues of TLR4 

(TLR4 LYS
123

, ILE
319

, THR
66

, SER
90

, LYS
124

, LYS
46

, HIS
85

, LYS
123

) participated in the 

interaction with SER
45

, GLU
199

, GLN
91

, ALA
84

, MET
328

, GLN
65

, SER
90

, GLU
68

 residues of 

the designed candidate vaccine.  

 

3.4.7. Molecular dynamics simulation of top scored solutions 

After the protein-protein molecular docking, 4 solutions were chosen for MD simulation, 

solution numbers 2 and 3 from NOM protein-HLA-A*11:01 complex and solution numbers 5 

and 6 from NOM protein-TLR4 complex. Each was simulated for 100 ns. To examine their 

stability throughout the simulations period, the RMSD values of each protein was analyzed. 

As it is shown in figure 7, each protein has different RMSD values and in some of them, the 

backbone atoms have considerable movements during the simulations. The reason is that the 

interactions can get optimized and rearranged by introducing water molecules and 

physiological conditions. The RMSD values of TLR4 in NOM protein-TLR4 complexes and 

the values of HLA-A*11:01 in NOM protein-HLA-A*11:01 complexes are very stable and 

the average values do not reach very high values. However, the RMSD values of the NOM 

protein in every complex reach high values which means that the structure of the vaccine has 

more movements to refine the interactions with the immune receptors. However, the 

interactions between the NOM recombinant protein and the immune receptors are quite 

strong and MMPBSA binding energy calculations exhibit great binding energies. As it is 

shown in table 7, the Van der Waals and electrostatic energies of the complexes are strong 

enough to keep the two proteins in contact with each other. Moreover, the deviation of each 

value is very small which means that the interactions are very stable and consistent 

throughout the simulations. In another word, the higher scale of RMSD values with 

consistent binding energies only show that the structure of the NOM protein is well optimized 

for interacting with the immune receptors.  
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In addition to the analysis described above, to analyze the fluctuations of the backbone atoms 

of structures of the proteins, we decided to perform RMSF (Root Mean Square Fluctuation) 

analysis. In this analysis, the average value of fluctuation of each residue during the 

simulation is plotted, figure 8. As it is shown in figure 8a, the RMSF values of NOM 

recombinant protein in five simulations indicate that the fluctuation of the monomer form of 

the vaccine in many regions is considerably more than the complex forms. This is a direct 

indication that the NOM recombinant protein is much more stable when it is in complex with 

the two immune receptors. Furthermore, the RMSF values of the NOM recombinant protein 

in complex with HLA-A*11:01 are lower compared with that of NOM recombinant protein 

in complex with TLR4. Also, with the evidence that the binding energies are also lower, we 

can conclude that NOM recombinant protein can bind to the HLA-A*11:01 better than the 

other immune receptor.  

In Figure 8b and Figure 8c, the RMSF values of the monomer forms of the immune receptors 

show lower values compared to the complex forms. This behavior is exactly the opposite of 

the NOM designed protein. This can be an indication that the structures are very stable in 

their natural function and their structures considerably change when they get into contact 

with the designed NOM protein. Furthermore, the structural illustration of the monomer 

forms and also the complex forms of the vaccine and the immune receptors, Figure 9, shows 

that the vaccine can fill the cavities and bind tightly to them, as it was proved by the binding 

energies.  

 

4. Conclusion 

COVID-19 pandemic is much more than a health crisis. It leads to a political, social and 

economic crisis in the world. The development of a safe and effective vaccine could reduce 

the rate of this infection. Immunoinformatics methods are valuable in reducing time and cost 

in vaccine design and other fields of life sciences. We have predicted and validated NOM 

recombinant protein against HLA-A*11:01 and TLR4 receptors. Our evaluation was based on 

vaccine candidate structural analysis and molecular docking and MD simulations study. The 

NOM-TLR4 and NOM-HLA-A*11:01 complexes were very stable in their natural function 

with strong molecular interactions in around 100 ns. Higher binding energy even after the 

