

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan

Xiaochen Li, MD, Shuyun Xu, MD, Muqing Yu, MD, Ke Wang, MD, Yu Tao, MD, Ying Zhou, MD, Jing Shi, MD, Min Zhou, MD, Bo Wu, PhD, Zhenyu Yang, MD, Cong Zhang, MD, Junqing Yue, MD, Zhiguo Zhang, PhD, Harald Renz, MD, Xiansheng Liu, MD, Jungang Xie, MD, Min Xie, MD, Jianping Zhao, MD

PII: S0091-6749(20)30495-4

DOI: https://doi.org/10.1016/j.jaci.2020.04.006

Reference: YMAI 14502

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 23 March 2020

Revised Date: 8 April 2020

Accepted Date: 9 April 2020

Please cite this article as: Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, Shi J, Zhou M, Wu B, Yang Z, Zhang C, Yue J, Zhang Z, Renz H, Liu X, Xie J, Xie M, Zhao J, Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan, *Journal of Allergy and Clinical Immunology* (2020), doi: https://doi.org/10.1016/j.jaci.2020.04.006.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology.

Risk factors for severity and mortality in adult COVID-19

2 inpatients in Wuhan

3

Xiaochen Li MD^{*12}; Shuyun Xu MD^{*12}; Muqing Yu MD^{*12}; Ke Wang MD^{*12}; Yu Tao MD^{*12};
Ying Zhou MD^{*12}; Jing Shi MD^{*12}; Min Zhou MD^{*12}; Bo Wu PhD^{*3}; Zhenyu Yang MD¹²; Cong
Zhang MD¹²; Junqing Yue MD¹²; Zhiguo Zhang PhD^{*4}; Harald Renz MD⁵; Xiansheng Liu

7 MD^{12} ; Jungang Xie MD^{12} ; Min Xie $MD^{\dagger 12}$; Jianping Zhao $MD^{\dagger 12}$

- 8
- ¹Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical
 College, Huazhong University of Science and Technology, Wuhan, China.
- ¹¹ ²Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of
- 12 China and National Clinical Research Center for Respiratory Disease, Wuhan, China.
- ¹³³United Imaging Healthcare Co., Ltd, Wuhan, China.
- ⁴School of Medicine and Health Management, Tongji Hospital, Tongji Medical
 College, Huazhong University of Science and Technology, Wuhan, China.
- ⁵Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps
- 17 University Marburg University Hospital Giessen and Marburg GmbH
- 18 ^{*}Contributed equally
- 19 [†]Joint corresponding authors
- 20
- Corresponding authors: Prof. Jianping Zhao, Tongji Hospital, 1095 Jiefang Avenue, Wuhan
 430030, China, E-mail: zhaojp88@126.com; or Prof. Min Xie, Tongji Hospital, 1095 Jiefang
 Avenue, Wuhan 430030, China; E-mail: <u>xie_m@126.com</u>. Phone +8618602724678
- 24
- 25 Number of figures: 1
- 2627 Number of tables: 4
- 28
- 29 Word count: 3489
- 30
- 31
- 32
- 33
- 34
- 35

36	Abstract word count: 234
37	
38	Author Contributions: JZ, MX, SX and MZ conceived and designed the study. XLi and MX
39	contributed to the literature search and writing of the report. MY, KW, YT, YZ and JS contributed
40	to data collection. HR, XLi, BW, MX, ZY, CZ, JY and ZZ contributed to data analysis and data
41	interpretation. HR, XLiu and JX contributed to revision of the manuscript.
42	
43	Supported by: This project was supported by grants from Science and Technology Program of
44	Hubei Province (2020FCA026).
45	
46	Disclosure of potential conflicts of interest: HR is member of and receives funding from the
47	German Lung Centre (DZL) and of the Universities Giessen and Marburg Lung Centre
48	(UGMLC).
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	

67	ABSTRACT
68	Background: In December 2019, COVID-19 outbreak occurred in Wuhan. Data on the clinical
69	characteristics and outcomes of patients with severe COVID-19 are limited.
70	Objective: The severity on admission, complications, treatment, and outcomes of COVID-19
71	patients were evaluated.
72	Methods: Patients with COVID-19 admitted to Tongji Hospital from January 26, 2020 to
73	February 5, 2020 were retrospectively enrolled and followed-up until March 3, 2020. Potential
74	risk factors for severe COVID-19 were analyzed by a multivariable binary logistic model. Cox
75	proportional hazard regression model was used for survival analysis in severe patients.
76	Results: We identified 269 (49.1%) of 548 patients as severe cases on admission. Elder age,
77	underlying hypertension, high cytokine levels (IL-2R, IL-6, IL-10, and TNF-a), and high LDH
78	level were significantly associated with severe COVID-19 on admission. The prevalence of
79	asthma in COVID-19 patients was 0.9%, markedly lower than that in the adult population of
80	Wuhan. The estimated mortality was 1.1% in nonsevere patients and 32.5% in severe cases during
81	the average 32 days of follow-up period. Survival analysis revealed that male, elder age,
82	leukocytosis, high LDH level, cardiac injury, hyperglycemia, and high-dose corticosteroid use
83	were associated with death in patients with severe COVID-19.
84	Conclusions: Patients with elder age, hypertension, and high LDH level need careful observation
85	and early intervention to prevent the potential development of severe COVID-19. Severe male
86	patients with heart injury, hyperglycemia, and high-dose corticosteroid use may have high risk of
87	death.
88	
89	
90	
91	
92	
93	
94	

