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Coronavirus disease 2019 (COVID-19) is a novel human respiratory

disease caused by the SARS-CoV-2 virus. Asymptomatic carriers

of the virus display no clinical symptoms but are known to be con-

tagious. Recent evidence reveals that this sub-population, as well

as persons with mild disease, are a major contributor in the propa-

gation of COVID-19. The asymptomatic sub-population frequently

escapes detection by public health surveillance systems. Because

of this, the currently accepted estimates of the basic reproduction

number (R0) of the disease are inaccurate. It is unlikely that a

pathogen can blanket the planet in three months with an R0 in the
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vicinity of 3, as reported in the literature (1–6). In this manuscript,

we present a mathematical model taking into account asymptomatic

carriers. Our results indicate that an initial value of the effective

reproduction number could range from 5.5 to 25.4, with a point es-

timate of 15.4, assuming mean parameters. The first three weeks of

the model exhibit exponential growth, which is in agreement with

average case data collected from thirteen countries with universal

health care and robust communicable disease surveillance systems;

the average rate of growth in the number of reported cases is 23.3%

per day during this period.

1 Background

Coronavirus disease 2019 (COVID-19) is a novel human respiratory disease caused by the

SARS-CoV-2 virus. The first cases of COVID-19 disease surfaced during late December

2019 in Wuhan city, the capital of Hubei province in China. Shortly after, the virus quickly

spread to several countries (7). On January 30, 2020 The World Health Organization

(WHO) declared the virus as a public health emergency of international scope (8). Forty

one days later, on March 11, 2020 it was officially declared to be a global pandemic (9).

Asymptomatic transmission of COVID-19 has been documented (10, 11). The viral

loads of asymptomatic carriers are similar to those in symptomatic carriers (12). A recent

study concluded that asymptomatic and symptomatic carriers may have the same level of

infectiousness (13). These findings demand a reassessment of the transmission dynamics

of the COVID-19 outbreak that better account for asymptomatic transmission.

The primary aim of this manuscript is to characterize the epidemiological dynamics

of SARS-CoV-2 via a compartmentalized model that takes into account asymptomatic
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sub-populations. The most notable result is that with the most recent data at the time

of publication, COVID-19 has a large basic reproduction number R0 which we estimated

to fall between 5.5 and 25.4, with a point estimate of 15.4, assuming mean parameters.

2 Methods

In this section we summarize the main results, and leave mathematical proofs for the

supplementary material. Numerical estimates for the basic reproduction number follow.

2.1 Mathematical Model

The formulation of the SEYAR model for the spread of COVID-19 begins with decom-

posing the total host population (N) into the following five epidemiological classes: sus-

ceptible human (S), exposed human (E), symptomatic human (Y ), asymptomatic human

(A), and recovered human (R).
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Figure 1: Schematic diagram of a COVID-19 model including an asymptomatic compartment.
The arrows, except the disease-induced death (δ), represent progression from one compartment
to the next. Hosts progress through each compartment subject to the rates described below.

Listed below is a SEYAR dynamical system in Equation 1 describing the dynamics of
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COVID-19 transmission in a human population.

Ṡ = −
(
βY

Y
N

+ βA
A
N

)
S,

Ė =
(
βY

Y
N

+ βA
A
N

)
S − γE,

Ẏ = γ(1− α)E − (δ + λY R)Y,

Ȧ = γαE − λARA,
Ṙ = λARA+ λY RY,

(1)

where, N = S + E + Y + A + R. In a mathematical context, the reproduction number

R0 is a threshold value that characterizes the local asymptotic stability of the underlying

dynamical system at a disease-free equilibrium. The reproduction number arising from

the dynamical system in Equation 1 is given by

R0 = (1− α) · βY ·
1

λY R + δ
+ α · βA ·

1

λAR
. (2)

As the disease-induced death rate δ is of negligible size, the reproduction number R0

featured in Equation 2 above admits the following natural biological interpretation:

R0 =

(
probability of becoming

symptomatic upon infection

)
·

(
symptomatic

contact rate

)
·

(
mean symptomatic

infectious period

)

+

(
probability of becoming

asymptomatic upon infection

)
·

(
asymptomatic

contact rate

)
·

(
mean asymptomatic

infectious period

)
.