MD simulation of 100ns confirmed the stability and specificity NOM-TLR4 and NOM- 

HLA-A*11:01 interaction. Our vaccine candidate can stimulate both cellular and humoral 
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immunity, given that B and T-cell epitopes have been selected in the final construct. Taken 

all together, according to physicochemical evaluations as well as structural and 

immunological analyses, NOM recombinant protein could be considered as a possible 

vaccine candidate against COVID-19. 
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Fig. 1. Strategies employed in the overall study 
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Fig. 2. The schematic diagram of the vaccine candidate construct consists of N, ORF3a and M 

proteins epitopes of the COVID-19 linked together with AAA linkers. 
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Fig. 3. (a-c) Prediction and validation of tertiary structure of the NOM recombinant protein using (a) 

Prediction of the tertiary structure of the NOM recombinant protein, (b) ProSA web, (c) 

Ramachandran plot. 
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Fig. 4. Three-dimensional representation of discontinuous epitopes of the NOM designed protein. The 

epitopes are represented by a yellow surface, and the bulk of the polyprotein is represented in grey 

sticks. 
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Fig. 5. The RMSD values of the simulated monomer forms of the proteins throughput the 100 ns of 

production runs. 
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Fig. 6. The total energy plots of the simulations 

  

Acc
ep

te
d 

M
an

us
cr

ipt



26 
 

 

Figure 7. 
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Fig. 8. The RMSF values of each protein in the simulated complexes compared to the simulated 

monomer forms of the proteins throughout the 100 ns of production runs. a, The comparison of the 

RMSF values of NOM recombinant protein in the complexes with the monomer form. b, The 

comparison of the RMSF values of HLA-A*11:01 in the complexes with the simulated monomer 

form. c, The comparison of the RMSF values of TLR4 in the complexes with the simulated monomer 

form. 
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Fig. 9. The graphical illustration of the monomer forms and the complex forms of the NOM 

recombinant protein and the HLA-A*11:01 and TLR4 immune receptors. 
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Table 1: Amino acid sequences of proteins were retrieved from NCBI. 

Name protein Accession 

number 

FASTA 

Nucleocapsid protein 

[Severe acute respiratory 

syndrome coronavirus 2] 

 

QIC53221.1 >QIC53221.1 nucleocapsid protein [Severe acute respiratory syndrome coronavirus 2] 

MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTALTQHGKEDL

KFPRGQGVPINTNSSPDDQIGYYRRATRRIRGGDGKMKDLSPRYFYYLGTGPEAGLPYGANKDGII

WVATEGALNTPKDHIGTRNPANNAAIVLQLPQGTTLPKGFYAEGSRGGSQASSRSSSRSRNSSRNS

TPGSSRGTSPARMAGNGGDAALALLLLDRLNQLESKMSGKGQQQQGQTVTKKSAAEASKKPRQ

KRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEV

TPSGTWLTYTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKADETQALPQRQKKQ

QTVTLLPAADLDDFSKQLQQSMSSADSTQA 

Membrane protein  

[Severe acute respiratory 

syndrome coronavirus 2] 

QIC53216.1 >QIC53216.1 membrane protein [Severe acute respiratory syndrome coronavirus 2] 

MADSNGTITVEELKKLLEQWNLVIGFLFLTWICLLQFAYANRNRFLYIIKLIFLWLLWPVTLACFV

LAAVYRINWITGGIAIAMACLVGLMWLSYFIASFRLFARTRSMWSFNPETNILLNVPLHGTILTRPL

LESELVIGAVILRGHLRIAGHHLGRCDIKDLPKEITVATSRTLSYYKLGASQRVAGDSGFAAYSRY

RIGNYKLNTDHSSSSDNIALLV 

ORF10 protein 

 [Severe acute respiratory 

syndrome coronavirus 2] 

QIC53212.1 >QIC53212.1 ORF10 protein [Severe acute respiratory syndrome coronavirus 2] 

MGYINVFAFPFTIYSLLLCRMNSRNYIAQVDVVNFNLT 

 

Envelope protein  

[Severe acute respiratory 

syndrome coronavirus 2] 

QIC53206.1 >QIC53206.1 envelope protein [Severe acute respiratory syndrome coronavirus 2] 

MYSFVSEETGTLIVNSVLLFLAFVVFLLVTLAILTALRLCAYCCNIVNVSLVKPSFYVYSRVKNLNS

SRVPDLLV 

ORF8 protein 

 [Severe acute respiratory 

syndrome coronavirus 2] 

QIC53210.1 >QIC53210.1 ORF8 protein [Severe acute respiratory syndrome coronavirus 2] 