96		
97	Clinical Implic	ations
98	Male, elder age	, leukocytosis, high LDH level, cardiac injury, hyperglycemia may be associated
99	with the fatal of	outcome of patients with severe COVID-19. High-dose corticosteroid use was
100	related to high r	isk of death.
101		
102	Capsule summa	ary
103	The estimated n	nortality was 32.5% in patients with severe COVID-19 during the average 32 days
104	of follow-up pe	eriod. Patients with elder age, hypertension, and high LDH level need careful
105	observation and	early intervention for the potential development of severe COVID-19.
106		
107	Key words	
108	COVID-19; SA	RS-Cov-2; Risk factor; Severity; Mortality
109		
110	List of abbrevia	ations:
111	COVID-19	Coronavirus disease 2019
112	SARS-CoV-2	Severe acute respiratory syndrome coronavirus 2
113	MERS-CoV	Middle East respiratory syndrome coronavirus
114	hsCRP	High sensitivity C-reactive protein
115	ESR	Erythrocyte sedimentation rate
116	LDH	Lactate dehydrogenase
117	NT-proBNP	NT-proB-type natriuretic peptide
118	IQR	Interquartile range
119	OR	Odds ratio
120	CI	Confidence interval
121	HR	Hazard ratio
122	SpO2	Oxygen saturation
123	ARDS	Acute respiratory distress syndrome
124		
125		

127 Introduction

In December 2019, an outbreak caused by coronavirus disease 2019 (COVID-19) occurred in Wuhan, Hubei Province, China. As of March 22, 306,506 of COVID-19 cases were reported in over a hundred countries worldwide. More than 12 thousand patients died from infection of this new virus (named severe acute respiratory syndrome coronavirus 2, SARS-CoV-2), urging early identification and intervention for severe cases.

133 The SARS-CoV-2 virus, as a betacoronavirus, shares 88% of two bat-derived SARS-like coronaviruses and distances from SARS-CoV (around 79%) and Middle East respiratory 134 syndrome coronavirus (MERS-CoV, around 50%).¹ SARS and MERS epidemics posed threats to 135global health due to high mortality rates of 9.6% for SARS-CoV and 34.4% for MERS-CoV 136 globally.^{2, 3} Epidemiological data released by the Chinese Center for Disease Control and 137 138 Prevention showed that 50,005 confirmed cases have been identified in Wuhan and 31,513 in 139 mainland China except Wuhan as of March 22, 2020. The mortality rate of COVID-19 patients 140 was 5.0% in Wuhan, which was close to that in the world (4.2%) and much higher than that in 141 mainland China except Wuhan (2.4%). This study aims to describe and compare the 142 epidemiological, demographic, clinical, laboratory and radiological characteristics as well as the 143 complications, treatment and outcomes of hospitalized patients with nonsevere and severe COVID-19. Potential risk factors for severe COVID-19 and factors associated with death in severe 144 145cases were analyzed to provide scientific data for relieve severe cases and reduce mortality.

- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155

157 Methods

158 Data source

159This study was an ambispective cohort study of consecutive hospitalized patients with COVID-19 160 enrolled at Sino-French New City Branch of Tongji Hospital, Huazhong University of Science and 161 Technology in Wuhan from January 26, 2020 to February 5, 2020. The final date of follow-up was 162 March 3, 2020. Sino-French New City Branch of Tongji hospital is one of the major nationally 163 designated hospitals only providing medical care for adult COVID-19 patients in Wuhan. All 164 cases with COVID-19 enrolled in this study were diagnosed based on the WHO interim guidance⁴ 165 and the diagnostic and treatment guideline for COVID-19 issued by Chinese National Health 166 Committee (version 5). Detection of SARS-CoV-2 nucleic acids was shown in text in the Online Repository.⁵ This study was approved by Institutional Review Board of Tongji Hospital, 167 Huazhong University of Science and Technology. Written informed consent was waived in light 168 169 of the urgent need to collect data.

170 The epidemiological and demographic data were obtained by face-to-face or telephone interview. 171 Clinical symptoms, laboratory, and radiological findings on admission as well as the 172 complications, treatment and outcomes during hospitalization were extracted from electronic 173 medical records. Serum cytokines (IL-1 β , IL-2R, IL-6, IL-8, IL-10 and TNF- α) were measured on 174 admission. Patient data were cross-checked for consistency before final data entry and then 175 entered into a computerized database.

The presence of underlying comorbidities was identified based on the International Classification of Diseases and Injuries-10 diagnostic codes. The complications of COVID-19 after admission were assessed and the definitions were shown in text in the Online Repository. Cardiac injury was one of the complications, which was defined as a serum hypersensitive cardiac troponin I level higher than 15.6 pg/ml without acute coronary symptoms or abnormal electrocardiogram. The clinical outcomes were classified into discharge from hospital, in-hospitalization, and death.

182 Severe COVID-19 was defined according to 2019 clinical practice guideline from Infectious 183 Diseases Society of America and American Thoracic Society for diagnosis and treatment of adults 184 with community-acquired pneumonia.⁶ Based on whether or not requiring ventilatory support on

admission, severe cases upon admission were divided into two cohorts, severely ill and criticallyill cases.

187 Statistical analysis

The descriptive statistics are median and interquartile range (IQR) for continuous data. The statistics for categorical variables are counts and percentages. Mann-Whitney U test were performed for continuous variables and the χ^2 test and Fisher's exact test were employed for categorical variables as appropriate. Kruskal-Wallis test with the Dunn's multiple comparison were used to compare across groups.

193 Multivariable binary logistic regression analyses were used to assess the association between age, sex, source of infection, underlying comorbidity, number of hospital visit, time from onset to 194 195 hospitalization, days of fever pre-admission, abnormal laboratory findings and the dependent 196 variable of severity of disease. The odds ratio (OR) along with the 95% confidence interval (95% CI) were reported. Univariable and multivariable analyses to identify factors associated with death 197 198 from COVID-19 in severe patients were performed by Cox proportional hazards regression model. 199 Considering the total number of deaths (n=87) in our study, nine variables were chosen for 200 multivariate Cox model based on the univariable analysis (p<0.05), previous findings and clinical 201 importance, including sex, age, laboratory findings (blood leukocyte count and lactose 202 dehydrogenase) on admission, the complications (cardiac injury and hyperglycemia) and drug 203 therapy (corticosteroid, lopinavir/ritonavir, and umifenovir) during hospitalization. The hazard 204 ratio (HR) along with the 95% CI were reported. A P value less than 0.05 was regarded as 205statistically significant. All statistical analyses were performed using SPSS 25.0. Detailed 206 statistical analyses were shown in text and Table E6 in the Online Repository.

- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214

216	
217	Results
218	Epidemiological and demographic characteristics
219	A total of 549 patients with COVID-19 were enrolled, of whom 548 cases were included in the
220	study. One case not meeting inclusion criteria was excluded due to inclusion criteria. Almost half
221	of the patients (49.1%, 269 of 548) were identified as severe cases and 50.9% (279 of 548) were
222	nonsevere cases on admission. 68.7% (347 of 505) of cases were positive for SARS-CoV-2
223	nucleic acid test pre-admission. Comparison of findings between nonsevere and severe cases in
224	the patients with positive viral nucleic acid test pre-admission showed essentially the similar
225	differences to that in the total patients (see Table E1 in the Online Repository).
226	The epidemiological and demographic characteristics are shown in Table 1. 52 (9.5%) of 546
227	patients got the infection in hospital. 45 (8.2%) of 547 patients were health-care workers and 67
228	(12.2%) patients were family members of health-care workers. Nonsevere cases had a higher
229	proportion of health-care workers and family members than severe cases ($P < 0.001$). The date of
230	onset of the first reported case with COVID-19 was December 1, 2019. ⁷ The median time from
231	December 1, 2019 to the onset of COVID-19 was 54 days, ranging from 19 days to 63 days.
232	The median age of study population was 60 years (IQR 48-69), ranging from 18 years to 95 years,
233	of whom 210 (38.3%) were aged 65 years or older. The patients aged 65 years or older in severe
234	cases were almost twice as nonsevere cases of the same age (50.2% vs. 26.9%, $P < 0.001$). Slightly
235	more than half (50.9%) of all patients were male and the proportion of males in severe cases is
236	higher than in nonsevere cases (56.9% vs. 45.2%, P=0.006).
237	Clinical characteristics on admission
238	19.2% of patients with severe COVID-19 were smokers (Table 1). Compared with nonsevere
239	cases, severe cases exhibited more comorbidities, including chronic obstructive pulmonary disease
240	(4.8% vs. 1.4%, p=0.026), coronary heart disease (10.4% vs. 2.2%, p<0.001), hypertension (38.7%
241	vs. 22.2%, $p < 0.001$), and diabetes (19.3% vs. 11.1%, $p=0.009$) respectively. Only five cases of
242	asthma (0.9%) were identified in total population. 42 (7.7%) of 545 patients regularly took
243	angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers; no significant
244	difference was found between nonsevere and severe cases.

245 Most patients reported at least one of the following symptoms: fever (95.2%), fatigue (47.1%), 246 sore throat (5.1%), cough (75.5%), chest pain (7.5%), dyspnea (56.6%), chest tightness (38.1%), 247 dizziness (10.2%), confusion (3.1%), headache (11.3%), myalgia (20.3%), vomiting (8.2%), 248 diarrhea (32.7%), abdominal pain (2.9%). 6 patients were asymptomatic and diagnosed by CT 249 screening. Duration of fever pre-admission was significantly longer among severe cases compared 250with that in nonsevere cases (P=0.031). Severe cases experienced longer duration from onset to 251 outpatient visit and longer duration from onset to hospitalization compared with nonsevere cases 252 (p=0.018 and p=0.035, respectively). 64 (11.9%) of 540 patients were treated with corticosteroids 253 delivered by oral or intravenous pre-admission. 304 (56.5%) of 538 patients had received at least one of the following antiviral medications: umifenovir (32.9%), oseltamivir (35.1%), 254 255lopinavir/ritonavir (2.4%), and ribavirin (1.5%).

256 **Radiographic and laboratory findings on admission**

257 CT scans for 461 patients were evaluated pre-admission, and showed multilobar pulmonary 258infiltrates in 436 patients (Table 2). The median time from onset to pneumonia diagnosed by CT 259 scan was 4 days. On admission, oxygen saturation (SpO2) less than 93.1% on room air presented 260 in 33.3% of all patients, of whom 163 (89%) were severe cases. 90.2% of all patients experienced 261 lymphopenia (<1500 cells per mm³) and 29.1% of all patients had thrombocytopenia (<150,000 262 cells per mm³). Compared with nonsevere cases, inflammation-related marker levels (hsCRP, ESR, 263 and ferritin) were significantly higher in severe cases The levels of procalcitonin, globulin, lactate 264 dehydrogenase (LDH), NT-proB-type natriuretic peptide (NT-proBNP), d-dimer, alanine 265aminotransferase, aspartate aminotransferase, total bilirubin, conjugated bilirubin, blood urea 266 nitrogen, and creatinine were elevated in 9.5%, 40.4%, 73.6%, 27.5%, 67.4%, 23.1%, 33.1%, 267 4.4%, 9.2%, 15.8%, and 27.1% of all patients, respectively. Serum cytokine levels of IL-2R, IL-6, 268 IL-10, and TNF- α were significantly higher in severe patients than those in nonsevere patients (all 269 *P*<0.01).

270 Subgroup analysis

Of the 269 severe cases, 46 were classified as critically ill for requiring respiratory support. Compared with severely ill cases, the time from December 1, 2019 to onset was shorter and the time from onset to outpatient visit was longer in critically ill cases (see Table E2 in the Online Repository). There were no significant differences in age and underlying comorbidities between

- 275 severely ill and critically ill cases. More abnormal laboratory findings (such as high leukocyte, 276 high procalcitonin, high NT-proBNP, high LDH, high d-dimer, low albumin, and high creatinine) 277 were observed in critically ill cases compared with severely ill cases (all P<0.05). 34.1% of 278 critically ill patients received systemic corticosteroids pre-admission, the proportion of whom was 279 significantly higher than that in severely ill cases (12.2%, P<0.001).
- Compared with nonsevere cases, systemic corticosteroid use pre-admission was more common in severe cases with larger cumulative dose and longer duration (P=0.007; P<0.001; P<0.001; respectively). Stratification of patients by corticosteroid exposure is presented in Table E3 in the Online Repository. Severe patients treated with corticosteroids had higher LDH level compared with severe patients without corticosteroid use pre-admission (P<0.05).

