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Abstract 

I employ a simple mathematical model of an epidemic process to evaluate how four basic 

quantities: the reproduction number (ℛ), the numbers of sensitive (S) and infectious individuals 

(I), and total community size (N) affect strategies to control COVID-19. Numerical simulations 

show that strict suppression measures at the beginning of an epidemic can create low infectious 

numbers, which thereafter can be managed by mitigation measures over longer periods to flatten 

the epidemic curve. The stronger the suppression measure, the faster it achieves the low numbers 

of infections that are conducive to subsequent management. Our results on short-term strategies 

point to either a two-step control strategy, following failed mitigation, that begins with 

suppression of the reproduction number, ℛC, below 1.0, followed by renewed mitigation measures 

that manage the epidemic by maintaining ℛC at approximately 1.0, or should suppression not be 

feasible, the progressive lowering of the effective reproductive number, ℛCeff ≈ ℛC S/N, below 

1.0. The objectives of the full sequence of measures observed in a number of countries, and likely 

to see in the longer term, can be symbolically represented as: ℛ0 à ℛC<ℛ0 à ℛC<<1.0 à 

ℛC≈1.0 à ℛCeff<1.0. We discuss the predictions of this analysis and how it fits into longer-term 

sequences of measures, including misconceptions about ‘flattening the curve’ and how the herd 

immunity concept can be used to ‘leverage’ immunity. 
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Introduction 

The COVID-19 pandemic is a major global threat. Spread of the SARS-CoV-2 virus began in 

China in late 2019, with 41 cases recorded according to the WHO as of January 11/12, 2020, 

attaining more than 7 million confirmed cases worldwide as of June 11th (1). By its highly 

transmissible and virulent nature, COVID-19 is putting considerable strain on health services, 

meaning that increasing numbers of patients in the most afflicted countries cannot be adequately 

cared for, which will likely further exacerbate disease morbidity and mortality. 

Research groups have mobilized to collect and analyze molecular (2) and epidemiological (3-5) 

data, and employ statistical and mathematical models to simulate regional and national outbreaks 

and the global pandemic, and evaluate possible control measures (e.g., 6-14). 

Particularly important in this effort is the projection of how different strategies will affect 

outbreaks. Conducting such studies without delay is crucial, both because most countries are in 

early outbreak stages and thus open to management options, and since some nations are days or 

even weeks behind in their epidemics compared to others. The latter property is important, since 

the lockstep nature of COVID-19 epidemic trends mean that nations can ‘peer into the future’ to 

predict how their own outbreaks could unfold. This information and the efficacy of control 

strategies already adopted by other ‘future’ countries can be instrumental in giving the time needed 

to plan and logistically organize effective measures. 

Here, we employ a simple epidemiological model to elucidate some of the basic parameters and 

processes that arbitrate short-term control measure outcomes. The model’s intuitive results 

emphasize the necessity to adopt one or both of two strategies. ‘Suppression measures’ are 

engaged early and decisively to lower the reproduction number, ℛ, below 1.0 and as close as 

possible to 0.0. When successful, this results in low, manageable numbers of infections (a low 

‘set-point’), and can then be followed by a second strategy: ‘Mitigation measures’ that continue 

to flatten the epidemic curve by maintaining the reproduction number to approximately 1.0. 

However, strategies need not follow this sequence. For those countries reacting very early in an 

outbreak, mitigation measures alone may be sufficient. For those that are late and/or unable to 

employ radical suppression measures, ‘progressive mitigation’ so as to lower ℛ below 1.0 may be 

the only alternative. 

The objective of the present study is to emphasize how strategic lowering of the reproduction 

number is central to a rational management plan to minimize the impacts of COVID-19. Because 

local outbreaks are producing large numbers of recovered cases, this opens the possibility that any 

acquired immunity can be ‘leveraged’ to reduce the intensity of future policies.  
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Model 

We employ a modified SEIR model of Susceptible (S) → Exposed (E) → Infectious (I) → 

Removed (R) states (15). The ordinary differential equations take the form: 

𝑑𝑆
𝑑𝑡 = −b	

𝐼𝑆
𝑁  

𝑑𝐸
𝑑𝑡 = b	

𝐼𝑆
𝑁 −

1
𝑇./0	

	𝐸 
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𝑇./0	

	𝐸 − 𝛾𝐼 
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where N is a constant equal to S+E+I+R, b is the transmission parameter, Tinc is the incubation 

period, 𝛾 is the rate of removal into different subclasses of R. Specifically, R is composed of minor 

cases 𝐶5, severe cases at home 𝐶6, severe cases in hospital 𝐶78, and fatalities 𝐶9, given by  

𝑑𝐶5
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𝐶9
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	. 

