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Szymańskic,a

aMOCOS International research group, mocos.international@gmail.com
bWroc law Medical University, Department of Anesthesiology and Intensive Therapy,

Poland
cWroc law University of Science and Technology,Poland

dTechnische Universität Kaiserslautern, Technomathematics group, Kaiserslautern,
Germany

eTrier University, Germany
fUniversity of Koblenz, Germany
gUniversity of Wroc law, Poland
hUniversity of Warsaw, Poland

Abstract

On the basis of a semi-realistic SIR microsimulation for Germany and Poland,
we show that the R0 parameter interval for which the COVID-19 epidemic
stays overcritical but below the capacity limit of the health care system to
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reach herd immunity is so narrow that a successful implementation of this
strategy is likely to fail, which is in contrast to results obtained from classical
differential equation models. Our microsimulation is based on official census
data and involves household composition and age distribution as the main
population structure variables. Outside household contacts are characterised
by an out-reproduction number R∗ which is the only free parameter of the
model. For a subcritical domain we compute the time till extinction and
prevalence as a function of the initial number of infected individuals and
R∗. For the Polish city of Wroc law we also discuss the combined impact of
testing coverage and contact reduction. For both countries we estimate R∗

for disease progression until 20th of March 2020.

Keywords: Microsimulation; SIR epidemics; Covid-19; Reproduction
number; Mitigation strategy

1. Introduction

Mitigation of a novel infectious disease with the aim to reach herd immu-
nity is a classical textbook concept in epidemiology and has been successfully
applied in the past, foremost in the case of novel influenza strains1–3. The
idea is simple: in the absence of a vaccination for a novel infectious disease
one tries to flatten the incidence curve to such an extent that the daily num-
ber of cases that require medical assistance is kept below the capacity of the
health care system. The long term goals are to obtain a sufficiently large
fraction of the population that has become infected and to reach herd im-
munity which would lead to a less severe or even subcritical second outbreak
wave. On the other hand, an extinction strategy would aim at introducing
sufficient contact reductions to keep the epidemic subcritical and not lifting
these restrictions until the disease becomes extinct.

COVID-19 is a novel disease which most likely emerged from a zoonotic
event in China at the end of 20194. In the meantime, it has affected more
than 170 countries and surpassed 400 000 cases worldwide. The disease is
highly infectious and spreads through droplets, similar to influenza. The
case fatality rate seems to depend heavily on the quality of treatment and
is currently (at the time of writing) estimated to be between 1.4 and 5 per-
cent5. Of particular concern is the large number of patients requiring either
breathing assistance or treatment in an intensive care unit (ICU)6. Different
countries have implemented different defense strategies which are constantly
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being updated and adapted to the actual prevalence. The decisions mainly
are based on SIR or SEIR models and focusing at the reproduction number
R0. For example at http://covidsim.eu/ changing the parameters for Ger-
many, the R0 can vary more or less between 1 and 1.4 to remain overcritical,
but not exhausting the health care system. However, these models do not
include one of the most important infection paths, which are the households.
A comparison of such a SEIR model and our microsimulation can be found
in the Appendix C in Figure C.14.