Nonsevere cases were more likely to receive antiviral drugs pre-admission, including umifenovir and oseltamivir (P<0.001 and P=0.005; respectively). In severe case subgroup, the patients receiving umifenovir were younger than those without umifenovir use (P<0.05). A comparison of baseline demographic and clinical characteristics between patients with and without antiviral drug use revealed no marked difference in SpO2 or laboratory findings in both nonsevere and severe case subgroups (see Table E4 and E5 in the Online Repository).

291 Risk factors for severe cases on admission

In the final logistic regression model, variables such as age 65 or older (OR 2.2; 95% CI 1.5-3.5),

hypertension (OR 2.0; 95% CI 1.3-3.2), LDH >445 U/L (OR 4.4; 95% CI 2.6-7.6), and d-dimer >1 mg/L (OR 2.2; 95% CI 1.4-3.3) were significantly associated with severe cases with COVID-19 (Figure 1).

296 Complications, treatment and clinical outcomes during hospitalization and follow-up

- In the follow-up period, the complications of COVID-19 were assessed , including acute respiratory distress syndrome (ARDS) (38.3%), cardiac injury (21.7%), liver dysfunction (19.3%), acute kidney injury (17.3%), bacteremia (7.7%), diffuse intravascular coagulation (7.7%), and
- 300 hyperglycemia (33.2%) (Table 3). All the above-mentioned complications were more common in
- 301 severe cases, compared with nonsevere cases (all P < 0.05).
- 302 Antiviral drugs were used specifically to treat COVID-19 during hospitalization, including
- 303 lopinavir/ritonavir (29.9%), umifenovir (73.2%), oseltamivir (40.3%), ribavirin (5.3%), and
- 304 interferon α nebulization (30.7%). Antiviral drug uses were more common in nonsevere cases than

those in severe cases except for ribavirin. 341 (62.2%) of 548 patients were administered with

306 systemic corticosteroids with a medium duration of 4 days and medium cumulative dose 307 equivalent to 200 mg prednisone. Of the 548 patients, 355 (64.8%) required oxygen support 308 during hospitalization, including nasal cannula or mask (41.6%), high-flow oxygen therapy (4.4%), 309 noninvasive mechanical ventilation (14.2%), and invasive mechanical ventilation (4.6%). 310 Mortality rates for COVID-19 were estimated to be 1.1% (3 of 277) in nonsevere patients and 32.5% (87 of 268) in severe cases during the average 32 days of follow-up. 72.9% of nonsevere cases and 311 312 31.7% of severe cases were discharged from hospital. 313 Factors associated with death in severe cases 314 Multivariable Cox proportional hazards regression analysis revealed that male (adjusted HR 1.7; 31595% CI 1.0-2.8), age 65 or older (adjusted HR 1.7; 95% CI 1.1-2.7), blood leukocyte count >10 cells per mm³ (adjusted HR 2.0; 95% CI 1.3-3.3) and LDH >445 U/L (adjusted HR 2.0; 95% CI 316 317 1.2-3.3) at admission, cardiac injury (adjusted HR 2.9; 95% CI 1.8-4.8), hyperglycemia (adjusted 318 HR 1.8; 95% CI 1.1-2.8), and administration of high-dose corticosteroids (adjusted HR 3.5; 95% 319 CI 1.8-6.9) during hospitalization were significant risk factors associated with death in severe 320 COVID-19 cases. Lopinavir/ritonavir (adjusted HR 0.4; 95% CI 0.2-0.9) and umifenovir (adjusted 321 HR 0.5; 95% CI 0.3-0.8) were associated with lower death in severe COVID-19 patients. The 322 adjusted Kaplan-Meier estimates of survival for sex, age, sex, leukocyte, LDH, corticosteroid use, 323 lopinavir/ritonavir use, and umifenovir use were shown in Figure E1-7 in the Online Repository. 324 325

326

- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334

335

336

337 Discussion

338 This study provided a comprehensive data on the epidemiological, demographic, clinical, 339 laboratory, and radiological characteristics as well as the complications, treatment, and outcomes 340 of hospitalized patients with nonsevere and severe COVID-19 in Wuhan. Almost half of the 341 patients in this study were identified as severe cases, which may differ from the results of the previous studies.⁸ The proportion of patients aged 65 years or older were higher in our study than 342 in Nanshan Zhong's study (38.8% vs. 15.1%, respectively).⁹ The time from December 1, 2019 to 343 344 the onset of most patients was longer than 50 days. During mid-January to early February, Wuhan 345 experienced the highest peak of COVID-19 outbreak, with a family cluster and high prevalence of 346 COVID-19 in older adults. Longer wait for access to medical care was observed in severe cases 347 compared with that in nonsevere cases. More than half of the patients experienced at least two 348 hospital visits, which may increase the risk of nosocomial transmission events. Diagnosis and 349 treatment may be delayed due to the long wait for access to medical care. Severe COVID-19 350 patients would likely develop ARDS and died of respiratory failure. Although there are currently 351 no effective antiviral drugs for SARS-CoV-2, prompt identification and early respiratory support 352 would relieve severe cases and reduce mortality. The severity of disease in patients with initial 353 positive nucleic acid test was similar to that of all COVID-19 patients. We thus propose that 354 urgent timely diagnosis is crucial, and that early intervention should not be delayed based on 355nucleic acid test.

