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Most models of the COVID-19 pandemic in the United States do not

consider geographic variation, and their relevance to public policies is not

straightforward. We developed a mathematical model that characterizes

infections by state and incorporates inflows and outflows of interstate

travelers. Modeling reveals that curbing interstate travel when the disease

is already widespread will make little difference. Meanwhile, increased testing

capacity (facilitating early identification of infected people and quick isolation)

and strict social-distancing and self-quarantine rules are effective in abating

the outbreak. The modeling has also produced state-specific information. For

example, for New York and Michigan, isolation of persons exposed to the virus

needs to be imposed within 2 days to prevent a broad outbreak, whereas for

other states this period can be 3.6 days. This model could be used to determine

resources needed before safely lifting state policies on social distancing.
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Introduction

The Coronavirus disease (COVID-19) is an ongoing pandemic that poses a global threat. As

of March 26, 2020, more than 520,000 cases of COVID-19 have been reported in over 200

countries and territories, resulting in approximately 23,500 deaths (9–12, 24, 26, 28, 35, 40). In

the United States, the first known positive case was identified in Washington state on January

20, 2020 (18). By March 26, the epidemic had been rapidly spreading across many communities

and present in all 50 states, plus the District of Columbia; the number of confirmed cases in the

United States rose to 78,786 with 1,137 deaths.

To combat the spread of COVID-19, the government has taken actions in various

dimensions, including banning or discouraging domestic and international travels, announcing

stay-at-home orders to curb non-essential interactions for reducing transmission rate, and urging

commercial laboratories to increase test capacity. To curb traveling, on January 31, the United

States government announced travel restrictions on travelers from China; on February 29, it

announced travel ban against Iran and advised travel with caution to Europe (1) ; on March 11,

it announced travel restrictions on most of European countries. To reduce human-interactions,

on March 13, a national emergency was declared; as of March 28, 39 states had issued either

statewide or regionally stay-at-home or shelter-in-place order, requiring residents to stay indoors

except for essential activities. To increase test capacities, on February 4, the United States Food

and Drug Administration (FDA) approved the United States Centers for Disease Control and

Prevention (CDC)’s test, which was later to be proved inconclusive (2); on February 29, the

FDA relaxed its rules for some laboratories, allowing them to start testing before the agency

granting its approvals; on March 27, FDA issued an Emergency Use Authorization to a medical

device maker, the Abbott Labs, for the use of a coronavirus test that delivers quick testing

results (3).

2

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2020. .https://doi.org/10.1101/2020.04.03.20052720doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.03.20052720
http://creativecommons.org/licenses/by-nc/4.0/


So far, since there is no treatment or vaccine for SARS-COV-2 available, these actions have

been taken largely based on classic epidemic controls. Works on evaluating similar measures

in other countries, especially China, started to emerge (14, 24). For example, the effect of

travel restriction on delaying the virus spread in China has been reported (9, 36). However, it

is still unclear what control and intervention measures would have actual effect, and to what

extent, on abating the spread of COVID-19 in the United States. As the United States has very

different political, administrative, social, pubic health and medical systems, as well as culture

from China, this remains to be a critical question to address, especially considering that some

measures and policies come with extremely high economic and societal costs.

There have been numerous modeling works projecting or predicting the trend of the COVID-

19 pandemic regionally or globally (16, 21). Most of the works apply a global model to the

entire study area, either a region, a country, or the entire globe. Rarely the variation of different

parts within one area and the interactions among those parts are taken into consideration.

However, a country like the United States features diversity in all aspects. On the one hand,

the overall situation of the entire country is a result emerging from local situations and their

interactions, and thus, ignoring the local interactions can hardly lead to a high-quality overall

model; on the other hand, as all interventions and policies finally have to be adapted to the

local situation, a localized modeling will be much more relevant to the real-world practices.

Spatially and network-related epidemic models can describe the geographical spread of viral

dynamics (24, 27, 30, 37). Recent studies have shown the importance of incorporating timely

human mobility patterns derived from mobile phone big data and global flight networks into the

epidemiology modeling process and in public health studies (7–9, 15, 20, 22, 24, 29, 33, 41, 42).

Without accurate models that incorporate human mobility patterns and spatial interactions

(8,42), it is rather challenging to quantify the sensitivity of parameters, and using the linkage to

real practices to make sensible policy suggestions.
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Accordingly, the core of the study is twofold. First, to localize the modeling, we

developed a mathematical compartmental model system that simultaneously characterizes the

spatiotemporal dynamics of infections in 51 areas (50 states and the District of Columbia). Each

state or district has its own model, and all models simultaneously take into account inflows and

outflows of interstate travelers. Second, to improve the practical relevance, we chose to use

three parameters that can directly correspond to possible practical means to discover, combat,

and control the spread of the disease, and quantify their impact on the final output of the model.

