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Abstract

Motivation: The lower an individual’s socio-economic position, the higher their
risk of poor health in low-, middle-, and high-income settings alike. As health
inequities grow, it is imperative that we develop an empirically-driven mechanistic
understanding of the determinants of health disparities, and capture disease
burden in at-risk populations to prevent exacerbation of disparities. Past work has
been limited in data or scope and has thus fallen short of generating generalizable
insights.
Approach & Results Here, we integrate empirical data from observational
studies and large-scale healthcare data with models to characterize the dynamics
and spatial heterogeneity of health disparities in an infectious disease case study:
influenza. We find that variation in social, behavioral, and physiological
determinants exacerbates influenza epidemics, and that low SES individuals
disproportionately bear the burden of infection. We also identify geographical
hotspots of disproportionate influenza burden in low SES populations, and find
that these di↵erences are most predicted by variation in healthcare utilization and
susceptibility.
Conclusion The negative association between health and socio-economic
prosperity has a long history in the epidemiological literature. Addressing health
inequities in respiratory infectious disease burden is an important step towards
social justice in public health, and ignoring them promises to pose a serious
threat to the entire population. Our results highlight that the e↵ect of
overlapping behavioral social, and physiological factors is synergistic and that
reducing this intersectionality can significantly reduce inequities. Additionally,
health disparities are expressed geographically, as targeting public health e↵orts
spatially may be an e�cient use of resources to abate inequities.

Keywords: Health disparities, influenza, network epidemiology, spatial
heterogeneity

Introduction

Health disparities are di↵erences in health outcomes between social groups, and they

persist in all modern public health settings. Health disparities may be the result of

health inequalities, which are caused by biological or cultural variations, or by health

inequities, which are driven by unfair factors and are avoidable with policy action

[1]. There is extensive evidence that social factors, including education, employment,

income, and ethnicity have a distinct influence on how healthy a person is: the lower

an individual’s socio-economic position, the higher their risk of poor health for both

chronic and infectious diseases in low-, middle-, and high-income settings alike [2].

There is also a role played by geographic context in which the spatial distribution

of disparity in health cannot be explained by variation in social factors alone [3]. As
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the divide in health disparities grows wider across the world and within countries,

it is imperative that we continue to understand how social determinants impact

health at the population-level, and how this is reflected geographically [4]. Here, we

integrate empirical insights from past studies to characterize the impact of social

determinants on the dynamics and spatial heterogeneity in an infectious disease

case study, influenza.

Influenza is a respiratory infectious disease that occurs in annual epidemics in

temperate regions that can have severe outcomes, especially in young children and

elderly [5]. Several studies have demonstrated social di↵erences in influenza mor-

bidity and mortality [6, 7, 8, 9, 10, 11]. For severe influenza, the most impoverished

areas have been shown to experience twice the influenza hospitalizations compared

to regions with the lowest rates of poverty [12], and low education has been shown

to be positively associated with influenza hospitalization rates [13]. Past work has

even shown that socio-economic factors played a significant role in the morbidity

and mortality caused by the 1918 influenza pandemic [14, 15, 16]. The proposed

determinants of disparities in influenza burden include a number of physiological

and socio-behavioral dimensions [17, 18]. In particular, influenza vaccine coverage

and healthcare access are higher in areas with increased levels of education and

household income [19, 20]. Additionally, low socio-economic status (SES) individu-

als have been shown to experience increased susceptibility to respiratory infections

due to increased stress [21, 22] and have less access to paid sick leave, resulting in

less school and workplace absenteeism when ill [23, 24]. Lastly, it has been proposed

that the social patterns of low SES populations a↵ect their influenza risk: Larger

household sizes and higher population density may lead to higher infection risk

[25, 26], while a less robust social network might result to decreased exposure, but

also less support during recovery if infected [18].