In this article, we study the likelihood of success of such strategies, based
on a semi-realistic microsimulation model for the spread of COVID-19 includ-
ing household structures. Simulations with census based household compo-
sitions and age distribution were carried out for Germany and Poland and
for two representative major cities, Berlin and Wroc law. Microsimulations
are considered an appropriate tool to describe complex structures of infec-
tion paths and disease progression and have been performed in the past for
influenza7 and recently also for Covid-198. Our model summarises the net
effect of all secondary infections caused by an infected individual outside its
own household into an out-reproduction number R∗ which is the only free pa-
rameter in our model. We assume that the interactions within the household
are hardly affected by social distancing strategies. Thus, the R∗ parameter
best reflects the strength of non-pharmaceutical interventions. The stronger
the interventions, the lower the R∗. The mitigation strategy, however, needs
to allow R∗ to be high enough to enable the population to reach herd im-
munity. We show that the margin of R∗ for which successful mitigation into
an overcritical but not ICU capacity-threatening epidemic can be achieved is
extremely narrow, implying that this strategy is likely to fail. Moreover, we
quantify the average extent to which social contacts have to be reduced in
the population to achieve reasonable times for disease extinction. We present
estimates in the case of subcritical epidemics for time till extinction as a func-
tion of R∗ and the initial number of infected individuals. The time till extinc-
tion has direct economic implications and depends strongly on R∗, showing
the critical importance of introducing strong social distancing measures. For
Germany, at least an 80% reduction of social contacts outside households is
required for the epidemic to become subcritical, and with this reduction, the
time to disease extinction amounts to more than a year. An extinction time
shorter than a year is only possible with a reduction of social contacts by more
than 95 %. For the city of Wroc law we additionally discuss the combined
effect of testing coverage and social contact reduction. High testing rates -
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defined here as the rate of uncovering mild cases - and household quarantine
of positive cases allow for less stringent contact reduction but are on their
own not sufficient to guarantee a subcritical progression of the epidemic. Fi-
nally, we estimate R∗ for the present situation in both countries under the
assumption that no further spread-preventing actions are taken. Comparing
the ratio of the present R∗ value with the value at which the epidemic be-
comes subcritical is a good indicator for the strengths of non-pharmaceutical
interventions for a successful extinction strategy. For end-prevalence in the
overcritical parameter domain we were able to derive theoretical predictions
which match very well with the simulation results. The theoretical results
show the strong impact which differences in the household size distribution
have on the prevalence and demonstrate complementary to the numerical
results how sensitive the prevalence depends on R∗ (see Appendix C).

2. Model description

We use an individual based SIR model to describe the spread of COVID-
19. Compared to classical ODE models of epidemic spread, microsimulations
have the advantage of a better representation of epidemiologically relevant
heterogeneity in the population. In addition, the description of the individual
disease progression can be used to study the impact of complex countermea-
sures such as extensive backtracking, testing and quarantine. The model is
a non-Markov stochastic process in continuous time based on the infection
probability of susceptibles in contact with infected individuals. The contact
structure outside of households is represented as an inhomogeneous directed
random graph where each node corresponds to an infected individual and
the degree of that node corresponds to the number of secondary infections
created by that individual. The degree itself depends on how long the indi-
vidual stays infectious (infectivity time).
Population structure: Our sample population is based on the census data
on the census data (2011) as well as more recent official statistics (2019)
from Poland17–19 and a synthetic reproduction of the microcensus in Ger-
many (2014)9(see Appendix A) and involves age and household composition.
For the relative frequencies of the household sizes see Supplement A. Sam-
ple populations were used to represent two major cities with typical urban
household structures: Wroc law and Berlin. Since we focus on a conceptual
question, more detailed structures like spatial assignment, gender, profession
or comorbidity relevant health status are omitted.
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Disease progression within patients: The Covid-19 progression within
patients is modelled according to the present medical knowledge. The incuba-
tion time is assumed to follow a lognormal distribution with median 3.92 and
variance 5.516 [lognormal parameters: shape=0.497, loc=0.0, scale=3.923].
The age dependence of the probability to be hospitalised or to have severe
progression or to have critical progression with requirement for ICU treat-
ment is given in Table 1.

Symptoms Age groups
0-40 40-50 50-60 60-70 70-80 80+

Asymptomatic 0.006 0.006 0.006 0.006 0.005 0.004
Mild 0.845 0.842 0.826 0.787 0.710 0.592

Severe 0.144 0.144 0.141 0.134 0.121 0.101
Critical 0.004 0.008 0.027 0.073 0.163 0.302

Table 1: Age dependence of the probability to develop a certain level of symptoms. The
probability for death was assumed to be 49% within the critical patients.