Here, 𝑃5	, 𝑃7	, and 𝑃9	 are, respectively, the probabilities of a case being mild, severe and resulting 

in death (𝑃5	 + 𝑃7	 + 𝑃9	 = 1). 𝐷<5, 	𝐷<7, 𝐷8=, are days to recovery for mild and severe cases, 

time of hospitalization, and 𝐷9 is the time from end of incubation to death (Titod) minus duration 

of infectiousness (Tinf). 

An outbreak occurs if the basic reproduction number, ℛ0 = b /	𝛾 > 1.0. The impact of control 

measures is easily understood by their impact on ℛ0, and in the presentation below, we refer to 

these effects by reductions in ℛ0, yielding the modified constant value, ℛC.  
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Numerical methods 

We employ this general model for COVID-19 to explore how some of its central properties could 

affect outbreak control efforts. The over-simplicity of the model means that it should not be used 

to make precise predictions for actual epidemic management situations, but rather serve as a 

conceptual tool that can serve as a first step towards more realistic analyses for specific scenarios 

or situations.  

Specifically, we focus on how two generic types of objective – suppression and mitigation – affect 

epidemiological and clinical parameters. We expect that, all else being equal, suppression will 

reduce ℛ0 more than would mitigation. However, their impacts on ℛ0 are expected to differ from 

locality to locality depending on the details of (and adherence to) the measures deployed. This 

argues for examining a range of ℛC for each of the two types of objective, and recognizing that 

mitigation measures in one locality (e.g., country) could be more effective at lowering ℛ0 than 

suppression measures in another. 

Epidemic management strategies were investigated using the Epidemic Calculator package (16) 

(Supplementary Material). This platform is rich in possibilities for varying key parameters such 

as the reproduction number (ℛ) and temporal scales of infection (Tinf and Tinc), as well as initial 

sub-population of infections individuals (I0) and the total population size (N=S0+I0). The platform 

also permits the user to experiment with different “clinical” parameters, including hospitalization 

rate, case fatality rate, and recovery time for mild cases.  

The results presented below are based on the parameter values provided on the website simulator 

page (Table 1). Given the recent emergence of COVID-19, these parameter values should be 

viewed as preliminary and possibly inaccurate, since for example, they may be based on limited 

data or be time- or location-specific. This reinforces the above call for caution in interpreting the 

findings presented here, and in using the precise model output for any specific management 

actions. 

Parameter Value 

Basic Reproduction Number (ℛ0) 2.5,3.0 

Infectious period (Tinf) 2.9 days 

Removal rate (g ) 1.0/Tinf 

Incubation period (Tinc) 5.2 days 
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Case fatality rate (𝑃9	) 0.02 

Time from end of incubation to death (Titod) 32 days 

Recovery time for severe cases (𝐷<7) 28.6 days 

Recovery time for mild cases (𝐷<5) 11.1 days 

Hospitalization rate (𝑃7	) 0.2 

Time to hospitalization (𝐷8=) 5 days 

Table 1. Parameters and their baseline values employed in this study. ℛ0 values investigated are based on (3,6). See 

(16) for details on other parameters. 

The Epidemic Calculator package, although very flexible, has some limitations in its use for 

scientific study. First, the accuracy of the simulator output is untested with respect to analytical 

results, independent computational studies, and other SEIR platforms. The only test conducted 

here did verifiy that the simulated equilibrium fraction of susceptible individuals (S¥) followed 

the predicted relation: -ln(S¥/S0)=	ℛ(1-S¥/S0) (15). The results presented below – even if 

consistent with intuition – nevertheless need to be viewed as preliminary and contingent on future 

testing. Second, precision in the intervals for input parameters and platform output were not 

always to the last decimal places, and for large numbers, such as the total community size N, a 

limited number of choices were available. Therefore, for example, there was no choice for exactly 

N=70 million, and as such the next highest option (70,420,854) was employed. The same was true 

for simulations with the lower population size of N=70K (70,263 was used). Moreover, the data 

presented below (i.e., y-axis data point readings) were in some cases closest interpolations of 

closely neighboring values that resulted in the simulation target. Varying the input and reading 

rules to neighboring values was found to have negligible effects on the trends reported, and did 

not change the main conclusions of this study. 