A mathematical proof of the calculation yielding the reproduction number R0 given by

Equation 2 is provided in the supplementary material.

The reproduction number is not a biological constant corresponding to a given pathogen

(14). In reality, the values of R0 fluctuate with time, and depend on numerous factors.

The reproduction number R0 provides a way to measure the contagiousness of a disease.

It is utilized by public health authorities to gauge the severity of an outbreak. The design

and effective implementation of various intervention strategies are guided by estimates of

R0. Established outbreaks will fade provided that interventions maintain R0< 1.
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2.2 Computation of R0

During the first stages of an epidemic, calculating R0 poses significant challenges. Evi-

dence of this difficulty was observed in the 2009 influenza A (H1N1) virus pandemic (15).

Particularly, the COVID-19 pandemic has a different characterization in each country in

which it has spread due to differences in surveillance capabilities of public health systems,

socioeconomic factors, and environmental conditions.

During the initial growth of an epidemic, Anderson et al. (16) derived the following

formula to determine R0:

R0 = 1 +
D ln 2

td
, (3)

where D is the duration of the infectious period, and td is the initial doubling time. To

find td, simply solve for t in Y = a0 ·(1+r)t, where Y = 2a0, and r = 23.22% (the rationale

for this number is explained below). Thus, td = ln 2/ ln(1 + r) ≈ 3.32. The calculated

value of the basic reproduction number using Equation 3 is R0 ≈ 5.7, using the mean

value of the infectious period reported in Table 1. This value should be understood as

an underestimation of the true R0 because there is no consideration of asymptomatic

carriers with this formulation.

A striking characteristic of COVID-19 is the nearly perfect exponential growth re-

ported during the first three weeks of community transmission. Figure 2 shows the number

of cases reported in thirteen countries with universal health care and strong surveillance

systems as of March 25, 2020. Ten of these countries are in the European zone, plus

Australia, Canada and Japan. An exponential fitting for each country, conducted with

the Nelder-Meade simplex algorithm (17), reveals an average coefficient of determination

R2 = 0.9846±0.0164. The average growth rate r in the exponential model Y = a ·(1+r)t,

where t is time measured in days, is r = 23.32%, and the average of the initial conditions

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2020. .https://doi.org/10.1101/2020.03.18.20037994doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.18.20037994
http://creativecommons.org/licenses/by-nc-nd/4.0/


is a = 103 cases. Thus, the average growth of the symptomatic compartment (Y ) of

COVID-19 during the first three weeks of community transmission in thirteen countries

is characterized in average by the equation

Y = 103 · 1.2332t, (4)

where Yd represents the distribution of time series of reported cases, and t is time measured

in days.
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Figure 2: First three weeks (or less) of data for thirteen countries with COVID-19 cases
and strong surveillance systems for communicable diseases.

There are well known challenges in attempting to fit an exponential function to epi-

demiological data (18–20). However, given the relatively slow progression of COVID-19,

and the protracted infectiousness period, the growth of the symptomatic population can
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be well characterized by an exponential function for up to three weeks.

The parameters with the greatest uncertainty at the moment of writing are λY R and

λAR; hence, we calculated the range of R0 using the highest and lowest available values

for these parameters. To compare the output of the model to the data from the thirteen

countries studied, the growth rate found in Equation 4 was superimposed on the model.

The initial condition a0 in the exponential function Y = a0 · (1 + r)t was fitted to the

dynamical system with the Nelder-Meade simplex algorithm (17). It is important to

emphasize that fitting the initial value simple creates a translation of the curve. It is,

therefore, remarkable that the function that describes the average behavior of the first

three weeks around the world, presents a nearly perfect fit to the dynamical system using

parameters that were measured in multiple settings by different groups.