Mathematical modeling studies of social disparities in influenza burden have used

a simulation approach [27, 28, 29] and have focused on the e↵ects of material de-

privation (i.e. lack of access from income, education, employment) or social de-

privation (i.e. lack of social cohesion and support due to small household sizes,

single parenting, divorce or widowing). Such studies are important in uncovering

the mechanistic explanations of influenza disparities, but have been limited in their

geographical extent, or by the use of proxy measures. For example, [27, 29] consider

phenomenological variation in social contact rates without empirical evidence link-

ing vulnerable groups to that variation, thus limiting insights on the mechanisms

that lead influenza disparities; [28, 29] focus on dynamics within specific cities,

limiting generalizability.

Surveillance-based statistical studies of influenza disparities have been spatial in

nature and have highlighted the challenges of disease surveillance under these dis-

parities. Surveillance systems gather the data that shapes our understanding of

influenza dynamics, and in the US and most European countries, influenza-like ill-

ness (ILI) surveillance occurs through reporting by sentinel healthcare providers.

Such sentinel surveillance systems have been resource-e�cient means of collecting

high quality data, but they do not reliably capture data for all populations, since

they are dependent on health care accessibility, health care seeking behavior, and

other reporting issues [30, 31]. As a result, studies that rely on healthcare data for
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characterizing rates of ILI sometimes find decreasing rates of disease with increasing

social deprivation [18]. While this negative association may be the result of lower

exposure in impoverished areas (as suggested by [18]), it is likely that there exist

spatial and social heterogeneities in surveillance caused by healthcare utilization.

Indeed, Scarpino et al. have shown that the most impoverished areas are blindspots

in the US influenza sentinel surveillance system, ILINet, and models based on these

data make the best predictions in a✏uent areas while making the worst predic-

tions in impoverished locations [32]. To better understand and respond to influenza

epidemics and pandemics, we must improve our capability to detect and monitor

outbreaks in at-risk populations.

In this work, we (a) develop data-driven epidemiological models to assess how

social, behavioral and physiological determinants impact population-level influenza

transmission in a controlled manner; and (b) develop statistical ecological mod-

els from large-scale disease data to estimate latent influenza burden in vulnerable

populations in the United States. We hypothesize that low SES populations bear

a disproportionate burden of influenza infection, and that a combination of social,

economic and health factors cause this disparity. We aim to identify geographic

areas where burden is highest in low SES populations to provide hotspots for addi-

tional surveillance. As health disparities widen, it is imperative that we develop an

empirically-driven mechanistic understanding of the determinants of health dispar-

ities, and capture disease burden in at-risk populations. Such insights can allow for

improved influenza forecasting, resource allocation and target intervention design.

Results

Here, we have evaluated the impact of social, behavioral, and physiological mech-

anisms on driving influenza disparities. We achieved this through epidemiological

model experiments in a population network with realistic SES-based contact pat-

terns. This increases our understanding of the role that SES-driven variation plays

in determining influenza dynamics. This also allows us to disentangle the e↵ects

of multiple proposed drivers of disproportionate burden in low SES. We have also

assessed the impacts of low SES on influenza at the population level. We estimated

low SES ILI at the county-level across the United States, accounting for variation

in social, economic and health factors, as well as measurement biases. This provides

estimates of low SES ILI burden at a fine spatial scale, identifying areas which are

likely currently overlooked by influenza surveillance systems. These findings also

provide an understanding of SES-based factors associated with disproportionate

burden at the population level, which could guide future public health e↵orts to

reduce socioeconomic health disparities.

Contact patterns vary by socioeconomic status

We used an egocentric exponential random graph model (ERGM) to simulate net-

works with realistic social contact patterns based on socioeconomic status (SES)

(measured by education level, [33]) from the POLYMOD social contact survey. (Ad-

ditional model details can be found in Methods). The fitted network model is consis-

tent with the contact heterogeneity in the data (Figure 1A), and all individual-level

attributes (i.e. age, sex, contact location, and education level) are significant in pre-

dicting contact structure (Table S1). Additionally, our method to vary population
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SES composition (details in Methods) results in consistency in network structure

based on degree and assortative degree by SES-status (Figure 1B). Thus, networks

with increased representation of low SES individuals maintain the same SES-based

contact patterns as the POLYMOD data. Importantly, the network model captures

variation in contact structure by SES. In particular, low-SES individuals have lower

mean degree and variation in degree (Figure 1C), but have higher SES-assortative

degree compared to those of higher SES (Figure 1D).