MKFLVFLGIITTVAAFHQECSLQSCTQHQPYVVDDPCPIHFYSKWYIRVGARKSAPLIELCVDEAG

SKSPIQYIDIGNYTVSCLPFTINCQEPKLGSLVVRCSFYEDFLEYHDVRVVLDFI 

ORF3a protein  

[Severe acute respiratory 

syndrome coronavirus 2] 

QIC53205.1 >QIC53205.1 ORF3a protein [Severe acute respiratory syndrome coronavirus 2] 

MDLFMRIFTIGTVTLKQGEIKDATPSDFVRATATIPIQASLPFGWLIVGVALLAVFQSASKIITLKKR

WQLALSKGVHFVCNLLLLFVTVYSHLLLVAAGLEAPFLYLYALVYFLQSINFVRIIMRLWLCWKC

RSKNPLLYDANYFLCWHTNCYDYCIPYNSVTSSIVITSGDGTTSPISEHDYQIGGYTEKWESGVKD

CVVLHSYFTSDYYQLYSTQLSTDTGVEHVTFFIYNKIVDEPEEHVQIHTIDVSSGVVNPVMEPIYDE

PTTTTSVPL 
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Table 2a: HLA I antigenic epitopes predicted using Rankpep. 

Antigen HLA_A0201 HLA_A0204 HLA_A0206 HLA_B0702 HLA_B51 HLA_B5401 HLA_B5301 

Nucleocapsid 

protein 

316-324 

GMSRIGMEV 

299-307 

KHWPQIAQF 

 66-74 

FPRGQGVPI 

343-351 

DPNFKDQVI 

45-53 

LPNNTASWF 

66-74 

FPRGQGVPI 

66-74 

FPRGQGVPI 

45-53 

LPNNTASWF 

ORF3a 39-47 

ASLPFGWLIV 

46-55 

LIVGVALLAV 

64-73 

TLKKRWQLAL 

79-87 

FVCNLLLLFV 

39-47 

ASLPFGWLI 

72-80 

ALSKGVHFV 

220-228 

STDTGVEHV 

45-53 

WLIVGVALL 

72-80 

ALSKGVHFV 

82-90 

NLLLLFVTV 

35-43 

IPIQASLPF 

 

41-49 

LPFGWLIVG 

35-43 

IPIQASLPF 

 

 

 

Membrane 

protein 

16-24 

LLEQWNLVI 

15-23 

KLLEQWNLV 

65-73 

FVLAAVYRI 

56-64 

LLWPVTLAC 

96-104 

FIASFRLFA 

21-29 

NLVIGFLFL 

65-73 

FVLAAVYRI 

89-97 

GLMWLSYFI 

96-104 

FIASFRLFA 

58-66 

WPVTLACFV 

58-66 

WPVTLACFV 

58-66 

WPVTLACFV 
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Table 2b: HLA II antigenic epitopes predicted using Rankpep. 

Antigen HLADRB1010

1 

HLADRB1040

1 

HLADRB1040

2 

HLADRB1040

2 

HLADRB1070

1 

HLADRB1080

1 

HLADRB1110

1 

HLADRB1150

1 

Nucleocapsid 

protein 

298-305 

YKHWPQIAQ 

354-362 

NKHIDAYKT 

86-94 

YYRRATRRI 

305-313 

AQFAPSASA 

52-60 

WFTALTQHG 

52-60 

WFTALTQHG 

86-94 

YYRRATRRI 

300-308 

HWPQIAQFA 

49-57 

TASWFTALT 

 

  346-354 

FKDQVILLN 

300-308 

HWPQIAQFA 

41-49 

RPQGLPNNT 

348-356 

DQVILLNKH 

87-95 

YRRATRRIR 

86-94 

YYRRATRRI 

34-42 

GARSKQRRP 

298-306 

YKHWPQIAQ 

301-309 

WPQIAQFAP 

50-58 

ASWFTALTQ 

360-368 

YKTFPPTEP 

 

ORF3a 211-219 

YYQLYSTQL 

212-220 

YQLYSTQLS 

65-73 

LKKRWQLAL 

211-219 

YYQLYSTQL 

45-53 

WLIVGVALL 

45-53 

WLIVGVALL 

211-219 

YYQLYSTQL 

62-70 

IITLKKRWQ 

85-93 

LLFVTVYSH 

59-67 

ASKIITLKK 

87-95 

FVTVYSHLL 

54-62 

AVFQSASKI 

 62-70 

IITLKKRWQ 

68-76 

RWQLALSKG 

 