The three parameters include: 1) the transmission rate b, which corresponds to the local social-

distancing enforcement, e.g., the stay-home order; 2) the detection and reporting rate r, which

corresponds to the testing capacity; and 3) the travel ratio αt, which corresponds to the ratio of

interstate travel volume compared to that of 2019 during the same period.

The modeling is a dynamic projection process. We employed daily and state-specific

historical data to incrementally calibrate the model, and then used the calibrated model to

predict future scenarios under different control and intervention measures. During this process,

we ran data assimilation methods to identify parameter values that optimally fit the current

situation (see more details in the supplementary material). To project into the future, we set

different values for the parameters to create different control and intervention scenarios, and

then ran the simulation to see their impact on the model results. The final output of the model

is the total number of confirmed cases in a state on a particular day.

The current strategy in the United States is to isolate people who have the symptoms of

COVID-19. An ideal scenario is to have an 100% reporting rate, i.e., every infected case gets

confirmed and thus isolated quickly. Another ideal setting is to have everyone who was in

contact with the infected gets identified and isolated quickly as well. Our model incorporated

these considerations and examined such direct isolation of the exposed compartment in detail.

We particularly investigated the impact of quickness of such actions through mathematical
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modeling and scenario analysis.

A notable result from our modeling is that the impact of interstate travel restriction on the

model output is modest. This can be explained by that when the disease has already widespread

in all states, the relatively small number of cases in the travelers will cause little difference to

the local situation, compared with the effects of local social-distancing and isolation rules and

the increase of testing capacity.

Methods

The mathematical model that simulates the spatiotemporal dynamics of state-level infections in

the United States is a modified compartmental model in epidemiology by taking into account

the variation of the 51 administrative units and their interactions (6, 17, 19). It consists of 51

ordinary differential equation (ODE) systems, with each one characterizing the evolution of

susceptible (S), exposed (E), reported (I), unreported (A) and resolved (R) cases per state (see

more details in the supplementary material and also Fig. S1). The 51 ODE systems are then

coupled through the state-to-state travel network flows (see Fig. S2) that were extracted from

the aggregated SafeGraph mobility data and weighted by αt (25,31). Unlike most other models,

we also incorporate the potential asymptomatic transmission. This makes the derivation of the

basic reproduction number R0 different. Besides, each ODE system also includes two unknown

parameters: the transmission rate (b) and the report rate for each state (r). The unknown

parameters are inferred based on the number of confirmed cases in each state for the period

of March 1-March 20, 2020. The source of infection case data is (10).

The COVID-19 transmission dynamics (the ODE system) was simulated using the Forward

Euler method, with each day discretized into 24 smaller time periods to ensure the numerical

stability (see Fig. S3). The parameter fitting was conducted under the Bayesian formulation

that combines the effect of the underlying dynamics governed by the ODE system, serving as
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the prior knowledge, and the collected data, appearing in the likelihood function, to generate

the posterior distribution that characterized the behavior of the state variables, including

S,E, I, A,R, as well as the two unknown parameters, b and r. For this classical data

assimilation problem, we employed the Ensemble Kalman Filter method that was derived from

the Kalman filter and tailored to deal with problems with high-dimensional state variables

(13, 32). The method proves to be effective when the measuring operator is linear and the

underlying dynamics is Gaussian-like. It has been applied to a vast of problems that do not

strictly satisfy the Gaussianity requirement. To apply this method, we generated 2000 samples

according to the prior distribution, and evolve the samples through the dynamics of the ODE

system. The samples were then rectified at the end of each day, using the announced number of

confirmed cases, for tuning the two unknown parameters b and r.

At the beginning of the simulation, March 1st, only a few states had non-zero confirmed

cases. The true numbers of exposed people and unreported cases on that day, however, are

unknown. These two numbers are also the state variables that need to be inferred to using

the collected data. On March 1, we put a non-informative prior with range [0, 500] and

[0, 200] over the exposed latent population and unreported infectious population in each state,

respectively. Fig. S4-S13 show the data assimilation results for different states including the

number of people in different compartmental groups and their temporal changes with 95%

credible intervals. The average reporting rate r over all states is 0.2266 at the end of March

20 through the data assimilation method.

For forecasting, we performed scenario studies of two types. First, we ran the mathematical

model by applying the initial data obtained as of March 20 into the future for the next 40 days,

but with different configurations of (b, r, αt). The simulation results out of this setting were then

compared with those from the setting that the three parameters remained unchanged for each

state. To quantify and visualize the difference, we compared the increase of the percentage of
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the non-affected population when the measures of stay-at-home, increasing test rate, and travel

bans were enacted.