356 There are six coronavirus species currently known to cause human infection. SARS-CoV-2 was 357 most closely related to SARS-CoV through phylogenetic analysis and was revealed to share a similar receptor, ACE-2, to SARS-CoV.¹ This fact hints that COVID-19 may partly mimic SARS 358 359 infection. The autopsy results of SARS patients showed that high levels of proinflammatory cytokines were expressed in ACE-2-expressing cells infected by SARS-CoV.¹⁰ Plasma cytokine 360 profiles of SARS patients showed Th1-dominated responses with markedly elevated 361 362 proinflammatory cytokine levels (INF- γ , IL-1 β , IL-6, IL-8, IL-12, and TNF- α) and were associated with the development of ARDS.¹¹⁻¹³ In our study, severe COVID-19 patients had 363 significantly higher levels of Th1 cytokines (IL-6 and TNF- α) and higher incidence rate of ARDS, 364

365 compared with nonsevere cases. Interestingly, the prevalence of asthma in COVID-19 patients 366 (0.9%) in our study was markedly lower than that reported in the adult population of Wuhan 367 (6.4%).¹⁴⁻¹⁶ We thus speculate that Th2 immune response in asthmatic patients may counter the 368 inflammation process induced by SARS-CoV-2 infection. Further studies are required to 369 characterize the immune response and inflammation features of COVID-19.

370 The majority of severe patients showed rapid progression and multiple organ dysfunction. The 371 median time from onset to pneumonia diagnosed by CT scan was only 4 days. Approximately one 372 third of the patients experienced gastrointestinal symptoms. During hospitalization, a substantial 373 proportion of patients presented cardiac injury, liver and kidney dysfunction, and hyperglycemia. 374 It was proved that the fecal and urine samples and rectal swabs of COVID-19 patients were positive for SARS-CoV-2 nucleic acids.⁹ ACE-2 was reported to be expressed in small intestinal 375epithelial cells, cholangiocytes, and the pancreas,¹⁷⁻¹⁹ indicating that SARS-CoV-2 infection may 376 induce the multi-organ injury in COVID-19 patients. The shorter duration from December 1, 2019 377 378 to onset in critically ill cases than that in severely ill cases may reflect a higher virulence of SARS-Cov-2, or earlier onset of COVID-19. 379

380 The risk factors for severity identified in this study included age, high LDH level, and high d-dimer level, consistent with those in previous reports.^{15, 20} However, different from the findings 381 of previous studies²¹, hypertension was the only comorbidity associated with the severity of 382 COVID-19 after adjustment for age, sex and smoking status. The distinct features of pneumonia 383 384 and high severity in patients with COVID-19 in this study may lead to this difference from 385previous reports. ACE2, a gateway to SARS, was reported to be a protective factor against SARS-CoV-induced lung injury.^{22, 23} The association between ACE2 expression and hypertension 386 was confirmed in a previous study.²⁴ This fact may partly explain the high prevalence of severe 387 COVID-19 in patients with hypertension. LDH has been recognized as a marker for severe 388 prognosis in various diseases, including cancer and infection.²⁵ The high LDH level in COVID-19 389 390 in severe cases suggested that LDH may be associated with lung injury and tissue damage, warranting an investigation for the potential mechanism. 391

This study evaluated pre-admission medications for patients with severe COVID-19. Although the proportion of nonsevere cases in patients receiving oseltamivir was higher than that in patients without oseltamivir use, stratification analysis showed that there was no significant difference in

395 hypoxia between patients with and without oseltamivir use either in the severe case or nonsevere 396 case subgroup. Therefore, oseltamivir use may just be an indicator of disease severity. The 397 patients receiving umifenovir were younger than those without umifenovir use, indicating that 398 younger patients may have easier access to drugs or prefer umifenovir.

Older age, leukocytosis and high LDH level were reported to be risk factors associated with in-hospital death in previous studies.^{20, 26, 27} The present study also revealed that hyperglycemia was related with increased mortality in COVID-19 patients. The prevalence of hyperglycemia may be associated with underlying diabetes and corticosteroid therapy. However, the localization of ACE2 expression in the pancreas in SARS was reported to damage islets, resulting in hyperglycemia¹⁹; this finding suggested that hyperglycemia may also be an indicator of severe COVID-19.

406 This study indicated that corticosteroid use was more common in severe cases than in nonsevere 407 cases and that high-dose corticosteroid use was related to high risk of death in severe COVID-19 408 patients. High-dose steroid use may be an indicator of disease severity rather than a predisposing factor. In a previous study, treatment with methylprednisolone was shown to be beneficial for 409 COVID-19 patients who developed ARDS.²⁰ However, critically ill cases had more signs of 410 411 infection and abnormal laboratory findings, including high leukocyte, high procalcitonin, high 412 d-dimer, low albumin, and high creatinine levels. High-dose corticosteroid use should be used 413 with cautious in critically ill patients to avoid aggravating complications.

414A recent study by Bin Cao et al showed that lopinavir/ritonavir treatment offered no significant benefit over the standard care for hospitalized adult COVID-19 patients.²⁸ Cao's study also 415416 reported that lopinavir/ritonavir led to a shorter median time to clinical improvement than the 417 standard care (HR 1.39; 95% CI 1.00 to 1.91) in a modified intention-to-treat analysis. Compared 418 with Cao's study, the severity of patients was more serious and lopinavir/ritonavir treatment was 419 associated with a lower risk of death in severe COVID-19 patients in this study. However, our 420 study was an observational study; thus, the benefit of lopinavir/ritonavir for severe COVID-19 421 patients needs to be further confirmed.

422 There were limitations to the current study. Firstly, epidemiological data were collected 423 respectively and recall bias might have occurred. Secondly, missing data on some variables, such 424 as detailed information of CT scan, may cause bias in the estimation and reduce the

425 representativeness of the samples. Thirdly, laboratory findings were measured upon admission and 426 may indicate the severity of COVID-19. The causal relationship between abnormal laboratory 427 findings and severity could not be determined. Fourthly, this study was an observational study 428 with limitations in terms of evaluating the efficacy of corticosteroids and antiviral drugs. Finally, 429 the absence of comparative data from COVID-19 patients not admitted or from other critically ill 430 patients were limitations of this study.