The time till hospitalisation from the onset of symptoms is assumed to be
Gamma distributed with median 2.31 and variance 8.365 [gamma parameters:
shape=1.177, loc=0.0, scale=2.666]10 Patients with non severe progression
eventually stay at home and the time from onset of symptoms till staying
at home is also assumed to be Gamma distributed with median 1.67 and
variance 7.424 [gamma parameters: shape=0.874, loc=0.0, scale=2.915]11.
The maximal duration of the infectious period is assumed to be 14 days12.
Contact structure and infection transport: Within the households we
assume a clique contact structure. Empirical studies have shown that a large
fraction of secondary infections are taking place within households13. We
hence assumed that the probability of a household member to become in-
fected by an already infected household member, who is infectious within
a time interval of length T , scales as 1 − exp(−T/L), where L + 1 is the
household size. Here, the time T is measured in days. Outside of the house-
holds we assume that infected individuals create on average c · T secondary
infections, given that all contacts of these individuals are susceptible, where
c is an intrinsic parameter. Note the time T being infectious is different for
contacts inside and outside the household. The out-reproduction number
R∗ is defined as the expectation of c · T , which is equal to 2.34c under our
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assumptions of disease progression within patients. The actual number of
secondary infections of an individual outside the household is assumed to be
Poisson distributed with mean (c · T ). The total reproduction number R0 is
given by the sum of R∗ and the number of secondary infections generated in-
side the household. The duration of the infectivity time T implicitly depends
on age. This is due to the fact that infectivity time is reduced for individuals
with severe disease progression, as those patients become hospitalized. Se-
vere progression is in turn more probable for older infected individuals. The
outside household contact structure was intentionally chosen to be simple
in order to have only one relevant and easily interpretable parameter in the
model. We do not consider super-spreading events that could enhance the
progression of the epidemic. Such events might have a strong impact at the
beginning of an epidemic outbreak but, as the number of cases increases, the
mean number of secondary infections R will dominate the evolution.
Testing and quarantine: For Wroc law we included additional model fea-
tures to study the effect of testing followed by household quarantine in case
the testing was positive. We assume that individuals with severe symptoms
will always be detected and individuals with mild symptoms will be detected
with probability q two days after the onset of symptoms. A detection is fol-
lowed up by quarantine of the corresponding household with the effect that
all out-household contacts by members of those households are stopped. The
parameter q can be interpreted as the likelihood that a person with charac-
teristic mild symptoms will be tested for COVID-19. We did not consider the
effect of backtracking in this article since it is a prevention strategy mainly
applied during the early and final phases of the epidemic.

3. Results and discussion

Table 2 shows the intervals of Rmin ≤ R∗ ≤ Rmax which contain the inte-
val in which a successful overcritical mitigation is possible for both countries
and towns. In other words Rmax and Rmin are upper and lower bounds for a
successful mitigation. A detailed description about how to obtain the values
in Table 2 can be found in the Appendix A.

Here, successful means that even at the peak of the outbreak the epidemic
stays below the capacity threshold of intensive care units. Our capacity
thresholds for Germany and Poland are based on public statistical sources14,15

and on the very moderate assumption that only 80% of the existing ICU
places are occupied16. The upper bound for R∗ of those intervals is denoted
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Intervals of R∗

obtained for the
Observed Intervals of R∗ quarantine scenario

data (detecting 50% of mild cases
and 100% of severe/critical)

Entity Predicted R∗ Rmin Rmax Rmin Rmax

Poland 3.16 0.26 0.37 — —
Germany 3.04 0.37 0.42 — —
Wroc law — 0.35 0.42 0.84 0.96

+2.9 %/day +3.4%/day
Berlin 3.88 0.44 0.46 0.94 >1.4

Table 2: Intervals of Rmin ≤ R∗ ≤ Rmax for a possible successful overcritical mitigation.

by Rmax. This value is transferred into an average per day growth rate of
prevalence, as it is reported by most health offices in their daily situation
reports. An average per day growth rate was calculated from the first 50
days of the epidemic. We defined Rmax as the smallest R∗ value for which
10 sample paths surpassed the ICU threshold within D days. For cities D
was chosen to be 200 days and for countries 700 days. The critical value
Rmin was defined as the largest R∗ < Rmax for which the daily incidence at
day 200 was below 50% of the initial number No of infected (No = 100 for
Wroc law, No = 1000 for Berlin, No = 1000 for Poland and No = 15000 for
Germany). As can be seen from the values in Table 2, all intervals for a
successful mitigation are small, which is below 0.11 in units of R∗.