The second scenario was about a more ideal situation: every confirmed case would get

isolated immediately, as well as those who had been exposed to those confirmed cases, no

matter if those who had been exposed had started to show symptoms or not. We built a new

mathematical model that incorporated such isolations to study the effect of them. A new

quarantined compartment (Q) was introduced into the model. Through the simulation, we

examined the correlation between the average action-taking time (i.e., temporal lag in putting

a person into quarantine denoted by Dq) and the increase of non-infected population. In both

scenario studies, the simulation was run with the Forward Euler ODE solver, during which each

day was divided into 24 intervals to achieve a numerical stability.

Findings

The interstate travel in the United States has been rapidly dropping recently (39), which is

going to have a tremendous impact on the country’s economy and society. However, this study

finds that the mitigation effect that this change can bring about by itself, regarding abating the

COVID-19 spread, is very limited as the outbreak has already widespread in all states. On the

other hand, our modeling indicates that lowering the transmission rate and the unreported-case

rate would have a great effect on abating the infection. Mapped to the public policy, this means

that curbing the interstates travel alone is not going to reduce the spread of COVID-19, while

the policies such as ordering stay-at-home and social distancing that reduces human interaction

and increasing the testing capacities of all clinics around the nation could significantly decrease

the total number of infections. While we did not conduct a rigorous economic analysis in this

study, it seems reasonable to assume that producing more testing kits and conducting more tests

will be significantly less expensive than completely shutting off business and curbing travels.
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This potentially means that the economy would not have been hit as hard if we could have

increased the detection capacity. These findings are in line with the observation in Germany

and Korea (4, 34), both of which had a large percentage of the population tested, while opted

out lockdowns of cities.

Fig. 1 shows the effect on spatiotemporal dynamics of infectious population across states by

setting the coefficients at different configurations. We set r = 1−αr(1−r0) and b = αbb0, where

r0 and b0 are the report and transmission rate as of March 20, 2020 using data assimilation fitting

result. By decreasing αr from 1 to 0, we increase the report rate from the original r0 to 1, and by

decreasing αb we decrease the transmission rate. Most states, except a few such as NY, MI, and

CA, see drastic improvement when the transmission rate is decreased and the testing(reporting)

rate is increased, but the reduction of interstate traffic alone is not as effective. Our modelling

reveals that once the epidemic in an area has reached a certain stage, the difference that can

be caused to the local situation by the relatively small number of imported cases due to the

interstate travel is insignificant. According to our modeling, all states in the United States

have reached that stage. Therefore, as long as those travelers follow the social-distancing rules

and the local government provides sufficient testing capacity, there is no apparent urge to curb

interstate travel. This is in line with the finding in (20, 36), in which the authors projected the

pick up of the spreading in other parts of China outside of Wuhan with about 3 days delay, and

in the world outside China within a 2-3 weeks of delay, assuming no further screening is in

place. Different from China where the city of Wuhan is clearly the epicenter of the COVID-

19 outbreak and the travel ban quickly gets the rest of China under control, most of the states

in the United States have already had signs of community spread by March 20, 2020 (5), and

banning other states will hardly make much difference to the local situation. In addition, Fig. 2

shows the corresponding prediction time series of infectious population in top 15 states under

two scenarios (see also Fig. S14): (A) the reported rate and the transmission rate are unchanged
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as of March 20, 2020, with αr = αb = 1, in which most states will continue their exponential

growth before reaching their peak; (B) with αr = αb = 0.1, that is, when the transmission rate

b is much smaller and the reported rate r is much higher (closer to 1), we can “flatten the curve”

on the virus.

We further investigate the effect of increased testing capacity and report rate. As shown

in Figure 3a, most states see drastic improvement when the report rate increases. All states,

by April 29, see monotonically exponential reduction of infections. The impact is strong in

states such as MA, AZ, FL, and OR, but relatively weak in states such as NY, MI and IL. In

Figure 3b, we study the effect of αr and αb on the basic reproduction rate Re in NY (see other

states in Fig. S15). It can be seen that merely raising the report rate cannot fully make Re < 1.

To mitigate the spread of COVID-19 in these states, a proactive approach needs to be taken,

and quick detection and isolation of the exposed population need to be in place instead of being

delayed until the onset of the symptoms. This measure can prevent the exposed population from

potentially infecting other susceptible people. In Figure 3c, we plot the increase of infections

in terms of Dq (i.e., the temporal lag in putting a person into quarantine) for the states that

are sensitive to change of Dq, including NY, NJ, IL, GA, MI, CO, WI, LA, TX, PA, MA, and

TN. The longer one waits to inform and isolate the exposed population, the more infection one

observes. For example, there is a sharp transition for NY and MI. If the average detection and

isolation time is more than 2 days, the number of infections will significantly increase.