In conclusion, COVID-19 outbreak caused widespread concern and has threatened the global public health security. Recent evidence of possible fecal-oral transmission in SARS-Cov-2 infection, asymptomatic infection,^{8, 29, 30} and positive result for SARS-Cov-2 test in recovered patients,³¹ warrant aggressive measures to suppress and prevent epidemic spreading, such as hygiene maintenance, early screening and intervention, and self-isolation after recovery. As a major transportation hub of China, Wuhan faced increased difficulties in outbreak control. Efforts to control COVID-19 need to take into account globalization processes.³² Severe male patients with heart injury, hyperglycemia, and high-dose corticosteroid use may have high risk of death.

	Journal Pre-proof
455	
456	
457	
458	Acknowledgments
459	We respectfully and sincerely thank all front-line medical staff for hard work and sacrifice.
460	
461	
462	
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	
477	

		Journal Pre-proof
478		
479		
480		
481	Refere	nce
482	1.	Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and
483		epidemiology of 2019 novel coronavirus: implications for virus origins and receptor
484		binding. Lancet 2020.
485	2.	World Health Organization. Summary of probable SARS cases with onset of illness
486		from 1 November 2002 to 31 July 2003.] Available from
487		https://www.who.int/csr/sars/country/table2004_04_21/en/.
488	3.	World Health Organization. Middle East respiratory syndrome coronavirus
489		(MERS-CoV).] Available from http://www.who.int/emergencies/mers-cov/en/.
490	4.	World Health Organization. Clinical management of severe acute respiratory infection
491		when Novel coronavirus (nCoV) infection is suspected: interim guidance.] Available
492		from
493		https://www.who.int/internal-publications-detail/clinical-managementof-severe-acute-r
494		espiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.
495	5.	World Health Organization. Laboratory testing for 2019 novel coronavirus (2019-nCoV)
496		in suspected human cases.] Available from
497		https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-i
498		n-suspected-human-cases-20200117.
499	6.	Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, et al. Diagnosis
500		and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical

- 501 Practice Guideline of the American Thoracic Society and Infectious Diseases Society
- 502 of America. Am J Respir Crit Care Med 2019; 200:e45-e67.
- 503 7. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients 504 infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020.
- 8. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus
- 506 Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases
- 507 From the Chinese Center for Disease Control and Prevention. JAMA 2020.
- 508 9. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of
- 509 Coronavirus Disease 2019 in China. N Engl J Med 2020.
- 510 10. He L, Ding Y, Zhang Q, Che X, He Y, Shen H, et al. Expression of elevated levels of
- 511 pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients:
- relation to the acute lung injury and pathogenesis of SARS. J Pathol 2006;
- **210:288-97**.
- Lam CW, Chan MH, Wong CK. Severe acute respiratory syndrome: clinical and
 laboratory manifestations. Clin Biochem Rev 2004; 25:121-32.
- 516 12. Sheng WH, Chiang BL, Chang SC, Ho HN, Wang JT, Chen YC, et al. Clinical
 517 manifestations and inflammatory cytokine responses in patients with severe acute
 518 respiratory syndrome. J Formos Med Assoc 2005; 104:715-23.
- 519 13. Zhu M. SARS Immunity and Vaccination. Cell Mol Immunol 2004; 1:193-8.
- 520 14. Huang K, Yang T, Xu J, Yang L, Zhao J, Zhang X, et al. Prevalence, risk factors, and
- 521 management of asthma in China: a national cross-sectional study. Lancet 2019;

394:407-18.

irn		D	12			\sim
1111	aı		11	U-1		U.

523 Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics 15. 524 of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020. 52516. Wang XD, Zheng M, Lou HF, Wang CS, Zhang Y, Bo MY, et al. An increased 526 prevalence of self-reported allergic rhinitis in major Chinese cities from 2005 to 2011. 527Allergy 2016; 71:1170-80. Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, et al. ACE2 528 17. 529 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 5302012; 487:477-81. 531 18. Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, et al. Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection. bioRxiv 532 533 2020:2020.02.03.931766. 53419. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages 535islets and causes acute diabetes. Acta Diabetol 2010; 47:193-9. Wu C, Chen X, Cai Y, Xia Ja, Zhou X, Xu S, et al. Risk Factors Associated With Acute 536 20. 537Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Internal Medicine 2020. 538539 21. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, et al. Comorbidity and its 540impact on 1590 patients with Covid-19 in China: A Nationwide Analysis. Eur Respir J 5412020. 54222. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 5432 protects from severe acute lung failure. Nature 2005; 436:112-6. 544 23. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin 545 converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005;

546 **11:875-9**.

- 547 24. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, et al.
 548 Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature
 549 2002; 417:822-8.
- Erez A, Shental O, Tchebiner JZ, Laufer-Perl M, Wasserman A, Sella T, et al.
 Diagnostic and prognostic value of very high serum lactate dehydrogenase in
 admitted medical patients. Isr Med Assoc J 2014; 16:439-43.
- Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for
 mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort
 study. Lancet 2020; 395:1054-62.
- 556 27. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of
- 557 critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered,

558 retrospective, observational study. Lancet Respir Med 2020.