 

Results 

We first explored how the trigger number of infectious cases (I) for suppression measures to be 

engaged, affected the critical level of ℛC necessary to keep infectious cases at or below a set-point 

of 100 after 60 days. We chose 60 days because it is the approximate period that areas of China 

(as the first affected country), decided to enter lockdown.  
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Figure 1. Suppression levels required to meet objectives, given different starting conditions. Simulations begin with 
no measure imposed (ℛ0=2.5) and 1 infectious individual in a population of c. 70 million unexposed individuals. The 
suppression strategy starts when the number of infectious individuals attain a given number (x  axis), which correlates 
with the time elapsed in the outbreak. ℛC is the observed maximum level of ℛ needed to result in a set-point of 100 
or fewer infectious individuals after 60 days of confinement (y – axis). Although not shown, imposing mitigation 
measures in the range 1.0<ℛC<2.5 prior to suppression does not change this basic result. Lines linking points aid 
visualization. See text for further details. 

Figure 1 shows that larger numbers of infectious individuals require stricter measures to attain 

the (arbitrary) set-point objective of 100 or fewer circulating infectious individuals after two 

months of measures. According to our simulations, a population the approximate size of Western 

European nations such as France, Spain, the UK and Germany would need to reduce transmission 

probabilities to near zero to attain the objective, should infectious numbers be on the order of 

100,000. Early interventions in populations with 1 to 100 circulating infectious individuals would 

still require considerable measures, with reductions in baseline ℛ0=2.5 of 25% to 60%, 

respectively. Given cumulative case number doubling times observed in some countries of about 

3 to 5 days (17) (and therefore c. 2 weeks between each log integer on the x-axis of Figure 1), the 

choice of measures without knowing their true impacts on the reproduction number could have 

resulted in insufficient flattening of the epidemic curve and valuable time lost. The data in Table 

2 support these insights, whereby suppression measures need to be increasingly strict in order to 

reduce the time necessary to obtain low target case numbers. 

Duration (days) 
  

ℛC=0.1 
E,I  

ℛC=0.5 
E,I  

ℛC=0.9 
E,I  

0 11643,4645 11643,4645 11643,4645 

10 2392,2261 5240,3643 9480,5475 
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20 492,500 2563,1801 8339,4829 

30 102,105 1257,884 7340,4251 

40 21,22 617,434 6460,3741 

50 4,5 303,213 5684,3292 

60 1,1 148,104 5000,2896 

Table 2. Effect of suppression measure intensity and duration on the number of cases in incubation (E) and infectious 
(I) stages. N=70,420,854. ℛ0=2.5. Start day of intervention=64. E64=11,643, I64=4,645. 

We then asked how population size and the effectiveness of suppression measures would 

condition how subsequent mitigation measures attain objectives after 200 days. We conducted a 

2 x 2 numerical experiment. The first variable was community size, taken either to be a small city 

of about 70,000 inhabitants or a medium-sized nation of about 70 million. (Additional numerical 

experiments not presented here indicate that the observed trends apply at least in the total 

population range of 104 to 108). The second variable explored was the effectiveness of previous 

suppression measures; we evaluated high effectiveness (a reset to a single infectious case) and a 

less, but still acceptable reset to 100 infectious cases. Clearly, any subsequent mitigation measures 

yielding ℛC<1.0 would result in infectious cases decreasing over time (and therefore be a 

successful outcome), but given the impacts of such measures on society, below we consider 

strategies that seek to contain a second epidemic by tuning ℛC to between 1.0 and ℛ0.  

Figure 2 shows how the effectiveness of suppression strategies and community size influence 

how subsequent mitigation measures affect epidemiological and clinical parameters. For example, 

regulating the infectious numbers to less than 10% of the total population requires ℛC less than 

c.1.5, which is about a 40% reduction in the ℛ0 assumed here (Fig. 2A). Peak levels of 

hospitalization can reach c.7%-10% should mitigation measures be 20% or less effective at 

reducing ℛ0 (Fig. 2B). Such levels would exceed hospital bed capacity in most countries by at 

least an order of magnitude (18). Reducing peak hospitalization levels well below 1% (which is 

still too high for many health services) would require ℛC close to 1.0. Finally, similar to the trends 

in Figs. 2A,B, fatalities are sensitive to the effectiveness of prior suppression measures and 

community size, indicating that ℛC needs to be reduced towards unity for smaller communities 

and those unable to reduce infectious cases sufficiently during suppression measures (Fig. 2C). 