Inequities increase low SES influenza transmission

The contact patterns of low SES individuals appear to di↵er from the rest of the

population, thus it is important to consider how this network structure impacts epi-

demiological dynamics. To assess the role of these individuals and their behavioral

and physiological di↵erences, we integrated into an epidemiological network model

of influenza transmission five key hypothesized drivers of disparities in influenza

burden: a) social contact di↵erences, or fewer social contacts and higher assorta-

tivity (as represented in our empirically-informed contact network model); b) low

vaccine uptake; c) low healthcare utilization, which results in less access to influenza

antivirals; d) high susceptibility, which results from stressful environmental factors;

and e) low absenteeism from school or work. Figure 2A shows the low SES infection

burden (i.e. the ratio of the number low SES infections and the number of all in-

fections) in the presence of each factor, combined with social cohesion. The results

can be compared against a positive control in which there is no SES-based hetero-

geneity in that factor. Each factor results in a significant increase in the low SES

infection burden in the presence of SES-based heterogeneity, and the e↵ect is most

pronounced when all the factors occur simultaneously. In contrast, the epidemic size

(i.e. the ratio of the number of infections and the population size) for the positive

control is larger than the treatments, for all treatments (with the exception of the

increased stress treatment) (Figure S33).

This combination of results can be explained by the role that low SES individuals

play in the network. On the one hand, low SES individuals have lower mean degree

(Figure 1C), resulting in a smaller epidemic size when these low degree individu-

als experience transmission-increasing health disparities, compared to when higher

degree, higher SES individuals experience them. Thus, when SES-driven processes

that increase transmission e↵ect low SES individuals, it results in a smaller overall

epidemic.On the other hand, low SES individuals have high assortativity with other

low SES individuals (Figure 1D). Thus, when health disparities increase transmis-

sion of low SES individuals, they are more likely to infect other low SES individuals

that are also experiencing these mechanisms, resulting in increased spread among

this assortative group.

Next, we consider how the low SES infection burden scales with an increasingly

large low SES population. We find that epidemic size increases with an increasing

proportion of low SES individuals, and this e↵ect appears to be driven by increasing

infection of low SES individuals as they make up a larger component of the network

(Figure S32). Indeed, low SES individuals experience a disproportionately large

infection burden when all SES-based behavioral and physiological factors occur

(Figure 2B). Additionally, high SES individuals experience a disproportionately

small infection burden in the presence of the same factors.
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Low SES populations experience disproportionate influenza burden

Our results thus far characterize the mechanistic role that social, behavioral and

physiological factors play on influenza burden in low-SES populations in data-driven

controlled experiments. Here, we aim to characterize how macroscopic factors im-

pact influenza dynamics in low-SES populations, integrating our theoretical findings

with population-level data. For population-level influenza data, we used medical

claims of ILI at the county level across the United States. This data stream has

been demonstrated to provide enhanced surveillance opportunities for influenza-like

illness [31, 34]. However, we find that these data suggest that ILI burden decreases

with increasing low SES representation (measured by proportion of low education

individuals) (Figure S34). This pattern is counter to our previous mechanistic model

findings and to past small scale studies, suggesting that there may be measurement

biases in these surveillance data.

To better estimate influenza burden in low SES populations, we fit a Bayesian

spatial hierarchical model that accounts for measurement biases and borrows in-

formation from spatial covariates (details in Methods). Our model estimates of low

SES ILI from this model show a positive relationship with the low SES population

size (Figure S36) , and allow us to consider spatial disparities in influenza burden.