Timelines for the epidemic at the Rmax value are given in Figure 1. Dif-
ferences in the values of Rmax, Rmin and the actual value of R∗ between the
two countries and cities are due to differences in the household structures and
different capacity thresholds. We also provide the size of the interval for a
successful mitigation for a scenario where households with infected members
are quarantined with a 50% chance (for details see section model description).
This alternative scenario was only studied for Berlin and Wroc law. Although
the location of the critical intervals is slightly different in the alternative sce-
narios, we observe that the size of critical intervals is only marginally affected
(see Table 2).

The present values of R∗ were fitted according to the disease progression
till 20th March 2020 in Germany and Poland and summarized in Table 2. In
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Figure 1: Timeline of the relevant observables for the uncontrolled epidemics: an example
outcome of the epidemic in Wroc law growing at R∗ currently observed for Poland starting
from 100 infected agents; We run a simulation on a randomly sampled population of 636
thousands of agents that fits the demographics (including. age and household structure)
of Wroc law. The left column presents daily incidents: new infections and hospitalization
events. The right column shows a plot with the timeline of the epidemic. More than 95%
of the population is predicted to be infected within a 3 months time frame starting from
the first 100 infected agents.

Figure 1 we show the timeline of the relevant observables for the uncontrolled
epidemics. For selected values of R∗ in the overcritical domain the end-
prevalence of the epidemics for Wroc law are displayed in Figure 2 and Figure
3. We compare them with theoretical predictions from random graph and
branching process theory (see mathematical supplement in Appendix C for
further details). For values of R∗ within the critical interval Figure 3 shows
the level of herd immunity achievable by a successful mitigation.

A heat map for the time till extinction and prevalence in the subcritical
domain is given in Figure 4 (detailed numerical values are given in Appendix
B). The time till extinction was defined as the first day when no active cases
were present. This time is about 1-2 months longer than the time when no
new infections appear due to cases with a very long lasting recovery. The
extinction times vary strongly in R∗ but only weakly in the initial number
of cases. In addition from Figure 4b the dependence of the final prevalence
on those two parameters can be obtained.
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Figure 2: Prevalence as a fraction of
whole population in dependence of R∗ for
Wroc law

Figure 3: Zoomed region near Rmin and
Rmax.

As can be seen from Figure 4a, extinction times below 8-9 months only
occur for values of R∗ below 0.2. In order to put the small values of R∗

in the right context and to understand the social implications, one has to
compare them to the actual R∗ value from Table 2. Till the 20th of March
the German growth rate corresponds to the value R∗ = 3.04. A reduction
to values less than or equal to 0.2 implicates a 15 fold reduction of social
contacts. In other words, out of 15 contacts only one is allowed to persist on
average. Hence a lockdown which targets at reasonable low R∗ values has to
reduce daily life social contacts (including workplace) by more than 90 %.

Furthermore, we observe that doubling the initial number of infected
individuals essentially leads to a doubling of the final prevalence and hence
fatalities, independently of the R∗ value. Reported doubling times in many
countries are at present between 4-6 days. Therefore an implementation of
effective countermeasures as early as possible is recommended.
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Figure 4: Figure 4a) Time till extinction in the subcritical regime in dependence of R∗

and the initial number of infected individuals. Figure 4b) Prevalence in the subcritical
regime in dependence of R∗ and the initial number of infected individuals.

In Figure 5 we present results for additional scenarios which were only
simulated for the city of Wroc law. Figure 5a shows for various parameters
combinations of R∗ and q - the probability for mild symptom patients to get
tested - the prevalence after 200 days averaged over 10 independent simula-
tions for each parameter pair. R∗ refers here to the baseline scenario without
quarantine, that is R∗=2.34c. It should be noted that the true mean number
of out-household secondary cases in the quarantine scenario is less than R∗

and depends on q. The value q=0 corresponds to the base setting described
above. Again, there is a rather narrow band of values for which mitiga-
tion is possible. In Figure 5b the blue colors indicate the average number
of days after which the ICU threshold was surpassed. Parameter combina-
tions where after 200 days less than 10 active cases were found are marked
in white and correspond to subcritical progression. The yellow fields corre-
spond to parameter combinations where neither of the first two criterion are
fulfilled. For details see Appendix B. Therefore the parameter combinations
for a sucessfull overcritical mitigation are limited within the yellow fields.
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Figure 5: Epidemics outcome in Wroc law depending on a mixture of detection rate and
social distancing measures (starting from 100 infections). Figure 5a displays the preva-
lence. In Figure 5b the blue colors indicate the average number of days after which the
ICU threshold was surpassed. Parameter combinations where after 200 days less than 10
active cases were found are marked in white and correspond to subcritical progression.
The yellow fields correspond to parameter combinations where neither of the first two
criterion are fulfilled.