These results emphasize that epidemics could be contained by tuning ℛC close to, but above 1.0, 

which would be more logistically and socially attainable than ℛC<1.0.  
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Figure 2. Effect of mitigation 
ℛC on (A) The fraction of 
initially unexposed people who 
are eventually exposed 
(Et+It+Rt) at t=200 days after 
the measure starts; (B) The 
maximum daily fraction of the 
population needing 
hospitalization for any single 
day, up to 200 days after the 
measure starts; (C) The fraction 
of initially unexposed people 
who die during the 200 days of 
outbreak mitigation. Lines 
linking points aid visualization. 
Mitigation starts at: Yellow 
line, I0=1, N=70 million; Gray 
line: I0=100, N=70 million; Red 
line: I0=1, N=70K; Black line: 
I0=100, N=70K. ℛ0=2.5. 

Although not explored here, 
numerical simulations for 
parameter values associated 
with points above the dashed 
line in (A) were influenced by 
‘herd immunity’, i.e., when the 
proportion of the population in 
the susceptible class, S/N<(1.0-
1.0/ℛ) (19). Moreover, note that 
the result in (A) appears to 
contrast with the results in Steir 
et al. (5), who showed higher 
case growth rates with city size. 
The discrepancy can be 
explained by the different units 
employed in each study (case 
growth rate in (5) vs. fraction of 
total population infected at 
some point during a fixed time 
interval (this study)) and how ℛ 
was estimated in (5) (found to 
be city-size dependent) vs. 
assumed invariant in the present 
study. Case growth rate 
(number of new cases on day t – 
number of new cases on day t-1 
/ number of new cases on day t-
1) was found to increase with 
community size in the present 
study (not shown). Numbers 
above points in (B) refer to the 
day that maximum 
hospitalization occurs, and are 
only shown for the Black line 
conditions (note that when 
ℛC=1.0, maximum levels begin 
on day 90 and are constant 
thereafter; for ℛC=1.1, 
maximum levels occur after 200 
days). See main text for 
additional details. 
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The herd immunity threshold is contingent on ℛ0. But policies that reduce transmissions resulting 

in ℛ < ℛ0 will also reduce the threshold. We observed that the attainment of herd immunity, 

whereby the rate of new infections is reduced below unity (when St/N<1.0-1.0/ℛ), did not ensure 

the rapid end to an outbreak (Fig. 2A). Indeed, ‘epidemic overshoot’ (20) occurs in this simple 

model for all ℛ>1.0. Figure 3 extends the findings in Fig. 2A (limited to 200 days) to different 

points in the epidemic. We see that infected levels exceed the herd immunity threshold (black 

line) before maximum hospitalizations are observed (gray line). For ℛC≥1.2 the overshoot by the 

end of the epidemic (blue line) is between c.15-30% of the population. Moderate levels of 

mitigation can have major impacts in the short term (cf. ℛC=2.0 vs. ℛ0=3.0 at 60 days), but as the 

epidemic runs its course, the sensitivity of ℛC exceeding 1.0 becomes apparent; for example, 

ℛC=1.2 results in c.30% of the population infected at some point during the epidemic. We discuss 

the implications of this important finding for policies that ‘leverage’ immunity in the Conclusions. 

 
Figure 3. Epidemic overshoot: Effect of mitigation ℛC on the percentage of an initially susceptible population infected 
by the virus at different points in the epidemic. I0=100, N=70 million. Red line = 60 days after 100th infectious case; 
Black line = herd immunity threshold; Gray line = day of peak hospitalizations (numbers indicate day); Blue line = 
end of epidemic. Note as in Figure 2A, the herd immunity threshold is contingent on ℛ.  ℛ0 =2.5, 3.0 is shown for 
comparison. Lines linking points aid visualization. See main text for additional details. 