Figure 3A shows the county-level map of low SES ILI relative risk. In counties where

the relative risk is greater than one, low SES populations bear a disproportionate

burden of ILI, compared to expected levels. This map highlights areas of high rel-

ative low SES ILI cases in the southeastern United States, which is a region where

low SES levels are high. Other states like California and Colorado also appear to

have high levels of low SES ILI relative to the size of the low SES population.

To validate our findings, we consider data on poor health among low SES individu-

als as reported in the CDC’s Behavioral Risk Factor Surveillance System (BRFSS),

a health behavior telephone survey conducted with over 400,000 adult participants

annually [35]. We compare our model estimates of ILI among low SES populations

to the BRFSS data on poor health in low SES populations (Figures S43 and S44),

and find a moderate Pearson’s correlation S42 and a Jaccard similarity index of

0.66.

Healthcare utilization and susceptibility di↵erences are the strongest drivers of ILI in

low SES populations

Figure 3B shows the coe�cient estimates and credible intervals resulting from the

Bayesian spatial hierarchical model. First, the model shows that there is a posi-

tive relationship between low SES ILI and the number of physicians in the medical

claims database, which represents the measurement submodel. It is expected that

counties with more reporting will be positively associated with increased ILI data.

The remaining covariates represent the process submodel, incorporating markers

for di↵erent social and health processes believed to be associated with health dis-

parities. Susceptibility, represented by rates of poor health and pollution levels, is

positively associated with higher rates of low SES ILI. Social contact, expected to

be high for larger household size and to be low for a higher proportion of single par-

ent households, is positively associated with low SES ILI. Absenteeism, represented

by chronically absent students (10 or more days of absenteeism), is negatively asso-

ciated with low SES ILI. Influenza vaccine uptake, represented by adult influenza
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vaccinations, is also negatively associated with low SES ILI. Additionally, healthcare

utilization, represented by insurance rate and number of primary care providers, is

negatively associated with low SES ILI. One environmental factor, represented by

specific humidity, was also included in the model as it has previously been found

to be a strong predictor of spatial variation in ILI [31]. As expected, humidity is

strongly negatively related with low SES ILI.

Discussion

Increased infectious disease prevalence among lower socio-economic status popu-

lations has been observed in many settings. What has been missing, however, is

a better understanding of the mechanisms that drive this disparity. We used a

mechanistic epidemiological network model which allowed us to assess the impacts

of SES-based behavioral and physiological di↵erences on influenza in controlled ex-

periments. This highlighted the role played by all mechanisms in tandem to produce

disproportionate disease burden in low SES populations. To address the gap that

exists in our surveillance of ILI and to estimate the spatial distribution of influenza

disparity, we then used a Bayesian spatial hierarchical model to estimate population-

level low SES ILI at a fine spatial scale across the United States, accounting for

disproportionate infection of low SES individuals, measurement biases, and county-

level factors hypothesized to be associated with influenza and SES. Our results shine

light on the spatial distribution of respiratory disease health disparities.

In our epidemiological model, disease transmission occurs over the contact net-

work structure, which accounts for heterogeneity in contact patterns by SES. While

past work has integrated contact heterogeneity by other socio-demographic char-

acteristics such as age and occupation [36, 37], SES-based contact heterogeneity

has not been integrated into contact network models for epidemiological purposes.

Epidemiological simulations on the SES-heterogeneous network reveals that each

hypothesized behavioral and physiological factor leads to increased infection of low

SES individuals. Additionally, we find that communities with larger low SES popu-

lations experience larger epidemics, which is in agreement with small scale studies

[11, 10] and with the largest observational study of influenza in low SES conducted

by the CDC, though the measures evaluated are not directly comparable [12]. The

proposed drivers are not mutually exclusive, so this reveals potential e↵ects that

could not be identified in past studies that investigate the impact of a single SES-

based mechanism or impacts that might be aggregated in observational studies. We

note that these experiments also include SES-based variation in social cohesion (i.e.

