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Abstract: 
Background:​ The SARS-Cov2 virus binds to the ACE2 receptor for cell entry. It has been 
suggested that ACE-inhibitors, which are commonly used in patients with hypertension or 
diabetes and which raise ACE2 levels, may increase the risk of severe COVID-19 infection. 
Methods: ​ We evaluated this hypothesis in an early cohort of 205 acute inpatients with 
COVID-19 at King’s College Hospital and Princess Royal University Hospital, London, UK with 
the primary endpoint being death or transfer to a critical care unit for organ support within 
7-days of symptom onset. 
Findings: ​ 53 patients out of 205 patients reached the primary endpoint. Contrary to the 
hypothesis, treatment with ACE-inhibitors was associated with a reduced risk of rapidly 
deteriorating severe disease. There was a lower rate of death or transfer to a critical care unit 
within 7 days in patients on an ACE-inhibitor OR 0 ​·​29 (CI 0 ​·​10-0 ​·​75, p<0 ​·​01), adjusting for age, 
gender, comorbidities (hypertension, diabetes mellitus, ischaemic heart disease and heart 
failure).  
Interpretation: ​ Although a small sample size, we do not see evidence for ACE-inhibitors 
increasing the short-term severity of COVID-19 disease and patients on treatment with 
ACE-inhibitors should continue these drugs during their COVID-19 illness. A potential 
beneficial effect needs to be explored as more data becomes available. 
 
Introduction 
Early data from China during the SARS-Cov2 pandemic suggest that patients with 
hypertension or diabetes have an increased risk of severe COVID-19 disease.​1​ It has been 
hypothesized that treatment with ACE-inhibitors (ACEi) or angiotensin receptor blockers (ARB) 
in such patients may increase the expression of ACE2, the receptor for SARS-Cov2 binding 
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and entry into cells.​1,2​ However, reduced activation of the renin angiotensin system (RAS) 
and/or increased levels of ACE2 may be protective during severe lung injury.​3​ The effect of 
ACEi and ARB during infection with SARS-CoV-2 is therefore controversial but needs urgent 
clarification.​4–7 
 
We tested for association between treatment with ACEi or ARB and disease severity in the 
first 205 patients with COVID-19 disease admitted to a multi-site acute NHS Trust in the 
United Kingdom (King’s College Hospital NHS Foundation Trust). We used an informatics 
pipeline to allow rapid evaluation of disease concepts during the rapidly evolving pandemic. 
 
Methods: 
This project operated under London South East Research Ethics Committee (reference 
18/LO/2048) approval granted to the King’s Electronic Records Research Interface (KERRI); 
specific work on COVID-19 research was reviewed with expert patient input on a virtual 
committee with Caldicott Guardian oversight.  
 
Study Design: 
The study cohort was defined as all inpatients testing positive for SARS-Cov2 by RT-PCR at 
King’s College Hospital and Princess Royal University Hospital from 1 March to 22nd March 
2020. Only patients symptomatic and requiring inpatient admission were included. The primary 
endpoint was defined as death or admission to a critical care unit for organ-support within 7 
days of symptoms onset (symptoms defined as fever, cough, dyspnoea, myalgia, chest pain or 
delirium). Patients were stratified according to drug exposure to ACEi or ARB within 7 days 
before symptoms or during inpatient treatment (prior to an endpoint being reached). 
Specifically, we divided the total cohort into patients with prescription and/or mention in any 
text record of (1) ACEi (Ramipril, Perindopril, Lisinopril, Enalapril, Captopril, Quinapril, 
Imidapril, Fosinopril, Trandolapril) and (2) ARB (​Candesartan, Irbesartan, Losartan, 
Olmesartan, Telmisartan, Valsartan) ​up to 7days before or after symptom onset. We 
considered patients whose medication was withheld during admission as positive for drug 
exposure. Patients with no medication orders or clinical documents created in the study period 
(because never admitted) were excluded. One newborn was also excluded. The primary 
endpoint was manually verified by a clinician review of the electronic health record. 
 