4. Conclusions

Semi-realistic microsimulations for Germany and Poland, on the basis
of our model, give strong indications that there is only a narrow feasible
interval of epidemiologically relevant parameters within which a successful
mitigation is possible. Social distancing measures imposed by state author-
ities can hardly be fine-tuned enough to hit this critical interval precisely.
Furthermore, herd immunity within these intervals is at best 15% percent of
the population and would hence not provide sufficient protection for a sec-
ond epidemic wave. The main reason for the narrowness of the mitigation
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interval as well as for the low critical value Rmin is the household struc-
ture. Infections within the households for patients with mild progression can
hardly be avoided and therefore a small number of infection links between
the households can already make the epidemic overcritical. In the subcritical
domain we observe a strong dependence of time till extinction on the out-
reproduction number R∗. Reasonable extinction times are only achievable
for very low values below 1/3 secondary infections outside of households.

It is of crucial importance to understand the source of the tightness of the
phase transition as expressed by the narrowness of the gap between Rmin and
Rmax. Contrary to a microscopic model corresponding to a classical SEIR
model based on ordinary differential equations, which is equivalent to an
epidemic process on an Erdös-Renyi graph, the incorporation of households
has a very strong impact on the location of the phase transition point and the
steepness of the increase of the prevalence close to the critical value. Since
the probability that a households of size K infects a household of size L
follows a preferential attachment rule and hence is proportional to K ·L, the
variance, respectively the distribution of the household size matters rather
than just the mean value, which is typical for non preferential couplings.

We conclude that instead, an extinction strategy implemented by quick,
effective and drastic countermeasures similar to those put in action in China
is ultimately required to reduce social contacts outside households and slow
down the progression of the epidemic. If social distancing countermeasures
are too weak there is a high risk of collapse of the public health system within
a very short period of time. If contact reduction is not kept in force until dis-
ease extinction a second epidemic outbreak may result8. Therefore, in order
to control the epidemics it is nessesary to wait until it gets extinct. The ap-
plication of an epidemic management plan based on a flawed strategy of herd
immunity may easily lead to an uncontrollable epidemic. We also strongly
advise combining social distancing and contact related countermeasures with
an extensive testing strategy including individuals with characteristic symp-
toms but unknown contact history.
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Appendices

In Appendix A we give additional model specifications and additional
timelines for various parameter settings. Detailed numerical values for the
Figure 4 and Figure 5 are provided in Appendix B. In Appendix C we present
and outline the equations used for the theoretic computation of the final
prevalence.

Appendix A. Model Specifications

Appendix A.1. Generation of the German synthetic households data

The German data was generated using the information gathered on house-
hold composition with the German Microcensus 20149. For this purpose rep-
resentative households were generated synthetically and resampled in order
to fit the size of the population estimated from the same survey. To retain the
regional heterogeneity of households across Germany, this was done for each
of the federal states separately. Hence, also the composition of households
for the Berlin data set is adapted to household structures in Berlin.

Appendix A.2. Generation of the Polish synthetic households data

The Polish data was generated using the data published by Statistics
Poland (Gwny Urzd Statystyczny)17,18. The population was generated using
data on the size and structure of the population by sex and age in all local
and administrative units of the country as of 30 June 2019. The households
for Poland were generated from the projection for year 2020 published in the
Household projection for the years 2016-2050; each voivodeship was processed
separately to preserve regional heterogeneity. The households for the city of
Wroc law were generated based on the National Census of Population and
Housing 201119, Households and families in the Lower Silesian Voivodeship,
and resampled in order to fit the size of the city population reported on 30
June 2019.
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Appendix A.3. Fitting the R∗ under the model to the observed infection cases