SES-based contact heterogeneity in the population model), so the e↵ect shown in

Figure 2 is the result of both mechanisms combined. In Figure S33, we also illustrate

the impact of each mechanism independent of social cohesion.

Our e↵orts to consider the impacts of low SES on influenza spatial heterogeneity

generated county-level maps of disproportionate burden of ILI in low SES popu-

lations. Our findings identify pockets of disproportionate ILI burden on low SES

populations across the United States, and represent a first step in filling the gap

that exists in all healthcare-based surveillance. The model also produced a set of

estimates for the e↵ect of each hypothesized ecological measure. We find that all

proposed factors, i.e. lack of healthcare utilization (limited access to physicians and
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insurance), low vaccination coverage, low absenteeism, high social contact (large

household size), and susceptibility (poor health and pollution), are significantly as-

sociated with influenza in low SES populations. This supports our previous finding

that all of the mechanisms combined result in disproportionate low SES influenza

burden. To validate our findings, we considered independent health data in low SES

populations, and found our model estimates to be correlated and spatially similar.

However, SES-stratified influenza data would be important to ground truth our

model estimates.

Our work has several limitations. The network structure of our epidemiological

model is based on one social survey from 2007 in Europe, and may be less represen-

tative of the United States today. Additionally, survey data was not collected for

the SES of the contacts of survey participants so required us to make assumptions

which could a↵ect our results about SES assortativity. Additional social contact

data collection across the United States that accounts for SES heterogeneity would

be useful for future studies given the large socio-economic inequality in the country

[38, 39]. In our spatial ecological model, we assume that disproportionate burden in

low SES populations remains constant over influenza seasons. While this is a rea-

sonable first assumption based on social and healthcare processes being consistent

over our study period, there may be variation in the impact of ILI on low SES pop-

ulations due to strain distribution and environmental features that do vary across

seasons. Future work could focus on temporal variation in low SES ILI dynamics.

As the divide in health disparities grows wider across the United States, we pro-

pose the use of infectious disease case studies to improve our understanding of this

challenging problem. We suggest that we move beyond studies based on proxy mea-

sures such as income and education which may provide an incomplete picture [3],

and dig into the mechanisms that may be at the root of inequities. Furthermore,

we advocate for the prioritization of capabilities to detect and monitor outbreaks

in at-risk populations so that we may prevent exacerbation of health disparities.

Addressing health inequities in respiratory infectious disease burden is an impor-

tant step towards social justice in public health, and ignoring them promises to

pose a serious threat to the entire population. Our results suggest that (a) the

e↵ect of overlapping behavioral and social factors is synergistic and reducing this

intersectionality can significantly reduce inequities; and (b) health disparities are

expressed geographically and targeting public health e↵orts spatially may be an ef-

ficient use of resources to abate inequities. Further attention to the mechanisms and

processes that lead to health inequities, and specifically health inequities that may

be overlooked by our currently surveillance systems, will be important to identifying

actionable steps to mitigate negative health outcomes in the future.

Methods

In this study, we use (1) a mechanistic network epidemiological model to assess in-

fluenza transmission in the presence of individual-level socioeconomic status (SES)-

based behavioral and physiological variation; and (2) an inferential spatial model

to geographically localize influenza-like illness (ILI) burden among low-SES popu-

lations in the presence of population-level variation in social and health indicators.
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Modeling Impact of Individual-Based SES factors on Disease Burden

To achieve the mechanistic understanding, we (a) fitted a contact network model

from empirical contact data that includes contact heterogeneity stratified by age,

sex, contact location, and socioeconomic status; and (b) performed epidemiological

simulations on these networked populations integrating epidemiological di↵erences

based on SES, parameterized by empirical studies.