Data Processing: 
The data (demographic, emergency department letters, discharge summaries, clinical notes, 
radiology reports, medication orders, lab results) was retrieved and analyzed in near real-time 
from the structured and unstructured components of the electronic health record (EHR) using 
a variety of natural language processing (NLP) informatics tools belonging to the CogStack 
ecosystem,​8​ namely DrugPipeline,​9​ MedCAT​10​ and MedCATTrainer.​11​ The CogStack NLP 
pipeline captures negation, synonyms, and acronyms for medical SNOMED-CT concepts as 
well as surrounding linguistic context using deep learning and long short-term memory 
networks. DrugPipeline was used to annotate medications and MedCAT produced 
unsupervised annotations for all SNOMED-CT concepts under parent terms Clinical Finding, 
Disorder, Organism, and Event with disambiguation, pre-trained on MIMIC-III.​12​ Further 
supervised training improved detection of annotations and meta-annotations such as 
experiencer (is the concept annotated experienced by the patient or other), negation (is the 
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concept annotated negated or not) and temporality (is the concept annotated in the past or 
present ) with MedCATTrainer. Meta-annotations for hypothetical and experiencer were 
merged into Irrelevant meaning that any concept annotated as either hypothetical or where the 
experiencer was not the patient was annotated as irrelevant. Performance of the MedCAT 
NLP pipeline for disorders mentioned in the text was evaluated on 138 documents by 4 
annotators (TS, ZK, DB, AS) and F1, precision and recall recorded. Additional full case review 
for correct subsequent diagnosis assignment was performed by 3 clinicians (JT, KOG, RZ) for 
key comorbidities: Diabetes Mellitus, Hypertension, Heart Failure and Ischaemic Heart 
Disease. Performance of DrugPipeline has previously been described.​9​ All detected drug 
mentions were manually reviewed to exclude false positives (e.g. allergy). 
 
Statistical Analysis: 
In order to investigate the association between ACEi and disease severity measured as critical 
care admission or death, we performed a series of logistic regressions applying Firth’s 
correction.​13​ This procedure has shown to be robust for low prevalence events and 
low-dimensional settings.​14,15​ In a first step, we explored independently the association for 
ACEi (Baseline model). In a second step, we adjusted the model for age and sex (Model 1). 
Then, we additionally adjusted for hypertension (Model 2), and additionally adjusted by other 
comorbidities diabetes and ischemic heart disease or heart failure (Model 3). We also explored 
the independent association for hypertension following the same modelling approach. 
Sensitivity analyses were performed i) using exact logistic regression with models adjusted 
variable by variable; ii) requiring at least two detections of medication for positive exposure; iii) 
using only structured data on in-hospital medication orders; iv) ignoring our 7 day window for 
medications; v) testing sensitivity to unmeasured confounders. 
 
Role of the funding source: 
The funders had no role in study design, data collection and analysis, decision to publish, or 
preparation of the manuscript. 
 
Results: 
Our total cohort consists of 205 confirmed positive symptomatic inpatients aged 63 ​+​20 (SD) 
years and 52% males (Table 1). Baseline characteristics are 51·2% with hypertension, 30·2% 
with diabetes and 14·6% with ischaemic heart disease or heart failure. The percentage of 
patients that have a positive mention of a certain disorder in each of the two groups (Dead or 
Critical Care, Other) derived via the NLP for medical concept annotations with F1 > 80% and 
more than 10 annotated mentions are shown in Figure 1 (performance shown in Figure 2). All 
NLP-detected positive mentions of hypertension, diabetes, ischaemic heart disease or heart 
failure were manually reviewed at a patient level and false positive rates calculated 1·9%, 
3·2%, 31%, 0% respectively. 
 
Of the 205 patients, 53 patients died or required critical care support within 7 days of 
symptoms and 152 patients did not. The inclusion criteria of only patients needing admission is 
likely why this critical outcome figure is relatively high (25·9%) compared to fatality rate in 
population studies​16​ but is comparable to hospital case series.​17​ 14% (5/37)  patients with 
exposure to an ACE-inhibitor died or required critical care support compared to 29% (48/168) 
for patients without such exposure.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 11, 2020. .https://doi.org/10.1101/2020.04.07.20056788doi: medRxiv preprint 

https://paperpile.com/c/9yHe48/RUq6N
https://paperpile.com/c/9yHe48/klpQy
https://paperpile.com/c/9yHe48/I00Io+QDNGG
https://paperpile.com/c/9yHe48/q1mck
https://paperpile.com/c/9yHe48/3liWf
https://doi.org/10.1101/2020.04.07.20056788
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Findings from unadjusted logistic regression models indicated that individuals on ACEi had 
lower likelihood of severe disease (OR 0·42 (CI 0·14-1·00), p=0·058). These associations were 
only partially attenuated when adjustments for gender and age were included (Model 1 in 
Table 2). Furthermore, these associations remained significant and were only partially 
attenuated when the model was additionally adjusted for hypertension (Model 2 in Table 2) 
and further for other comorbidities diabetes and ischaemic heart disease or heart failure 
(Model 3 in Table 2). Odds ratios and p-values for all variables in each model are shown in 
Supplementary Table 1. Males were found to have a higher likelihood of severe disease in 
Model 3 (OR 2.00 (CI 1.00-4.00), p=0.037). 
 
We also examined the independent association between hypertension and disease severity. 
Our results showed that individuals diagnosed with hypertension had a similar likelihood of 
developing severe disease as those that were not diagnosed with hypertension, either in 
unadjusted models (OR 1·60 (CI 0·88-3·10); p=0·12) or models adjusted for age and gender 
(OR 1·80 (CI 0·83-3·80); p=0·14).  
 