Under the assumption that the detection rate of infected persons is con-
stant over time, the observed numbers of infected persons are valid for esti-
mating the R∗ in the population. To find the R∗ under the present model
that fits the observed evolution of cases in Germany and Poland and also
for Wroc law and Berlin the following procedure was followed. First a very
sparse grid of possible R∗ was chosen to see the evolution of the stochastic
microsimulation over time. As the observed data from 5th March till 20th
March were available, the increase from a starting number of infected per-
sons to the final number, as of 20th March, should have occurred within
these 16 days. To show the narrowness of the possible parameters an exam-
ple for this procedure will be made for the federal state of Berlin. In Figure
A.6 the box-plots of the duration are plotted for obtaining an increase of 13
(5th March, Berlin) to 848 (20th March , Berlin) in 16 days. Values above
the horizontal line at 16 indicate that R∗ is too low, as it takes too long
to take the evolution, and values below 16 state that R∗ is too high, as it
evolves faster than the observed values. However, as we are dealing with a
stochastic microsimulation it is clear that the outcome after a given time is
not deterministic, but may vary quite a lot. Therefore, the dots indicate the
average duration to perform the above said evolution. From this Figure A.6
the suspected R∗ could be seen to be somewhere in the neighbourhood of
3.883. To validate this, we then look at the different runs and compare it
with the observed values in a semilog plot as is usual for exponential growth
functions. This plot is given for Berlin in Figure A.7.

Each blue line represents one simulation run. The simulation started with
5 infected persons. As can be seen, as usual in stochastic microsimulations,
it takes some time till the dynamic of the simulation stabilizes, which is
definitely already the case when 13 infected persons are reached in the average
of runs. This point is indicated as the 5th March where this number of
infected individuals was observed in Berlin. As can be seen from the graph,
the red line indicating the observed values lies in the center of the simulation
path. So we are confident that this R∗=3.883 is a good approximation to
the actual R∗ in Berlin. Similarly, the R∗ are gathered for Poland R∗=3.159
(5th of March until 20th of March) and Germany R∗=3.041. Note that the
epidemic in Wroc law is still in such an early stage that the case numbers do
not yet allow a reliable estimation. We thus assume for now that the R∗ for
Wroc law coincides with the estimated R∗ for Poland.
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Figure A.6: Boxplot of time needed in the simulation to reach 848 infected people starting
form 13 infected people in Berlin given different R∗ parameters.

Figure A.7: Development of the epidemic in Berlin given the fitted R∗ of 3.883. Blue lines
are developments under different random runs and red dots show the observed number of
infected in the timespan of 5th March to 20th March.
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Appendix A.4. Searching for the Rmin and Rmax

In contrast to R∗ there is no data we can align the simulation to for
obtaining the Rmin and Rmax values. We defined Rmax as the smallest R∗

value for which 10 sample paths surpassed the ICU threshold within D days.
For cities D was chosen to be 200 days and for countries 700 days. The
critical value Rmin was defined as the largest R∗ < Rmax for which the daily
incidence at day 200 was below 50% of the initial numberNo of infected. That
is, it represents the R∗ that will most probably not threaten the health-care
system. To find these values we started fitting a sparse grid of plausible R∗.
By bisection we gradually made the grid finer to approach both Rmin and
Rmax as described above.

Figure A.8: The progress of the epidemic for Rmin (left), Rmax (right) and one value in
between for Germany.
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Figure A.9: The progress of the epidemic for Rmin (left), Rmax (right) and one value in
between for Berlin.

Appendix B. Detailed Values for Figure 4 and Figure 5

Figure B.10 gives the numerical values for the time till extinction in the
subcriticial regime.

In Figure B.11 we present numerical results for Figure 5. Parameter
combinations where after 200 days less than 10 active cases were found are
marked in green and correspond to subcritical progression (for fields with
percentage numbers not all simulations ended with less than 10 active cases;
the percent number refers to the fraction of simulations for which less than
10 active cases at 200 days were observed). In Figure B.12 we display by
red fields with numbers those parameter pairs for which the ICU demand
surpasses the threshold of ICUs (for fields with percentage numbers not all
simulations ended with less than 10 active cases; the percent number refers to
the fraction of simulations for which less than 10 active cases at 200 days were
observed). The average number of days after which this happens is presented
in the same figure. A red field with no number in can be considered as a
pair of parameters for which successful mitigation takes place. The white
fields correspond to overcritical parameter combinations for which the whole
epidemic has already finished and less than 10 active cases were found 200
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Figure B.10: a) shows time till extinction of the epidemics for Poland for selected R∗