Contact Network Model

In a contact network model, nodes represent individuals, and edges represent

epidemiologically-relevant interactions between individuals. The degree of a node

is the number of edges, or contacts, of the node, and the degree distribution of a

network is the frequency distribution of node degrees within the population. To

generate realistic contact networks to evaluate epidemic outcomes, we used an ego-

centric exponential random graph model (ERGM) [40]. An egocentric ERGM allows

for the construction of sociocentric networks based on egocentrically sampled data,

in which participants (or egos) report the identity of their contacts (or alters), who

may or may not be study participants. Our egocentric ERGM model was based on

the POLYMOD dataset, a large, egocentric contact survey that took place across

several countries in Europe to identify close interactions of over 7000 individuals

across eight European countries [41].

Nodes in the network had the following attributes: (a) age, grouped as infants-

toddlers (age 0-4), school-aged children (age 5-18), adults (age 19-64), and elderly

(age 65-100); (b) sex, classified as male or female; (c) contact location, in which

a node can have known home contacts and known school or work contacts; (d)

education level as a proxy for socioeconomic status [33], grouped as low education

(less than a high school education), medium education (high school or vocational

school education), or high education (any university education or beyond). Age and

sex were available in the data for egos and alters, while education level was only

provided for egos. Therefore, it was assumed that an ego’s work contacts had the

same education level based on their occupation, and that an ego’s home contacts

had the same education level as an indicator of household socioeconomic status. To

represent communities with di↵erent SES compositions, we resampled additional

low education egos from the low education sample in the POLYMOD dataset. We

produce networks composed of approximately 20-60% low education individuals

(Table S3).

The model was fit using the ERGM package [42, 43]. The best model was selected

based on collinearity criteria and goodness of fit to the POLYMOD data. From the

best fit ERGM model, we simulated 5 networks. Additional model details, including

model terms (Table S1), collinearity (Table S2), model diagnostics (Figure S4), and

goodness of fit (Figure S5 - Figure S29) can be found in the Supplement.

Random regular networks of the same size and mean degree were also generated as

null networks to evaluate the e↵ect of contact heterogeneity. We used the Networkx

package for network generation and analysis [44].

SES-based Epidemiological Model

Chain binomial SEIR (Susceptible-Exposed-Infected-Recovered) simulations were

performed on the networks generated by the egocentric ERGM model and the con-

trol networks to examine the spread of a respiratory infection, like influenza, through
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a naive population. Model parameters pertinent to seasonal influenza spread were

selected from literature (Table S4) [45, 46].

Five hypothesized drivers for increased influenza in low SES populations were

integrated into the epidemiological simulations. Each hypothesized driver represents

a health behavior or physiological factor, and is represented by a single parameter,

the value of which was selected from pertinent literature (Table S4). Social contact

di↵erences represents the SES-based social contact rates of individuals, and thus is

represented by the ERGM-generated networks. The remaining factors are:

• Low vaccine uptake: Individuals may be vaccinated before the start of the

season with a perfectly e�cacious vaccine. Vaccinated nodes were randomly

selected and removed from the network. Vaccination coverage is parameterized

by � and �low in high- and low-SES individuals, respectively. The value of delta

was based on a US population survey of vaccine coverage related to education

level [19].

• High susceptibility: Those who experience a more stressful environment are

more susceptible to infection, and thus have a greater probability of becoming

infected upon contact with an infected individual. Susceptibility is parame-

terized by � and �low in high- and low-SES individuals, respectively. This is

based on an immune challenge experiment that found that those of high SES

were about half as likely to become infected with a cold compared to those of

low SES [22].

• Low healthcare utilization: Infected individuals who do not seek healthcare

and receive antivirals have a longer infectious period, based on a model of

within-host and population-level dynamics [47]. The proportion of the infected

population seeking healthcare is parameterized by � and �low in high- and

low-SES individuals, respectively.

• Low absenteeism: Infected individuals may exhibit absenteeism from school

or work if they have access to leave and care at home. Those exhibiting absen-

teeism remove school or work contacts. Access to absenteeism is parameterized

by ⇢ and ⇢low in high- and low-SES individuals, respectively. These values are

based on rates of paid sick leave by education level in a survey across the US

[48].