Finally, whereas mitigation measures result in fewer cases (Figs. 2, 3), if ℛC>1.0, then they also 

lengthen the course of the epidemic (Figure 4). An epidemic with no mitigation (example shown 

here is ℛ0 =3.0) is 95% complete 85 days after the 100th case. In contrast, an outbreak coming 
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closest to the mitigation target of a flat epidemic (ℛC =1.2) is 80% complete after 482 days and 

95% at 585 days. The implications of long-term mitigation levels are discussed below. 

 
Figure 4. Effect of mitigation ℛC on the number of days until 80%=blue, 90%=orange, or 95%=gray of eventual 
infections occur, during the full course of an epidemic. I0=100, N=70 million. ℛ0 =3.0 is shown for comparison See 
main text for additional details. 
 

Conclusions and future directions 

The lockstep nature of COVID-19 outbreaks in different regions, countries and cities means that 

management practices in places further along the epidemic curve can inform those in earlier 

stages. Control strategies in one country, however, are not always applicable in others, due for 

example to cultural and logistical differences (21). Mathematical models based on empirical data 

have a role to play in adapting capacities to address epidemics, both as conceptual aids and 

management tools. The present study explored two generic types of intervention that can 

contribute to reducing the impact of COVID-19 epidemics. ‘Suppression measures’ would be 

adopted by communities that either initially decided not (or did, but were unable) to mitigate the 

exponential increase of new cases. Suppression reduces the reproduction number below 1.0, and 

in so doing lowers the number of infectious cases to a manageable level. ‘Mitigation measures’ 

may either be introduced as a preventive approach, whereby communities begin to manage very 

early in an outbreak, gradually introduced towards the end of a suppression strategy, or for 

countries unable or unwilling to enforce suppression measures, the only route possible to flatten 
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the epidemic curve. The sequence of objectives observed in a number of countries, and likely to 

be seen in future months, can be symbolically represented as sequential stages: 

𝓡0   à   𝓡C<𝓡0   à   𝓡C<<1.0   à   𝓡C≈1.0   à   𝓡Ceff<1.0 

The latter condition (ℛCeff < 1.0) was not explored in this study, but ‘leverages’ any acquired 

immunity so as to lower the effective reproduction number ℛCeff ≈ ℛC S/N below 1.0 (see 

discussion below).  

The actual application of measures to meet this sequence of objectives is likely to be complex (12-

14), and in particular, mitigation measures could go through multiple successive adjustments in 

the latter two phases represented above. 

Our analysis presented here yield a number of important insights and predictions: 

1. The number of infectious cases at the start of suppression determine how effective these 

measures are at creating a reset. Communities with more than 100,000 infectious cases 

essentially have to reduce transmission to zero in order to have about 100 cases after 60 days. 

Greater suppression measure stringency also means that with slightly longer confinement 

periods, an ever-lower set-point in the numbers of infectious individuals can be obtained. This 

permits reduced measure intensity in subsequent mitigations. 

2. The impact of ‘flattening the curve’ depends on the number of circulating cases. A 

common misconception is that measures should aim to level-off numbers of new infections, 

hospitalizations or deaths. This study has shown the impact of ‘flattening’ early in an epidemic 

(ℛC≈1.0) will depend on the number of circulating cases (E(t)+I(t)) when measures begin. 

During the initial phases of an outbreak (S/N<<(1.0-1.0/ℛ0)), cumulative numbers of deaths 

will be proportional to the initial number of cases. Moreover, small increases in ℛC above 1.0 

can have devastating consequences for morbidity and mortality (22). Our studies indicate that 

‘flattening’ is most viable if measures are instilled sufficiently early in an outbreak (stage 2 in 

the above sequence), or should suppression measures be engaged, once the set-point is lowered 

to an acceptable level (stages 4 and 5). The current (June 11th, 2020) low and relatively flat 

levels of daily new cases and fatalities in countries such as France, Germany, Italy and Spain 

(1) support the hypothesis that their reproduction numbers	are currently approximately 1.0. 

3. The duration of suppression measures needed to attain an objective, decreases with the 

intensity of measures. Lowering ℛC to or below 0.1 (i.e., a 96+% drop from ℛ0=2.5) from just 

over 10,000 infectious cases would meet the objective of 100 after 30 days, and this 

approximately coincides with what was the Chinese data suggests (1). According to our 

simulations, an ℛC>0.5 would require more than 60 days to meet this same objective. 
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4. Epidemic management is most effective if engaged when infectious cases are low enough 

to preserve health service capacities. As above, this is best done either near the start of an 

outbreak or once a suppression reset has obtained. Although in this scenario, ℛC<1.0 is a 

sufficient condition for continued suppression, tactics that give weight to individual freedoms, 

yet keep ℛC above, but sufficiently close to 1.0 can limit epidemic consequences (see also 

below), including morbidities and mortalities and the saturation of health service capacities. 