The results again showed the importance of sufficient testing and strong transmission-

intervention measures such as self-quarantine and stay-at-home policy (38). These policies can

help quickly identify the source of infection and isolate them before they infect the remaining

population. This measure presumably comes with a lower economical cost.
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Discussion

Modeling and analyzing the spread of COVID-19, and assessing the effect of various policies

could be instrumental to national and international agencies for health response planning

(9, 14, 21, 28, 36, 38). We show that the effect of interstate travel reduction is at most modest

in the United States when the outbreak has already widespread in all states. On the other hand,

we need to impose strong transmission-reduction intervention and increased testing capacity

and report rate to contain the spread of virus. The result is in agreement with previous

findings (9, 12, 14, 23, 36, 40), suggesting that the effect of travel ban at a later stage of the

outbreak is rather modest. This is also in line with the fact that the outbreaks still occurred in

Europe even upon the strong travel ban on the earlier epicenter of Wuhan and its surrounding

cities in China. We also show that the transmission-reduction intervention such as policies on

the social-distancing and shelter-in-place rules, and the increase of testing rate, which facilitates

immediate isolation upon exposure, will significantly reduce the total infected population. Such

effect is mostly visible for the states of NY, NJ, MI, and IL. Particularly, our modeling results

showed that for states such as NY and MI, to achieve an optimal infection reduction, a more

proactive approach needs to be taken to quickly identify the exposed population and isolate

them within two days of exposure in order to ensure the infection reduction. The result is in

agreement with previous findings (24, 28).

We do need to emphasize that the model itself does not distinguish different ways of

traveling across states. Indeed, if the interstate travel is conducted mostly through transiting

through busy airports and train stations, and the social-distancing policy is not strictly imposed,

then the high population density at these places will bring up the transmission rate b locally in

space and time, leading to a higher infection rate. This is a severe consequence, but it should

not be counted as the direct result of relaxing travel restrictions.
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Moving forward, we estimate that the decline in travel has a modest effect on the mitigation

of the pandemic. We need a stronger transmission-reduction intervention and increased

detection and report rate in place to prevent the further spread of the virus. The results could

potentially be used to design a optimal containment scheme for mitigating and controlling the

spread of COVID-19 in the United States.
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Figure 1: The spatiotemporal distribution of predicted infected population (in natural logarithm
scale) across all states under different simulation scenarios: (A) αr = 1 and αb = 1, i.e.,
all parameters took the values of the initial configuration, obtained through data assimilation
method using the numbers of confirmed cases during March 1 – March 20, 2020; (B) the
travel flow was reduced to αt = 0.05, while other parameters values remained unchanged; (C)
αr = 0.1 and αb = 1; (D) αr = 1 and αb = 0.1; (E) αr = 0.1, αb = 0.1. In the simulations, the
transmission rate was set to be b = αbb0 and the reporting rate was set to be r = 1−αr(1− r0).
Where r0 and b0 were the reporting rate and the transmission rate on March 20, 2020, which are
inferred from the data assimilation step.

18

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2020. .https://doi.org/10.1101/2020.04.03.20052720doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.03.20052720
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2: The prediction time series of the total infected population in the 15 most affected
states under two scenarios: (A) αr = αb = 1, i.e., both the reported rate and the transmission
rate remained unchanged; (B) αr = αb = 0.1, i.e., the transmission rate b was smaller and the
reported rate r was larger (closer to 1) as r = 1− αr(1− r0).
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Figure 3: (A) Susceptible population (S) on April 29, 2020 as a function of αr. S(αr = 1) is
the susceptible population on April 29 computed with the report rate set as the original report
rate inferred from the data assimilation step. In all states, S increases as αr decreases, meaning
that more people stay unaffected when a higher report is enacted. (B)Re, the basic reproduction
number, on April 29 for different αb and αr in NY. The red line is the level set Re = 1. It can be
seen that increasing the reported rate helps diminish the reproductive number, but cannot reduce
Re under 1 if the original transmission rate b0 is applied; (C) Susceptible population on April
29 for different Dq. S(αr = 1) is the same as in (A). S significantly depends on the period from
expose to quarantine.

20

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 7, 2020. .https://doi.org/10.1101/2020.04.03.20052720doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.03.20052720
http://creativecommons.org/licenses/by-nc/4.0/