Table 1: Model Parameters

Parameter Description Dimension Median(95% CIs) Source
Value or Range

βY Effective contact rate from days−1 1.12(1.07, 1.18) (21)
symptomatic to susceptible.

φ Relative transmission probability. n/a 0.55(0.49, 0.63) (21)
βA Effective contact rate from days−1 φβY (21)

asymptomatic to susceptible.
γ−1 Mean serial period. days 5.1(4.5, 5.8) (22)
α Probability of becoming n/a 0.86(0.82, 0.9) (21, 23)

asymptomatic upon infection.
λ−1YR Mean symptomatic days [8, 37] (24)

infectious period.
λ−1AR Mean asymptomatic days [8, 37] Assumed

infectious period.
δ Disease-induced death rate. days−1 0.032(1− α) (25)

At the time of writing, there are no reliable estimations for the infectious period of

asymptomatic carriers; in absence of data, we decided to use the estimates of infectious

periods documented for symptomatic subjects. All other parameters have been directly
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measured, or derived from measures.

3 Results

Figure 3 shows a calculation of the SEYAR model using the parameters reported in Table

1. This representation of the progression of the disease must be understood as a theoretical

development; in reality, the progression of an epidemic depends on a multitude of factors

that necessarily result in deviations from this ideal case.

Changes in behavioral patterns in response to an outbreak have an effect on the

propagation of a disease. As people gain awareness of the presence of an infectious disease

in their communities, a portion will take measures in order to reduce their susceptibility.

An example of this behavior corresponding to the COVID-19 pandemic is that of social

distancing. Indeed, the cancellation of events likely to attract crowds, the closing of

schools, and working from home will have a drastic impact on the size of the susceptible

population at any given time. Figure 3 shows time series corresponding to the upper and

lower estimations of the basic reproduction number, along with intervention simulations

for each scenario. Figure 4 shows the variation of R0 with respect to the symptomatic

and asymptomatic mean infectious periods, λ−1Y R and λ−1AR.

The size of the COVID-19 reproduction number documented in literature is relatively

small. Our estimates indicate that R0 is likely to be in the interval from 5.5 to 25.4 with

a point estimate of 15.4, when the asymptomatic sub-population is accounted for.

4 Discussion

The calculation of R0 poses significant challenges during the first stages of any outbreak,

including the COVID-19 pandemic. This is due to paucity and timing of surveillance data,

different methodological approaches to data collection, and different guidelines for testing.
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Figure 3: Numerical implementation of a SEYAR model with the parameters listed on
Table 1. The left-most panel shows the time series corresponding to a point estimate
of R0 = 15.4. The center panel shows a times series of the symptomatic compartment;
the red dots represent the exponential function whose parameters are the average of the
thirteen countries studied. The right-most panel shows a simulation representing the
effect of limiting contact between the susceptible and infected populations. At the time
of writing there is no data available to calibrate an intervention model.

Estimates vary greatly: 0.3 (26), 2.28 (27), 2.38 (28), 3.28 (29), and others. However, none

of the previous studies take into consideration the possibility of asymptomatic carriers.

The time series of symptomatic individuals provided by the SEYAR model can inform

the likely progression of the disease. The compartment Y must be considered as an

upper bound for the progression of the COVID-19 pandemic, that is, what surveillance

systems could observe in absence of public health interventions and behavior modification.

However, as the COVID-19 pandemic evolves, governments around the world are taking

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2020. .https://doi.org/10.1101/2020.03.18.20037994doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.18.20037994
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

8

10

12

14

16

18

20

22

24

Figure 4: Heat map showing the variation of the basic reproduction number R0 with
respect to the asymptomatic and symptomatic infectious periods λ−1AR and λ−1Y R, respec-
tively.

drastic steps to limit community spread. This will necessarily dampen the growth of

the disease. The SEYAR model captured faithfully the first stages of the pandemic, and

remains a stark reminder of what the cost of inaction could be. It can be used as a tool

to explore multiple scenarios corresponding to different interventions.