- 559 28. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in
 560 Adults Hospitalized with Severe Covid-19. N Engl J Med 2020.
- 561 29. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of 562 pneumonia associated with the 2019 novel coronavirus indicating person-to-person
- 563 transmission: a study of a family cluster. Lancet 2020; 395:514-23.
- 30. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al.
- 565 Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N

566 Engl J Med 2020; 382:970-1.

567	31.	Lan L, Xu D, Ye G, Xia C, Wang S, Li Y, et al. Positive RT-PCR Test Results in
568		Patients Recovered From COVID-19. JAMA 2020.
569	32.	Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, et al. The SARS, MERS
570		and novel coronavirus (COVID-19) epidemics, the newest and biggest global health
571		threats: what lessons have we learned? Int J Epidemiol 2020.
572 573 574 575		
576	Figure	legend
577	Figure	1. The effect of various potential risk factors on patients with severe COVID-19 at
578	admissi	on.
579	OR=ode	ds ratio. CI=confidence interval.
580		
581		
582		
583		
584		
585		
586		
587		
588		
589		
590		
591		
592		
593		
594		
595		
596		
597		
598		
599		
000		
001		
602 602		
003		
604 СОБ		
CUO		

	Journal Pre-proof
606	
607	
C00	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	Table 1. Epidemiological, demographic and clinical characteristics of hospitalized patients with

621	COVID-1	

		All patients	Nonsevere	Severe	
		(n=548)	(n=279)	(n=269)	p value
Age, years		60 (48-69)	56 (44-66)	65 (54-72)	0.000
	0-44	107/548 (19.5%)	75/279 (26.9%)	32/269 (11.9%)	0.000
	45-64	231/548 (42.2%)	129/279 (46.2%)	102/269 (37.9%)	
	≥65	210/548 (38.3%)	75/279 (26.9%)	135/269 (50.2%)	
Male		279/548 (50.9%)	126/279 (45.2%)	153/269 (56.9%)	0.006
Body mass inde	ex, kg/m ²	24.7 (22.4-26.7)	24.5 (22.4-26.0)	25.3 (22.4-27.6)	0.257
Source of infect	ions				
	Household contact	494/546 (90.5%)	245/278 (88.1%)	249/268 (92.9%)	0.060
	Hospital-acquired infections	52/546 (9.5%)	33/278 (11.9%)	19/268 (7.1%)	
Disease risk					
	Health-care workers	45/547 (8.2%)	36/279 (12.9%)	9/268 (3.4%)	0.000
Family m	ember of health-care workers	67/547 (12.2%)	42/279 (15.1%)	25/268 (9.3%)	
Not health	h-care workers or their family				
	members	435/547 (79.5%)	201/279 (72.0%)	234/268 (87.3%)	
Time of onset ^a ,	days	54 (51-56)	54 (52-56)	54 (51-56)	0.394
Time from onse	t to outpatient visit, days	3 (1-6)	3 (1-5)	4 (1-7)	0.018
	0-3	283/522 (54.2%)	158/270 (58.5%)	125/252 (49.6%)	0.044
	>3	239/522 (45.8%)	112/270 (41.5%)	127/252 (50.4%)	
Time from onse	t to hospitalization, days	10 (7-12)	9 (7-12)	10 (7-12)	0.035
Number of hosp	bital visit ≥ 2	307/548 (56.0%)	144/279 (51.6%)	163/269 (60.6%)	0.039
Smoking history	y				
	Never smokers	452/544 (83.1%)	238/279 (85.3%)	214/265 (80.8%)	0.051
	Former smokers	51/544 (9.4%)	18/279 (14.7%)	33/265 (12.5%)	
	Current smokers	41/544 (7.5%)	23/279 (8.2%)	18/265 (6.8%)	
Underlying com	norbidity				
Chronic o	bstructive pulmonary disease	17/548 (3.1%)	4/279 (1.4%)	13/269 (4.8%)	0.026

	Journal I IC-J	01001		
Asthma	5/548 (0.9%)	2/279 (0.7%)	3/269 (1.1%)	0.681
Tuberculosis	9/548 (1.6%)	5/279 (1.8%)	4/269 (1.5%)	1.000
Diabetes	83/548 (15.1%)	31/279 (11.1%)	52/269 (19.3%)	0.009
Hypertension	166/548 (30.3%)	62/279 (22.2%)	104/269 (38.7%)	0.000
Coronary heart disease	34/548 (6.2%)	6/279 (2.2%)	28/269 (10.4%)	0.000
Hepatitis B	5/548 (0.9%)	3/279 (1.1%)	2/269 (0.7%)	1.000
Chronic kidney disease	10/547 (1.8%)	4/278 (1.4%)	6/269 (2.2%)	0.539
Tumor	24/513 (4.7%)	10/256 (3.9%)	14/257 (5.5%)	0.531
Previous drugs use				
ACEI/ARB	42/545 (7.7%)	23/279 (8.2%)	19/266 (7.1%)	0.748
Systemic corticosteroids	6/548 (1.1%)	4/279 (1.4%)	2/269 (0.7%)	0.686
Inhaled corticosteroids	5/548 (0.9%)	3/279 (1.1%)	2/269 (0.7%)	1.000
Antibiotics	7/548 (1.3%)	3/279 (1.1%)	4/269 (1.5%)	0.720
Anticoagulants	16/547 (2.9%)	5/278 (1.8%)	11/269 (4.1%)	0.132
Immunosuppressant drugs	5/548 (0.9%)	3/279 (1.1%)	2/269 (0.7%)	1.000
Antiviral drugs	2/548 (0.4%)	1/279 (0.4%)	1/269 (0.4%)	1.000
Symptoms				
Fever of pre-admission	476/500 (95.2%)	248/260 (95.4%)	228/240 (95.0%)	1.000
Highest temperature,	38.8 (38.2-39)	38.8 (38-39)	38.8 (38.4-39)	0.416
Duration, days	9 (6-11)	8.5 (6-11)	10 (7-12)	0.031
Fatigue	258/548 (47.1%)	128/279 (45.9%)	130/269 (48.3%)	0.608
Sore throat	28/548 (5.1%)	17/279 (6.1%)	11/269 (4.1%)	0.335
Cough	415/548 (75.7%)	212/279 (76.0%)	203/269 (75.5%)	0.921
Chest pain	41/548 (7.5%)	25/279 (9.0%)	16/269 (6.0%)	0.197
Dyspnea	310/548 (56.6%)	112/279 (40.1%)	198/269 (73.6%)	0.000
Chest tightness	162/425 (38.1%)	86/245 (42.2%)	76/180 (38.1%)	0.157
Dizziness	56/548 (10.2%)	29/279 (10.4%)	27/269 (10.0%)	1.000
Confusion	17/548 (3.1%)	1/279 (0.4%)	16/269 (6.0%)	0.000
Headache	62/548 (11.3%)	37/279 (13.3%)	25/269 (9.3%)	0.177
Myalgia	111/548 (20.3%)	62/279 (22.2%)	49/269 (18.2%)	0.288
Vomiting	45/548 (8.2%)	25/279 (9.0%)	20/269 (7.4%)	0.537
Diarrhea	179/548 (32.7%)	94/279 (33.7%)	85/269 (31.6%)	0.649
Abdominal pain	16/548 (2.9%)	4/279 (1.4%)	12/269 (4.5%)	0.043
Administration of systemic corticosteroids				
pre-admission	64/540 (11.9%)	22/274 (8.0%)	42/266 (15.8%)	0.007
Duration, days	1 (0-3)	0 (0-1)	2.5 (1-4)	0.000
Cumulative dose ^b , mg	50 (0-150)	0 (0-66.7)	100 (50-187.5)	0.000
Administration of antiviral drugs				
pre-admission				
Lopinavir/ritonavir	13/541 (2.4%)	10/276 (3.6%)	3/265 (1.1%)	0.089
Umifenovir	177/538 (32.9%)	113/274 (41.2%)	64/264 (24.2%)	0.000
Oseltamivir	189/538 (35.1%)	112/274 (40.9%)	77/264 (29.2%)	0.005
Ribavirin	8/538 (1.5%)	2/274 (0.7%)	6/264 (2.3%)	0.169

