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ARTICLE INFO ABSTRACT

Keywords: Background: The COVID-19 has now been declared a global pandemic by the World Health Organization. There
SARS-CoV-2 is an emergent need to search for possible medications.
Coronavirus

Method: Utilization of the available sequence information, homology modeling, and in slico docking a number of
available medications might prove to be effective in inhibiting the SARS-CoV-2 two main drug targets, the spike
glycoprotein, and the 3CL protease.

Results: Several compounds were determined from the in silico docking models that might prove to be effective
inhibitors for SARS-CoV-2. Several antiviral medications: Zanamivir, Indinavir, Saquinavir, and Remdesivir
show potential as and 3CLPR° main proteinase inhibitors and as a treatment for COVID-19.

Conclusion: Zanamivir, Indinavir, Saquinavir, and Remdesivir are among the exciting hits on the 3C main
proteinase. It is also exciting to uncover that Flavin Adenine Dinucleotide (FAD) Adeflavin, B2 deficiency
medicine, and Coenzyme A, a coenzyme, may also be potentially used for the treatment of SARS-CoV-2 infec-

Molecular docking
Approved drugs
Medications

LPRO

tions. The use of these off-label medications may be beneficial in the treatment of the COVID-19.

1. Introduction

The World Health Organization has now declared a global emer-
gency and pandemic for the coronavirus disease (COVID-19) that has
been actively spreading around the globe. COVID-19 which is caused by
the virus SARS-CoV-2; can cause symptoms such as fever, cough,
pneumonia, nausea, and fatigue. As of now SARS-CoV-2 has reached 24
countries around the globe, with more than 190,000 cases confirmed as
of March 18, 2020[1].

The epidemiological background of the virus was thought to stem
from a seafood market in Wuhan, China [2]. However, the true epi-
center of the initial transfer to humans is still unknown. Currently, there
are > 100 complete genome sequences known in the NCBI GenBank,
from over 10 countries. The variation between these sequences is less
than 1%.

This virus is closely related to the SARS-CoV and this allows utili-
zation of the known protein structures to quickly build a model for drug
discovery on this new SARS-CoV-2 [3]. While traditional methods of
drug discovery could take years, the approach taken here to search for
possible medications for the SARS-CoV-2 is in silico docking models
from the most variable proteins in the SARS-CoV-2, the spike glyco-
protein, and the SARS-CoV-2 3CL main protease.

The CoV spike protein binds to a host cell membrane through a
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receptor-mediated interaction which allows entrance to the host cell. It
has been computationally determined that the SARS-CoV-2 has similar
mechanism to that of the SARS virus and the receptor to which it has
the highest affinity is ACE2 (angiotensin-converting enzyme 2) [4].
While there are structural similarities between the SARS-CoV-2 spike
protein and the SARS spike protein, the conservation is only 73% with
most of the variability being in the host cell interaction region of the
protein. Currently, there is no crystal structure available for the SARS-
CoV-2 spike protein, so we employed homology modeling of the SARS-
CoV-2 utilizing the SARS spike protein (PDB: 2GHV) as a template.

The second in silico docking model is the 3CL"®® main protease,
which is responsible for controlling several major functions of the virus
and has a highly conserved catalytic domain from the SARS virus [5].
Some of its functions include the replication processes of the virus
which makes it an ideal target for drug development [6]. The SARS-
CoV-2 main protease was determined by Ref. [7] (PDB: 6LU7).

Both these proteins, spike and protease, are essential to the trans-
mission and virulence of the virus. By inhibiting anyone of these two
proteins or both for a higher active therapy, the severity of the infection
will be reduced. Our efforts have been placed in competitively in-
hibiting the binding of its natural substrates. A library of known
bioactive compounds has been run against several sites on the spike
protein and the catalytic site of the SARS-CoV-2 main protease.
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By utilizing an approved compound database, quick trials of these
compounds, with minimal effort of approval by food and drug agencies,
could be carried out. We have chosen to run the Zinc15 database which
is classified by Zincl5 [8] as “Approved drugs in major jurisdictions,
including the FDA, i.e DrugBank approved”. This database covers all
major bioactive pharmaceutical compounds utilized around the globe,
and currently has 3447 entries.

2. Methods
2.1. Molecular docking

Molecular docking calculations were completed using Schrodinger®
docking suits (Schrodinger Maestro, New York, NY, USA. Version
11.9.011, MMshare Version 4.5.011, Release 2019-1, Platform
Windows-x64) using a virtual screening workflow. This workflow uti-
lized three docking precisions, HTVS, SP, and XP, which yielded the top
10% of hits for each binding site. Both proteins were prepared by re-
strained minimization using force field OPLS3e. The grid sites were
created using Glide® receptor grid generator with docking length of
20 A. Grids centers were determined from active resides on target
protein. Ligands were prepared using force field OPLS3e and possible
states were generated from pH 7.0 = 2.0. Docking scores are reported
in kcal/mol, the more negative the number, the better binding.

2.2. Homology modeling of spike protein

The surface glycoprotein [Wuhan seafood market pneumonia virus]
(Sequence ID: YP_009724390.1) structure was modeled using ModBase
[9] which utilized Modeller [10] for the structural modeling. The se-
quence (NCBI Accession: YP_009724390) was uploaded to the ModBase
interface and was run with the template being SARS spike protein re-
ceptor binding domain (PDB: 2GHV, Chain E). The sequence identity
was found to be 73% (Fig. 1A). The calculation was completed and
imported into Schrodinger Maestro®. The structure was then minimized
using the force field OPLS3e, the overlay of the pre and post minimized
structure can be seen in Fig. S2.