A scenario where R0 ≈ 3 is remotely plausible requires unrealistic values for the

infectious periods. If we consider the median of the other parameters to be correct,

then the mean infectious periods should be approximately 4.4 days. If we reduced the

probability of becoming asymptomatic upon infection to α = 0.3, then the mean infectious

periods would be 3.1 days. These infectious periods are not consistent with evidence. The
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necessary conclusion is that via a computational reductio ad absurdum, in tandem with

the information we have today, R0 cannot be near 3.

5 Conclusion

It is unlikely that a pathogen that blankets the planet in three months can have a basic

reproduction number in the vicinity of 3, as reported in the literature (1–6). In juxta-

position to the SARS-CoV epidemic of 2003 (30), where only symptomatic individuals

were capable of transmitting the disease, asymptomatic carriers of the SARS-CoV-2 virus

may be capable of the same degree of transmission as symptomatic individuals (12). In a

public health context, the silent threat posed by the presence of asymptomatic and other

undocumented carriers in the population renders the COVID-19 pandemic far more diffi-

cult to control. SARS-CoV-2 is evidently among the more contagious pathogens known,

a phenomenon most likely driven by the asymptomatic sub-population.

The value of R0 must be understood as a threshold parameter that can be utilized

to characterize disease spread. The estimations of R0 are expected to vary substan-

tially per locality depending on how public health officials communicate the risk to the

general public, general beliefs and (dis)information available to the population, and other

socioeconomic and environmental factors affecting contact rates. Our goal with this inves-

tigation was to develop the SEYAR mean field estimate, which can be applied to different

locations to provide a measure of the potential impact of the disease.

This study shows that asymptomatic individuals are major drivers for the growth of

the COVID-19 pandemic. The value of R0 we calculated is at least double and up to

one order of magnitude larger than the estimates that have been communicated in the

literature and to policymakers up to this point.
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6 Supplementary Material

The simplified dynamical system described in Equation 1 in the manuscript was computed

with the values appearing in Table 1. A literature search was conducted to determine

values for these parameters. The definitions used for the parameters are as follows:

� Effective contact rate from symptomatic to susceptible sub-population (βY ): The

transmission rate corresponding to symptomatic infections accounting for effective

contacts per unit time between symptomatic and susceptible individuals.

� Relative transmission probability (φ): A transmission reduction factor correspond-

ing to asymptomatic infections.

� Effective contact rate from asymptomatic to susceptible sub-population (βA): The

transmission rate corresponding to asymptomatic infections accounting for effective

contacts per unit time between asymptomatic and susceptible individuals.

� Mean serial period (γ−1): Mean number of days between exposure to COVID-19

source and development of transmissibility. Since the serial period is shorter than

the incubation period, hosts are capable of pre-symptomatic transmission. This

parameter is usually called the mean incubation period in the literature.

� Probability of becoming asymptomatic upon infection (α): Transmission factor ac-

counting for the asymptomatic sub-population.

� Mean symptomatic infectious period (λ−1Y R): Mean number of days an individual who

develops COVID-19 symptoms exhibits viral shedding. For the asymptomatic and

symptomatic mean infectious periods we assumed viral shedding was synonymous

with transmissibility.
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� Mean asymptomatic infectious period (λ−1AR): Mean number of days an individual

who never develops symptoms exhibits viral shedding.

� Disease-induced death rate (δ): The rate of fatality caused by disease. It is taken

to be the quotient of disease-induced deaths and confirmed cases.

R
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ξ
δ

Λ

λRS λSE

γ(1− α)

λAY

γα

λY R λAR

Figure 5: This figure is a schematic diagram of a generalized COVID-19 model including an
asymptomatic compartment. The longer arrows represent progression from one compartment to
the next. Hosts enter the susceptible compartment either through birth of migration and then
progress through each additional compartment subject to the rates described above.

Listed below is the generalized SEYAR dynamical system in Equation 5 which falls

into the class of models covered by Aguilar and Gutierrez (2020) (31), see Figure 5.