For our experimental design, each SES-based factor was tested separately and

together on each network. Disease outbreaks for each treatment were simulated 200

times on each network, with 5 replicate networks. We also considered two controls to

compare our experimental results: a) a homogeneous control, in which each factor

was randomly distributed across a random regular network; b) a heterogeneous

control, in which each factor was randomly distributed across the ERGM-generated

networks.

Modelling Impact of Disease in Low-SES Populations

To achieve an inferential understanding, we (a) integrated the network model find-

ings with empirical ILI data for an estimate of ILI burden among low-SES indi-

viduals; and (b) fitted a spatial Bayesian hierarchical model with population-level

covariates to account for measurement biases and improve our estimate of low-SES

ILI burden at the population-level.
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Spatial Inferential Model

We used a Bayesian spatial hierarchical model to estimate latent ILI cases among

low SES individuals, accounting for measurement biases and county-level factors

associated ILI in low SES populations. We assume that that the proportion of ILI

cases occurring in low-SES populations is constant over time from 2002-2008. We

modeled low-SES ILI (Yit) in county i in flu season t as:

Yit|Ni ⇠ Binomial(Ni, pi,t)

where pi,t is the probability of detecting low-SES ILI cases, and Ni is the true ILI

cases among low-SES individuals.

We modeled the probability of detection pi as:

logit(pi,t) = ↵0 +
kX

1

↵kzi,t,k + ⌫c + ⌫s

where ↵0 is the intercept, ↵k represents the measurement process predictor vari-

ables, and ⌫c and ⌫s are group e↵ects for county and state, respectively.

We modeled the latent low-SES ILI cases as:

Ni ⇠ NegBin(�i, ✓)

where the negative binomial distribution is parameterized by probability �i and size

✓.

The �i is modeled by:

log(�i) = �0 +
jX

1

�jxi,j + µc + µs

where �0 is the intercept, �j represents coe�cient estimates for low-SES ILI process

covariates, and µc and µs represent county-level and state-level group e↵ects, re-

spectively. We performed approximate Bayesian inference using Integrated Nested

Laplace Approximations (INLA) with the R-INLA package [49]. INLA has demon-

strated computational e�ciency for latent Gaussian models, produced similar esti-

mates for fixed parameters as established implementations of Markov Chain Monte

Carlo (MCMC) methods for Bayesian inference, and been applied to disease map-

ping and spatial ecology questions. We evaluated DIC, WAIC, model residuals and

compared modeled and observed outcomes in order to assess model fit. Additional

model details can be found in Figures S35, S37, S38, S39, S40, & S41.

Response data

We define the response in our model to be the observed influenza-like illness (ILI)

burden in low-SES populations. In particular, we use influenza-like illness reports

from a medical claims database from across the United States collected during

2002-2008 (Figure S30). [Additional details on the dataset can be found in [31, 34]].

To normalize these observed counts, we divide ILI visits by visits for any diagnosis
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during the influenza season. These data are at the county-level but are not stratified

by SES. To produce a county-level estimate of ILI in low-SES populations for our

spatial model, we use the observed ILI burden in the total population and scale

this by the proportion expected among low-SES individuals as predicted by the

epidemiological model from the first part of our study (as summarized in Figure 2).

(The response data can be seen in Figure S31).

Covariate data

All covariate data are at the county level. All covariate data were centered and stan-

dardized. Covariate data were included as a marker for each hypothesized driver of

low SES influenza, based on what data were available at the county level. Covariate

data was averaged across 2002-2008 where possible; otherwise the most appropriate

temporal timeframe available was selected. For the measurement model, the number

of reporting physicians was reported by the medical claims database. For a mea-

sure of susceptibility, reports of poor health and pollution levels were collected from

County Health Rankings [50]. For a measure of social cohesion, mean household size

and number of single parent households were collected from County Health Rank-

ings. To measure access to healthcare, insurance rates and number of primary care

physicians were collected from County Health Rankings. To measure absenteeism,

the number of student who were absent for more than 10 days, noted as “chronic

absenteeism” was collected from the US Department of Education [51]. To mea-

sure vaccination, reports of adult vaccination were collected from the Behavioral

Risk Factor Surveillance System (BRFSS) from the CDC [35]. Humidity levels were

collected from the National Oceanic and Atmospheric Administration (NOAA) to

account for the spatial distribution of influenza cases in the US, as humidity was

identified as the strongest driver of spatial dynamics in a prior model with medical

claims ILI data [52, 31]. See supplement table for covariate data details Table S5.