77-85 

VHFVCNLLL 

84-92 

LLLFVTVYS 

Membrane 

protein 

32-40 

ICLLQFAYA 

65-73 

FVLAAVYRI 

76-84 

ITGGIAIAM 

80-88 

IAIAMACLV 

28-36 

FLTWICLLQ 

55-63 

WLLWPVTLA 

65-73 

FVLAAVYRI 

71-79 

YRINWITGG 

28-36 

FLTWICLLQ 

49-57 

IKLIFLWLL 

 

37-45 

FAYANRNRF 

 65-73 

FVLAAVYRI 

48-56 

IIKLIFLWL 

 

44-52 

RFLYIIKLI 

55-63 

WLLWPVTLA 

58-66 

WPVTLACFV 

31-39 

WICLLQFAY 

39-47 

YANRNRFLY 

90-98 

LMWLSYFIA 
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Table 3: Predicted epitopes of N, ORF3a and M proteins via Bepipred and Kolaskar & 

Tongaonkar antigenicity. 

Antigen Server Amino acid 

Position 

Sequence 

Nucleocapsid protein 

(QIC53221.1) 

Bepipred 1-51 MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTAS 

58-85 QHGKEDLKFPRGQGVPINTNSSPDDQIG 

93-104 RIRGGDGKMKDL 

306-310 QFAPS 

323-321 EVTPSGTWL 

338-347 KLDDKDPNFK 

361-390 KTFPPTEPKKDKKKKADETQALPQRQKKQQ 

 Kolaskar & 

Tongaonkar 

 

52-59 WFTALTQH 

69-75 GQGVPIN 

83-89 QIGYYRR 

299-315 KHWPQIAQFAPSASAFF 

333-339 YTGAIKL 

347-363 KDQVILLNKHIDAYKTF 

ORF3a 

(QIC53205.1) 

 

Bepipred 17-28 QGEIKDATPSDF 

61-71 KIITLKKRWQL 

213-214 QL 

216-225 STQLSTDTGV 

 Kolaskar & 

Tongaonkar 

 

44-58 GWLIVGVALLAVFQS 

74-100 SKGVHFVCNLLLLFVTVYSHLLLVAAG 

212-217 YQLYST 

Membrane protein 

(QIC53207.1) 

 

Bepipred 5-20 NGTITVEELKKLLEQW 

40-41 AN 

132-137 PLLESE 

180-191 KLGASQRVAGDS 

 Kolaskar & 

Tongaonkar 

 

29-38 LTWICLLQFA 

46-71 LYIIKLIFLWLLWPVTLACFVLAAVY 

83-91 AMACLVGLM 

93-101 LSYFIASFR 
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Table 5: Conformational B-cell epitopes from vaccine protein using Ellipro server 

No. Residues Number 

of 

residues 

Score 

1 A:P1, A:S2, A:D3, A:S4, A:T5, A:G6, A:S7, A:N8, A:Q9, A:N10, A:G11, A:E12, A:S14, A:G15, A:A16, A:R17, 

A:S18, A:K19, A:Q20, A:R21, A:R22 

21 0.945 

2 A:K123, A:L124, A:D125, A:D126, A:K127, A:D128, A:P129, A:N130, A:F131, A:K132, A:D133, A:Q134, 

A:V135, A:I136 

14 0.819 

3 A:P23, A:Q24, A:G25, A:L26, A:P27, A:N28, A:N29, A:T30, A:A31, A:S32, A:W33, A:F34, A:T35, A:A36, 

A:L37, A:T38, A:Q39, A:H40, A:G41, A:K42, A:E43, A:D44, A:L45 

23 0.779 

4 A:I181, A:I182, A:T183, A:L184, A:K185, A:K186, A:R187, A:W188, A:Q189, A:L190, A:A191, A:L192, 

A:S193, A:K194, A:G195, A:V196, A:H197, A:F198, A:V199, A:C200, A:N201, A:L203, A:F244, A:I245, 

A:Y246, A:N247, A:K248, A:I249, A:V250, A:D251, A:E252, A:P253, A:A254, A:A255, A:A256, A:W257, 

A:N258, A:L259, A:V260, A:I261, A:G262, A:F263, A:L264, A:F265, A:L266, A:T267, A:W268, A:I269, 

A:C270, A:L271, A:L272, A:Q273, A:F274, A:A275, A:Y276, A:A277, A:N278, A:R279, A:N280, A:R281, 

A:F282, A:L283, A:I285, A:I286, A:I289, A:L304, A:A305, A:A306, A:Y308, A:R309, A:I310, A:N311, 

A:W312, A:I313, A:T314, A:G315, A:G316, A:I317, A:I319 

79 0.679 
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Table 6. The rankings of the solution of the complexes of NOM protein and the immune 

receptors sorted by global energy (kJ/mol).  