Ṡ = Λ + λRSR−
(
βY

Y
N

+ βA
A
N

+ ξ
)
S,

Ė =
(
βY

Y
N

+ βA
A
N

)
S − (γ + ξ)E,

Ẏ = γ(1− α)E − (ξ + δ + λY R)Y + λAYA,

Ȧ = γαE − (λAR + λAY + ξ)A,

Ṙ = λARA+ λY RY − (λRS + ξ)R,

(5)

where, N = S+E+Y +A+R. The demographic parameters Λ and ξ denote the human

recruitment and mortality rates, respectively. While λAY and λRS are the asymptomatic
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to symptomatic transition and relapse rates, respectively.

It is worth mentioning that for a basic SEIR model, where there is only one infected

compartment, the progression rate from the susceptible to the exposed class λSE is equal

to the product of the effective contact rate β and the proportion of infected individuals

I
N

, so that

λSE = β
I

N
.

In our model, we decompose the infected compartment into symptomatic and asymp-

tomatic sub-compartments. Due to this decomposition, the progression rate is given by

the weighted sum

λSE =

(
βY

Y

N
+ βA

A

N

)
.

Disease-Free Equilibrium (DFE) points are solutions of a dynamical system corre-

sponding to the case where no disease is present in the population.

Lemma 1. (Reproduction Number for the SEYAR COVID-19 Model). Define the fol-

lowing quantity

R0 :=
γ

γ + ξ

(
βY

δ + λY R + ξ

(
αλAY

λAR + λAY + ξ
− (α− 1)

)
+

αβA
λAR + λAY + ξ

)
. (6)

Then, the DFE w? for the SEYAR model in Equation 5 is locally asymptotically stable

provided that R0 < 1 and unstable if R0 > 1.

Proof. We order the compartments so that the first four correspond to the infected sub-

populations and denote w = (E, Y,A,R, S)T . The corresponding DFE is

w? =

(
0, 0, 0, 0,

Λ

ξ

)T
.
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Utilizing the next generation method developed by Van den Driessche and Watmough

(32), system in Equation 5 is rewritten in the following form

ẇ = Φ (w) = F (w)− V (w) ,

where F := (F1, . . . ,F5)
T and V := (V1, . . . ,V5)T , or more explicitly


Ė

Ẏ

Ȧ

Ṙ

Ṡ

 =


(
βY

Y
N

+ βA
A
N

)
S

0
0
0
0

−


(γ + ξ)E
−γ (1− α)E + (ξ + δ + λY R)Y − λAYA

−γαE + (λAR + λAY + ξ)A
−λARA− λY RY + (λRS + ξ)R
−Λ− λRSR +

(
βY

Y
N

+ βA
A
N

+ ξ
)
S

 .

The matrix V admits the decomposition V = V− − V+, where the component-wise

definition is inherited. In a biological context, Fi is the rate of appearance of new infections

in compartment i, V+
i stands for the rate of transfer of individuals into compartment i by

any other means and V−i is the rate of transfer of individuals out of compartment i. Now,

let F and V be the following sub-matrices of the Jacobian of the above system, evaluated

at the solution w?

F =
(
∂Fi
∂xj

∣∣∣
w?

)
1≤i,j≤3

=

0 βY βA
0 0 0
0 0 0


and

V =
(
∂Vi
∂xj

∣∣∣
w?

)
1≤i,j≤3

=

 (γ + ξ) 0 0
γ (α− 1) (ξ + δ + λY R) −λAY
−γα 0 (λAR + λAY + ξ)

 .

A direct calculation shows that

V −1 =

 (γ + ξ)−1 0 0

− γ((α−1)(λAR+ξ)−λAY )
(γ+ξ)(ξ+δ+λY R)(ξ+λAY +λAR) (ξ + δ + λY R)−1 λAY ((ξ + δ + λY R) (ξ + λAY + λAR))−1

γα ((γ + ξ) (λAR + λAY + ξ))−1 0 (λAR + λAY + ξ)−1


15
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and FV −1 is given by the following matrix

 γ
(γ+ξ)(λAR+λAY +ξ)

(
−βY ((α−1)(λAR+ξ)−λAY )

δ+λY R+ξ + βAα
)

βY (δ + λY R + ξ)
−1 1

λAR+λAY +ξ

(
βY λAY

δ+λY R+ξ + βA

)
0 0 0
0 0 0

 .