We did not run the regression analysis on the ARB group as there are only 9 patients in our 
cohort. We intend to carry out this analysis as our cohort grows.  
  
Sensitivity analyses showed similar results when compared with the results from exact logistic 
regression analyses with univariate adjustment. We also compared our results to those using 
the penalised regression model and criteria for ACEi exposure that were either more strict 
(requiring multiple mentions or using only medications ordered in hospital) and less strict 
(including any detection of ACEi outside our 7 day window). In all cases we found that 
estimates of the impact of ACEi exposure were consistently in the same direction as those in 
Table 2 but were not significant.  
 
We assessed the robustness to unmeasured confounders of the fully adjusted estimate of 
ACEi  protective effect using the e-value approach.​18​ An e-value of 3.32 for the point estimate 
indicated that it was robust to plausible residual confounding that might explain away the 
estimate. However, the e-value of 1.58 for the upper confidence of 0.75 showed that in the 
presence of residual confounding of a level often considered plausible, this study could not 
fully exclude the possibility of small harmful effects.  
 
Discussion: 
This study suggests that ACE-inhibitors do not increase the severity of  COVID-19 disease as 
hypothesised ​4–7​ but may reduce severity. This holds true even after adjusting for conditions 
where ACEi may be used (hypertension, diabetes mellitus, ischaemic heart disease and heart 
failure). No meaningful comment can be made about ARB effect given the low prevalence of 
their use in this cohort, although ARB have a different mechanism of action compared to ACEi. 
 
This study used an NLP approach to perform very rapid analysis of high volume, unstructured 
real world clinical data. This however introduces the possibility of missing circumlocutory 
mentions of disease, symptoms or medications. We have mitigated against this by manually 
validating annotations in a subset of records and also verified ACEi and ARB annotations 
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against inpatient electronic prescription data. Moreover, we have performed sensitivity 
analyses to test the impact of different criteria to define the ACEi exposed cohort on our 
results, finding that although not significant the OR remained <1.0 for ACEi exposure in all 
analyses. The lack of significance in the more strict analyses is likely due to the loss of power 
as some detections of ACEi medication are excluded. For the less strict analysis, the lack of 
significance may be due to noise introduced (e.g. prescription halted before the study period). 
The NLP output in the less strict analysis is also not manually reviewed and is highly likely to 
contain some irrelevant mentions e.g. previous allergic reaction. While the findings of 
robustness to bias due to unmeasured confounding increased our confidence, the need for 
replication in a larger sample remains. 
 
One limitation with this study is the relatively small sample taken from a single UK centre over 
a short follow-up. Although we have used statistical procedures to provide robust results with 
our current sample, as numbers increase further updates to the analysis will be required to 
better understand our findings and confirm the directionality of these associations. Our group 
will provide regular updates during the pandemic to the analysis at the link 
https://cogstack.org/cogstack-kch-covid-19-analyses/​ including longer follow-up and pooled 
analysis with other organisations. Whether these results also apply to infection severity in the 
non-hospital setting or to different global populations requires further study.  
 
A tentative favourable association of ACE-inhibitors with less severe early outcomes is 
suggested by this study. A putative mechanism could be reduced RAS activation in patients on 
ACE-inhibitors, which is considered protective in Acute Respiratory Distress Syndrome, 
ARDS.​3​ Furthermore, elevation of ACE2 also reduces RAS activation and is protective in acute 
lung injury,​19​ including in ARDS of SARS1 infection.​20 
 
In summary, based on these early results and the absence of any evidence suggesting harm, 
patients on treatment with ACE-inhibitors should continue these drugs during their COVID-19 
illness as per current guidelines.​21​ Active research is merited on whether ACE inhibition or 
enhancement of ACE2 may have a therapeutic role in severe COVID-19 disease. 
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Figure 1 ​. The percentage of patients that have a positive mention of a disorder in each of the 
two groups (Dead or Critical Care, Other). Dead or Critical Care - patients that have died or that 
are in the Intensive Treatment Unit; and Other - patients that are neither dead nor in ITU at day 
7. All diseases were extracted from free-text using Cogstack and MedCAT. Only medical 
concept annotations with F1 > 80% and more than 10 annotated samples are shown. 
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Figure 2 ​. Performance of the CogStack and MedCAT NLP pipeline in detecting disease 
mentions within the electronic health record text. Precision (P), Recall (R) and F1 (harmonic 
mean of precision and recall). Only medical concept annotations with F1 > 80% and more than 
10 annotated samples are shown. 
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 Overall On ACEi Not on 
ACEi 