3. Results
3.1. Spike glycoprotein

Sequencing has revealed that the SARS-CoV-2 is similar to that of
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the SARS-CoV virus which allows for genomic and proteomic homology
comparison. Using the homology modeling we have been able to de-
velop a model of the Spike glycoprotein (Fig. 1). This model has al-
lowed us to perform docking calculations utilizing a database of known
bioactive and approved compounds.

The MODELLER and ModBase programs were able to use a homo-
logue SARS spike protein (PDB: 2GHV) and the original SARS-CoV-2
sequence (GenBank: MN908947) and construct the SARS-CoV-2 spike
protein. The protein was then run through a restriction minimization
process utilizing Schrodinger Docking Suits® Protein Preparation which
allows side chains to be placed in the most energetically favorable
conformation (Fig. 1B).

In an effort to stop the Spike-ACE2 interaction, several sites have
been determined and targeted on the Spike protein for docking studies.
Three of these sites are located at the interaction points specifically
where hydrogen bonding is calculated as the main intermolecular force
of the Spike-ACE2 interaction and a fourth allosteric site has been de-
termined by surface mapping of the protein.

The locations of the binding sites have been chosen as these would
cause the most destruction in ACE2 interactions. The sites are labeled as
site 1-4 and information on the sites can be seen in Supplemental
(Table S1, Fig. S1). The results from the SARS-CoV-2 spike glycoprotein
are reported in Table 1.

3.2. 3CLPR® main protease

Structural alignments have revealed that the SARS-CoV-2 protease
is highly conserved for that of the SARS (PDB: 1LVO) main protease at
98% ID [11]. The 3CL"R° main protease was run through a restriction
minimization process utilizing Schrodinger Docking Suits® (Fig. S3A).
Previous studies have revealed in the SARS protease mutation of the
residue His162 renders the enzyme inactive. The SARS-CoV-2 homo-
logous residue is His163 (Site 1 center: x = —17.59, y = 15.81,
z = 63.53) (Fig. S3B) which has been used as the central point for
molecular docking calculations. The active site also revealed a second
Histidine (center: His41l Site 2 center: x = —13.81, y = 19.72,
z = 71.91) (Fig. S3C) that seems to play a role in the interactions of the
bound ligand in the 6LU7 structure, so this was targeted as a second
center point for the molecular docking calculations. The results from
the SARS-CoV-2 3CL protease are reported in Table 2.

Fig. 1. A) Modeled SARS-CoV-2 Spike Glycoprotein overlaid with the SARS-CoV (PDB: 2GHV) unique amino acids are shown. Variable amino acid residue side chains
are shown: Green: SARS-CoV Red: SARS-CoV-2. B) Minimized final structure of modeled SARS-CoV-2 spike glycoprotein. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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Table 1
Highest scoring molecules for SARS-CoV-2 Spike Glycoprotein.
Site # DrugBank ID Docking Score (kcal/mol) Name Indication
1 DB06441 —-7.234 Cangrelor P2Y,, Inhibitor
1 DB00157 —7.038 Dpnh (NADH) Supplement Mental Health
2 DB03147 —11.089 Flavin Adenine Dinucleotide (FAD) Adeflavin B2 Deficiency
2 DB11705 —7.687 Iomeprol Contrast Medium
3 DB01992 —11.555 Coenzyme A Supplement
4 DB01133 —9.364 Tiludronate Paget's disease
4 DB03147 —9.353 Flavin Adenine Dinucleotide (FAD) Adeflavin B2 Deficiency
Table 2
Highest scoring molecules for SARS-CoV-2 3CLPR® Main Protease.
Site # DrugBank ID Docking Score (kcal/mol) Name Indication
1 DB00157 —11.016 Dpnh (NADH) Supplement Mental Health
1 DB00558 —8.843 Zanamivir Antiviral Drug
1 DB00188 —8.654 Bortezomib Anti-Cancer
1 DB01232 —7.285 Saquinavir HIV Protease Inhibitor
2 DB03147 —10.339 Flavin Adenine Dinucleotide (FAD) Adeflavin B2 Deficiency
2 DB06441 —10.269 Cangrelor P2Y,, Inhibitor
2 DB08889 —8.924 Carfilzomib Anti-Cancer
2 DB00224 —8.199 Indinavir HIV Protease Inhibitor
2 DB14761 —7.215 Remdesivir Antiviral

4. Conclusion

Molecular docking has been employed for the search of possible
medications that are contained in the approved bioactive compound
database. The hit compounds reported here have potential to inhibit the
SARS-CoV-2 spike protein and the 3CLPR° main protease but are not
guaranteed to have any activity; however, this lays the groundwork for
computational drug discovery for new compounds to reduce transmis-
sion and symptoms of SARS-CoV-2. We have used structural homology
modeling to determine a dock-able target for the SARS-CoV-2 spike
protein and have utilized the newly characterized 3CL*®® main pro-
tease in our docking models.

We have several exciting hits on the 3CLPR® main proteinase.
Zanamivir is an approved medication for the treatment of influenza A
and B viruses [12]. Indinavir and Saquinavir have been shown to treat
and prevent HIV. Remdesivir is an antiviral compound in experimental
stages that has shown activity against the SARS-coronavirus, Ebola
virus, and possibly the SARS-CoV-2 [13-15]. It is also exciting to un-
cover that Flavin Adenine Dinucleotide (FAD) Adeflavin, B2 Deficiency
medicine, and Coenzyme A, a coenzyme, may also be potentially used
for the treatment of SARS-CoV-2 infections.
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