Let I denote the 3× 3 identity matrix, so that the characteristic polynomial P (λ) of

the matrix FV −1 is given by

P (λ) = det
(
FV −1 − λI

)
,

= λ2
(
λ−

(
γβY

(γ + ξ)(δ + λY R + ξ)

(
αλAY

λAR + λAY + ξ
+ 1− α

)
+

γαβA
(γ + ξ)(λAR + λAY + ξ)

))
.

The solution set {λi}1≤i≤3 is given by

{
0, 0,

γβY
(γ + ξ)(δ + λY R + ξ)

(
αλAY

λAR + λAY + ξ
+ 1− α

)
+

γαβA
(γ + ξ)(λAR + λAY + ξ)

}
.

Therefore, the reproduction number for the SEYAR model in Equation 5 is given by

R0 := ρ
(
FV −1

)
,

= max
1≤i≤3

{λi},

=
γβY

(γ + ξ)(δ + λY R + ξ)

(
αλAY

λAR + λAY + ξ
+ 1− α

)
+

γαβA
(γ + ξ)(λAR + λAY + ξ)

,

=
γ

γ + ξ

(
βY

δ + λY R + ξ

(
αλAY

λAR + λAY + ξ
− (α− 1)

)
+

αβA
λAR + λAY + ξ

)
.

The proof of the lemma regarding the local asymptotic stability of the DFE w? corre-

sponding to the SEYAR model in Equation 5 is now complete after invoking Theorem 2

reported by Van den Driessche and Watmough (2002) (32).

16
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The expression in Equation 2 in the manuscript corresponds to the absence of the

demographic parameter and asymptomatic to symptomatic transition rate, i.e. ξ = λAY =

0. This specific case corresponds to the DFE solution given by v? = (0, 0, 0, 0, N(0))T . A

verification of the calculation yielding the reproduction number R0 given by Equation 6

is provided in the electronic supplementary material.

The reproduction number R0 shown in Equation 2 in the manuscript arising from our

model admits a natural biological interpretation. To guide this discussion, it is pertinent

to refer to the original epidemic model proposed by W. O. Kermack and A. G. McKendrick

in 1927 (33), see Figure 6 below. The corresponding dynamical system is given by

S I R
β ω

Figure 6: This figure is a schematic diagram of a SIR model consisted of three compartments,
namely: susceptible (S), infected (I) and recovered (R). Humans progress through each com-
partment subject to the rates described above.


Ṡ = −β I

N
S,

İ = β I
N
S − ωI,

Ṙ = ωI.

(7)

Epidemiologically speaking, the basic reproduction number is the average number of sec-

ondary infections generated by a single infection in a completely susceptible population. It

is proportional to the product of infection/contact (a), contact/time (b) and time/infection

(c). The quantity a is the infection probability between susceptible and infectious indi-

viduals, b is the mean contact rate between susceptible and infectious individuals and c

is the mean duration of the infectious period.

The case of an increasing infected sub-population corresponds to the occurrence of

an epidemic. This happens provided that İ = β I
N
S − ωI > 0 or β

ω
S
N
> 1. Under

the assumption that in the beginning of an epidemic, virtually the total population is

17
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susceptible, that is S
N
≈ 1. As a result, we arrive at the following equivalent condition

R0 :=
β

ω
> 1.

The parameter β in Figure 6 is equal to ab and ω is equal to c−1. This combination of

parameters stands to reason as it is a ratio of the effective contact rate β and the mean

infectious period ω−1.

Since the disease-induced death rate δ ≈ 0, the reproduction number in Equation 2

in the manuscript for our model has a similar natural interpretation as the sum of ratios

consisting of the effective contact rates βY , βA and mean infectious periods λ−1Y R, λ−1AR for

the symptomatic and asymptomatic sub-populations, weighted with the probabilities of

becoming symptomatic (1− α) or asymptomatic α upon infection.