Data analysis of 11 European countries (14) supports the basic quantitative predictions set out 

in the present study, and similar analyses of richer, near-future data sets will be needed to refine 

target parameter values so as to yield regional epidemic and global pandemic management 

objectives. 

5. Epidemics do not suddenly stop when the fraction of susceptible individuals drops below 

the herd immunity threshold (20,23). We find that although herd immunity is predicted to 

occur when 60 to 70% of the population have been infected and become immune (based on 

parameters in Table 1), if an outbreak is left unchecked, then the virus will eventually infect 

approximately 90% of the population (‘epidemic overshoot’). According to our model, some 

level of overshoot always occurs for mitigation measures, but the degree depends on the 

intensity of such members. For example, measures that lower ℛ0 by 50% from 3.0 to 1.5 will 

still result in approximately 60% of the population eventually becoming infected, even though 

the herd immunity threshold is about 33%. 

6. Mitigation extends the course of an outbreak (Figure 4). Mitigation, even if less restrictive 

compared to suppression, has impacts on health services, society and the economy. Maintaining 

ℛC≥1.0 is therefore a short-term solution to contain an epidemic whilst preserving certain 

liberties. Longer-term (months) measures will need to lower the effective reproduction number 

ℛCeff ≈ ℛC S/N below 1.0, so as to attenuate and finally stop the outbreak.  

This latter prediction highlights the potential for any acquired immunity to be ‘leveraged’ so as to 

ease-off on restrictions (thereby increasing ℛC), but nevertheless effectively mitigate or even 

suppress the outbreak. For example, if 15% of a population were previously exposed and immune, 

then this suggests that ℛC<1.18 (equivalently ℛCeff<1.0) would suppress the outbreak. This 18% 

increase would enable less-intense measures compared to the situation at the start of an outbreak, 

where ℛC<1.0 is necessary. Although more study is needed, we suggest that this strategy could be 

progressive, meaning that as fractions of the population with acquired immunity continue to 

increase, so too could the easing-off that results in suppression (i.e., ℛCeff<1.0 is maintained, 

despite purposeful increases in ℛC). A similar strategy called ‘shield immunity’ has recently been 

proposed by Weitz and coworkers (24), and consists of the intentional deployment of immune 
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individuals so as to reduce transmission and outbreaks. The potential use of such leveraging will 

only become clear once long-lasting immunity is better understood.  

Of the many limitations to our analysis, two in particular merit further study. First, the model 

assumes random mixing of individuals. Real infection networks are far more complex, and may 

involve (i) significant spatial structuring, (ii) different numbers of contacts per individual and 

through time and travel, (iii) epidemiological class effects (such as age, quarantined, hospitalized), 

and (iv) persistence of the virus in the external environment. Mathematical models incorporating 

heterogeneous contact structures (e.g., 5, 7, 25) will have a role to play in indicating the 

effectiveness of different control measures. Analyses similar to (14) should explore both realistic 

contact structures and community-specific values of epidemic and health service parameters.  

Second, future analyses will need to translate actual tactics into their effects on different 

epidemiological parameters, and specifically ℛC. A number of tactics have been proposed and 

some variously adopted by different communities, including: spatial distancing, quarantining, 

hand washing, wearing masks, gloves; diagnostics such as contact tracing, and virus and antibody 

testing; and interventions such as employing repurposed drugs and developing vaccines. Such 

approaches will need to be employed in complementary ways, since no single one is likely to 

attain reset or management objectives. Moreover, calibration of ℛC in particular will require 

accurate assessments of the contribution of asymptomatic transmission to the propagation of the 

virus, the latter having been recently demonstrated in mathematical models to potentially 

influence COVID-19 dynamics (26). 

In conclusion, the simple model analyzed here is not an instrument to develop precise, actionable 

strategies. Rather, it is a conceptual tool that identifies some of the important parameters, and 

generates testable hypotheses of how these could affect outbreak management outcomes.  
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