values and different initial numbers of those infected. Simulations were stopped at 700
days if time till extinction was longer or at 1 million infected people if prevalence was
larger. Figure 4b) shows the corresponding prevalences at the end of the simulation
in thousands. Reported times and prevalences are averages over 10 simulations for each
parameter combination. For each simulation the initial infected individuals were uniformly
sampled from the population. Numbers in the bottom denoted with * are due to the fact
that epidemics were not stopped in 700 days. Additionally, two last numbers were labelled
as 1000+ as the second stopping criterion (prevalence > 1 million) was triggered.
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Figure B.11: Epidemics outcome in Wroc law depending on a mixture of detection rate
and social distancing measures (Starting from 100 infections). Green color indicates a
subcritical regime (less than 10 cases after 200 days); Red color indicates a critical regime;
White color indicates a ’supercritical’ regime (full blown epidemics ends within 200 days).
Numbers in Figure a) denote epidemics prevalence after 200 days; numbers are given in
thousands.
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Figure B.12: Epidemics outcome in Wroc law depending on a mixture of detection rate and
social distancing measures (Starting from 100 infections). Numbers in red fields denote
the mean number of days it takes until the ICU capacity is exceeded. Percentage number
in green fields give the fraction of simulations for which less than 10 active cases after 200
days were observed and percentages in red fields give the fraction of simulations which
exceeded the ICU capacity threshold. All averages were taken over 10 simulations.

Appendix C. Mathematical Supplement

The theoretical curve in Figure 2 was computed on the basis of results
from the theory of heterogenous random graphs20 and multitype branching
processes. We adapted known formulas for the size of the giant component
in sparse heterogenous random graphs. To do so we had to take into account
the clique structure within households and the specific disease progressions
within patients given by our model setup. We first evaluated the size the
giant component on a random graph representing the infectious connections
between household. The final prevalence of the infection in the population
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can the be obtained by a proper weighted scaling. In detail we used the
following formulas. We denote by h(k) the proportion of households of size k

in our sample population, hence
10∑
k=1

h(k) = 1. Let further c0 := cEtinf be the

average number of people an individual infects outside the household where
Etinf is the expected time being infectious outside the household. Let further

Q =
10∑
j=1

jh(j) be the average household size. The constant c is the intrinsic

parameter described in the model description of the main text. Then fraction
ρ(k) of infected households in the giant component is given by the largest
solution of

ρ(k) = 1 − exp

{
−c0(p0,kk + E)

Q

∑
j=1

jρ(j)h(j)

}
(C.1)

where p0,k is the probability that a household member in a k− size household
will not infect any other household member and c0E is the expected number
of secondary cases generated by an infected individual outside it’s household
conditioned that the individual will have a disease progression which makes
a hospital stay necessary.

Here ρ (k) can also be interpreted as the survival probability of an associ-
ated branching process describing the initial spread of the epidemics starting
with one infected household of size k. The quantities p0,k and E in the
exponent take into account the combined effect of reduced household infec-
tions due to patients which get early hospitalized and the reduced number
of secondary infections generated by such patients. The numerical values of
p0,k and E can be computed from the underlying distributions for disease
progression within patients.

The relative prevalence of the epidemics in the sample population is then
given by ∑

j=1

jh(j)ρ(j)∑
j=1

jh(j)
.

Note that the formulas estimate only asymptotic relative size of the giant
component and therefore cannot be used to estimate prevalences for subcrit-
ical epidemic.

Details, further refinements and proofs will appear in a forthcoming pa-
per.
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Figure C.13: Theoretical predictions for the relative end-prevalence of the epidemic as a
function of R∗ for R∗ ≤ 2. The differences between the two countries and cities are due
to the different household size distribution.

The critical value of c for which the epidemics becomes overcritical (re-
spectively the giant component emerges) is characterised by the value where
spectral norm of the associated transfer operator, for underlying branching
process equals one. The values for which the norm is larger than one hence
correspond to the overcritical region.

Figure C.14: Total prevalence as a function of the contact reduction. A comparion between
an SEIR model and the model used throughout this paper.
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