The effective reproduction number R0(t) takes into consideration the susceptibility of

the population,

R0(t) :=
R0

N(t)
S(t). (8)

It is defined to be the average number of secondary cases generated by a typical case. A

decrease in the susceptible population overtime will cause a corresponding decrease in the

values of the reproduction number. It directly follows by Equation 8 that R0(0) = R0,

as initially the total human population is assumed to be susceptible. The plot of R0(t) is

similar to the plot of the susceptible portion, featured in Figure 3 in the manuscript. This

is reasonable since Equation 8 implies that R0(t) is proportional to S(t). Since δ ≈ 0, the

total population N(t) varies little within a tight envelope around the initial susceptible

population S(0). This is easily observable upon inspection of the dynamical system given

by Equation 1 in the manuscript, as it is clear that

N(t) = S(0)− δ
∫ t

0

Y (ζ)dζ.

18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2020. .https://doi.org/10.1101/2020.03.18.20037994doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.18.20037994
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. J. M. Read, J. R. Bridgen, D. A. Cummings, A. Ho, C. P. Jewell, medRxiv (2020).

2. T. Liu, et al., SSRN (2020).

3. M. Majumder, K. D. Mandl, China (January 23, 2020) (2020).

4. Z. Cao, et al., medRxiv (2020).

5. S. Zhao, et al., International Journal of Infectious Diseases 92, 214 (2020).

6. N. Imai, et al., Reference Source (2020).

7. W.-j. Guan, et al., New England Journal of Medicine (2020).

8. World Health Organization, Coronavirus disease (covid-19) outbreak.

9. World Health Organization, who director-general’s opening remarks at the media

briefing on covid-19 - 11 march 2020.

10. K. Mizumoto, K. Kagaya, A. Zarebski, G. Chowell, medRxiv (2020).

11. Z. Hu, et al., Science China Life Sciences pp. 1–6 (2020).

12. L. Zou, et al., New England Journal of Medicine (2020).

13. C. R. MacIntyre, Global Biosecurity 1 (2020).

14. P. L. Delamater, E. J. Street, T. F. Leslie, Y. T. Yang, K. H. Jacobsen, Emerging

infectious diseases 25, 1 (2019).

15. H. Nishiura, G. Chowell, M. Safan, C. Castillo-Chavez, Theoretical Biology and Med-

ical Modelling 7, 1 (2010).

19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2020. .https://doi.org/10.1101/2020.03.18.20037994doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.18.20037994
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. R. Anderson, G. Medley, R. May, A. Johnson, Mathematical Medicine and Biology:

a Journal of the IMA 3, 229 (1986).

17. J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright, SIAM Journal on optimiza-

tion 9, 112 (1998).

18. G. Chowell, C. Viboud, Infectious disease modelling 1, 71 (2016).

19. G. Chowell, L. Sattenspiel, S. Bansal, C. Viboud, Physics of life reviews 18, 114

(2016).

20. G. Chowell, C. Viboud, L. Simonsen, S. M. Moghadas, Journal of The Royal Society

Interface 13, 20160659 (2016).

21. R. Li, et al., Science (2020).

22. S. A. Lauer, et al., Annals of Internal Medicine (2020).

23. H. Nishiura, et al., The rate of underascertainment of novel coronavirus (2019-ncov)

infection: Estimation using japanese passengers data on evacuation flights (2020).

24. F. Zhou, et al., The Lancet (2020).

25. D. Baud, et al., The Lancet Infectious Diseases (2020).

26. P. Wu, et al., Eurosurveillance 25 (2020).

27. S. Zhang, et al., International Journal of Infectious Diseases (2020).

28. R. Li, et al., medRxiv (2020).

29. Y. Liu, A. A. Gayle, A. Wilder-Smith, J. Rocklöv, Journal of travel medicine (2020).
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