Complex No of Solution glob energy aVdW rVdW aElec rElec laElec lrElec 

CoVir NOM-TLR4  6 -70.72 -35.8 15.25 -59.29 32.2 -9.04 7.84 

CoVir NOM-TLR4  5 -36.56 -38.35 23.35 -35.83 0 -8.39 8.75 

CoVir NOM-TLR4  7 -36.39 -24.48 25.24 0 0 0 0 

CoVir NOM-TLR4  9 -36.21 -35.91 16.81 -16.15 12.49 -16.07 8.56 

CoVir NOM-TLR4  4 -34.54 -20.58 9.45 -11.25 0 -5.55 0 

CoVir NOM-TLR4  3 -21.92 -34.54 8.21 -25.98 58.08 -29.15 12.41 

CoVir NOM-TLR4  2 -19.49 -23.45 11.3 -82.71 81.52 -17.3 0 

CoVir NOM-TLR4  8 -18.15 -17.09 6.82 0 0 0 0 

CoVir NOM-TLR4  10 -6.55 -17.77 6.58 -7.49 5.9 -8.21 7.88 

CoVir NOM-TLR4  1 26.74 -3.48 49.43 0 0 -2.35 3.58 

CoVir NOM-HLA-A*11:01  2 -26.26 -30.64 19.51 -26.6 52.43 -24.6 8.53 

CoVir NOM-HLA-A*11:01  3 -21.9 -19.09 7.4 -47.3 14.42 -39.27 20.53 

CoVir NOM-HLA-A*11:01  1 -5.38 -5.26 0.43 0 0 -5.89 3.65 

CoVir NOM-HLA-A*11:01  8 -0.97 -8.76 3.27 0 0 0 0 

CoVir NOM-HLA-A*11:01  5 0.15 -25.97 7.15 -37.47 90.84 -26.96 28.97 

CoVir NOM-HLA-A*11:01  6 1.52 -0.8 0.61 0 0 0 0 

CoVir NOM-HLA-A*11:01  9 1.74 -28.7 15.11 -90.47 136.21 -32.16 26.54 

CoVir NOM-HLA-A*11:01  4 10.29 -10.6 22.49 -40.45 11.12 -24.32 24.47 

CoVir NOM-HLA-A*11:01  7 18.39 -21.1 10.69 -35.18 99.31 -30.65 40.48 

CoVir NOM-HLA-A*11:01  10 1498.09 -34.31 2561.4 -73.6 10.46 -7.59 18.87 
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Table 7. The Van der Waals, Electrostatic, Polar solvation, SASA and Binding Energy of 

protein complexes, kJ/mol, calculated by MMPBSA method.  

Complex Van der Waals Electrostatic Polar solvation SASA Binding Energy 

CoVir NOM-HLA-

A*11:01, sol no 2 

-556 +/- 8 -2991.1 +/- 28.5 1354.4 +/- 20.5 -79.46 +/- 1.2 -2267.7 +/- 6.5 

CoVir NOM-HLA-

A*11:01, sol no 3 

-381.9 +/- 8.7 -2705.2 +/- 11.5 729.4 +/- 10.9 -57.1 +/- 1 -2423.3 +/- 24.9 

CoVir NOM-TLR4, 

sol no 5 

-503 +/- 5.7 -1598.9 +/- 10.8 1202 +/- 6.1 -75.4 +/- 0.3 -978.4 +/- 7.6 

CoVir NOM-TLR4, 

sol no 6 

-407.6 +/- 5.9 -1406.8 +/- 23.4  1009.3 +/- 12.3 -64.8 +/- 0.6 -865.7 +/- 10.6 

 

Acc
ep

te
d 

M
an

us
cr

ipt