On ARB Not on 
ARB 

Primary 
endpoint 
reached 

Primary 
endpoint 
not 
reached 

N 205 37 168 9 196 53 152 

Age 62.95 
(19.94) 

74.51 
(13.41) 

60.4 
(20.27) 

65.0 
(13.53) 

62.85 
(20.21) 

64.91 
(17.4) 

62.26 
(20.77) 

Male 106 
(51.7%) 

22 
(59.5%) 

84 
(50.0%) 

3 
(33.3%) 

103 
(52.6%) 

33 
(62.3%) 

73 
(48.0%) 

On ACEi 37 
(18.0%) 

37 
(100.0%) 

0 (0.0%) 0 (0.0%) 37 
(18.9%) 

5 (9.4%) 32 
(21.1%) 

On ARB 9 (4.4%) 0 (0.0%) 9 (5.4%) 9 
(100.0%) 

0 (0.0%) 4 (7.5%) 5 (3.3%) 

Hypertension 105 
(51.2%) 

31 
(83.8%) 

74 
(44.0%) 

7 
(77.8%) 

98 
(50.0%) 

32 
(60.4%) 

73 
(48.0%) 

Diabetes mellitus 62 
(30.2%) 

17 
(45.9%) 

45 
(26.8%) 

6 
(66.7%) 

56 
(28.6%) 

20 
(37.7%) 

42 
(27.6%) 

Ischaemic heart 
disease or heart 
failure 

30 
(14.6%) 

11 
(29.7%) 

19 
(11.3%) 

2 
(22.2%) 

28 
(14.3%) 

6 
(11.3%) 

24 
(15.8%) 

Primary Endpoint 53 
(25.9%) 

5 
(13.5%) 

48 
(28.6%) 

4 
(44.4%) 

49 
(25.0%) 

53 
(100.0%) 

0 (0.0%) 

 
Table 1. Characteristics of study cohort. All patients are positive for COVID-19. All variables 
are shown as N (% of column) except age which is mean (SD). ACEi = Angiotensin converting 
enzyme inhibitor; ARB = Angiotensin 2 Receptor Blocker. 
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 Model 
  

Adjustments OR (95% CI) on 
ACEi vs Not on 
ACEi 

p 

Baseline - 0.42 (0.14-1.00) 0.058 

Model 1 Age, sex 0.34 (0.11-0.86) 0.02 

Model 2 Age, sex, hypertension 0.28 (0.09-0.73) <0.01 

Model 3 Age, sex, hypertension, 
diabetes mellitus, ischaemic 
heart disease, heart failure 

0.29 (0.10-0.75) <0.01 

 
Table 2. Summary of odds ratios for ACE inhibitor drug exposure and primary endpoint. 
Odds ratios and p-values calculated from logistic regressions applying Firth’s correction (Firth, 
1993). Baseline no adjustments; Model 1 adjusted for age and gender; Model 2 additionally 
adjusted for hypertension; Model 3 additionally adjusted for hypertension, diabetes mellitus, 
ischaemic heart disease or heart failure. ACEi = Angiotensin converting enzyme inhibitor. OR = 
Odds ratio. 
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Model Variable OR (95% CI) P-value 

Baseline On ACEi 0.42 (0.14-1.00) 0.058 

Model 1 On ACEi 0.34 (0.11-0.86) 0.022 

Model 1 Age per 10 years  1.10 (0.94-1.30) 0.21 

Model 1 Male 1.80 (0.95-3.40) 0.074 

Model 2 On ACEi 0.28 (0.09-0.73) <0.01 

Model 2 hypertension 2.20 (1.00-4.90) 0.047 

Model 2 Age per 10 years  1.00 (0.82-1.20) 0.98 

Model 2 Male 2.00 (1.00-3.90) 0.038 

Model 3 On ACEi 0.29 (0.10-0.75) <0.01 

Model 3 Age per 10 years  1.00 (0.85-1.30) 0.72 

Model 3 Male 2.00 (1.00-4.00) 0.037 

Model 3 diabetes 1.50 (0.71-3.00) 0.29 

Model 3 hypertension 2.10 (0.90-4.80) 0.085 

Model 3 ischaemic heart 
disease or heart failure 

0.53 (0.18-1.40) 0.22 

Hypertension 
unadjusted 

hypertension 1.60 (0.88-3.10) 0.12 

Hypertension 
adjusted 

hypertension 1.80 (0.83-3.80) 0.14 
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Hypertension 
adjusted 

Age per 10 years  0.98 (0.81-1.20) 0.84 

Hypertension 
adjusted 

Male 1.80 (0.97-3.50) 0.064 

 
Supplementary Table 1. Odds ratios and p-values for all variables and primary endpoint. 
Odds ratios and p-values calculated from logistic regressions applying Firth’s correction1. ACEi 
= Angiotensin converting enzyme inhibitor. OR = Odds ratio. 
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