Validation

To validate our model findings, we compared the model estimates of ILI in low

SES populations with reports of poor health in low SES populations at the county-

level from BRFSS. We calculated the Pearson’s correlation coe�cient of low SES

ILI estimates and low SES poor health estimates. We also calculated the Jaccard

index, based on relative risk classified as 0 or 1, where 0 represents relative risk

below 1 and 1 represents relative risk above 1, for each county in both datasets.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

Research reported in this publication was supported by the National Institute Of General Medical Sciences of the
National Institutes of Health under Award Number R01GM123007. The content is solely the responsibility of the
authors and does not necessarily represent the o�cial views of the National Institutes of Health. We also
acknowledge support from the PhRMA Foundation and the Chateaubriand Fellowship Program. We thank Håvard
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Figures

Figure 1: The network characteristics of the networks generated from the ERGM
model based on POLYMOD data. A: The degree distribution of the POLYMOD data
(light green) compared to the simulated networks (dark green). B: The Kolmogorov-
Smirnov (KS) statistic to evaluate the dissimilarity of the ERGM-simulated net-
works to the POLYMOD data as additional low education individuals are added to
the network. KS statistics compare the dissimilarity of the overall degree distribution
(dark green), the degree distribution of low SES nodes (light blue, solid), the degree
distribution of higher SES nodes (dark blue solid), the assortative degree (e.g. the
low SES contacts of low SES nodes) for low SES nodes (light blue, dashed), and the
assortative degree for higher SES nodes (dark blue, dashed). Low KS values indicate
similar distributions. C: The degree distribution of low SES nodes (light blue) and
higher SES nodes (dark blue). D: The relative assortative degree distribution (e.g.
number of low SES contacts of low SES nodes/number of low SES nodes) of low
SES nodes (light blue) and other SES nodes (dark blue).
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Figure 2: Results of epidemiological simulations on ERGM networks with SES-
driven behavioral and physiological di↵erences. A) All of the proposed SES-driven
behavioral and physiological di↵erences result in an increase in infection of low SES
individuals (dark green, right of paired violin plots), compared to simulations where
the di↵erences are randomly distributed throughout the population (light green, left
of paired violin plots). This di↵erence is most pronounced when all of the mechanisms
occur together. These simulations were performed on a network composed of 60% low
SES, but the results are consistent across networks with di↵erent SES compositions.
B) In all networks, when all SES-driven behavioral and physiological di↵erences are
present, low SES individuals (mean percent of infected population that is low SES
shown in light blue dots) are disproportionately infected, relative to the expectation
(light blue dashed line). High SES individuals are disproportionately underinfected
compared the expectation (dark blue dots compared to dark blue dashed line).
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Figure 3: Results of spatial Bayesian hierarchical model. A) County-level map of
the relative risk of low SES ILI, compared to expected levels, based on low SES
population size, average observation rate, and average ILI. Counties with a value
less than 1 (light green) have a disproportionately low burden of ILI in low SES
population. Counties with a value greater than 1 (light blue for lower values and
dark blue for higher values) have a disproportionately high burden of ILI in low SES
populations. B) Mean model coe�cient estimates and credible intervals. Points are
colored by what process each covariate represents (black: measurement bias, red:
susceptibility, orange: social contact di↵erences, yellow: absenteeism, green: vacci-
nation, blue: healthcare utilization, purple: environmental factors).
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