622

Data are expressed as median (IQR), n (%), or n/N (%), where N is the total number of patients with

623	available data. P values comparing nonsevere cases and severe cases are from χ^2 test, Fisher's exact test,
624	or Mann-Whitney U test.
625	^a Days from December 1, 2019 to the date of onset.
626	^b Equivalent doses of prednisone.
627	ACEI/ARB=angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers.
628	
629	
630	
631	
632	
633	
634	
635	
636	

637 **Table 2. Radiographic and laboratory findings of patients with COVID-19**

	All patients	Nonsevere	Severe	n voluo
	(n=548)	(n=279)	(n=269)	p value
CT findings pre-admission				
Negative	4/461 (0.9%)	4/228 (1.8%)	0	0.032
Unilobar lesion	21/461 (4.6%)	14/228 (6.1%)	7/233 (3.0%)	
Multilobar lesion	436/461 (94.6%)	210/228 (92.1%)	226/233 (97.0%)	
Time from onset to pneumonia diagnosed by	4 (2 7)	4 (2.6)	4 (2.7)	0.258
CT scan, days	4 (2-7)	4 (2-0)	4 (2-7)	0.238
SARS-CoV-2 nucleic acid test*				
Positive	347/505 (68.7%)	180/270 (66.7%)	167/235 (71.1%)	0.503
Suspected positive	41/505 (8.1%)	22/270 (8.1%)	19/235 (8.1%)	
Negative	117/505 (23.2%)	68/270 (25.2%)	49/235 (20.9%)	
SpO2, %				
≤93	182/546 (33.3%)	19/278 (6.8%)	163/268 (60.8%)	0.000
>93	364/546 (66.7%)	259/278 (93.2%)	105/268 (39.2%)	
Blood leukocyte count, \times 10 $ {\rm \bullet}/L$				
>10	63/542 (11.6%)	8/275 (2.9%)	55/267 (20.6%)	0.000
<4	130/542 (24.0%)	84/275 (30.5%)	46/267 (17.23%)	0.000
Neutrophil count, $\times 10 \cdot /L$				
>6.5	118/542 (21.8%)	22/275 (8.0%)	96/267 (36.0%)	0.000
≤2.0	67/542 (12.4%)	50/275 (18.2%)	17/267 (6.4%)	0.000
Lymphocyte count, \times 10 ·/L				
<1.5	489/542 (90.2%)	234/275 (85.1%)	255/267 (95.5%)	0.000
≤0.5	85/542 (15.7%)	21/275 (7.6%)	64/267 (24.0%)	0.000
Platelet count $<150 \times 10$ ·/L	157/539 (29.1%)	68/274 (24.8%)	89/265 (33.6%)	0.029
High sensitive c-reactive protein, mg/L				
> 10	460/540 (85.2%)	205/272 (75.4%)	255/268 (95.2%)	0.000
> 100	138/540 (25.6%)	40/272 (14.7%)	98/268 (36.6%)	0.000
Procalcitonin > 0.5 ng/ml	46/486 (9.5%)	3/249 (1.43%)	43/237 (18.9%)	0.000

Erythrocyte sedimentation rate > 20 mm/h	377/518 (72.8%)	179/264 (67.8%)	198/254 (78.0%)	0.010	
Ferritin >500 µg/L	211/313 (67.4%)	95/171 (55.9%)	116/142 (81.7%)	0.000	
D-dimer >1 mg/L	227/501 (45.3%)	78/254 (31.1%)	149/247 (56.4%)	0.000	
NT-proB-type natriuretic peptide >500 pg/I		92/335 (27.5%)	17/136 (13.3%)	75/199 (37.9%)	0.000
Lactate dehydrogenase, U/L					
>	250	393/534 (73.6%)	162/272 (59.6%)	231/262 (88.2%)	0.000
>	445	133/534 (24.9%)	25/272 (9.2%)	108/262 (41.2%)	0.000
Globulin >35 g/L		218/540 (40.4%)	88/275 (32.0%)	130/265 (49.1%)	0.000
Albumin ≤35 g/L		320/541 (59.1%)	126/275 (45.8%)	194/266 (72.9%)	0.000
Alanine aminotransferase >40 U/L		125/541 (23.1%)	61/275 (22.3%)	64/266 (24.1%)	0.683
Aspartate aminotransferase >40 U/L		179/540 (33.1%)	64/275 (23.3%)	115/265 (43.4%)	0.000
Total bilirubin >21 μmol/L		24/541 (4.4%)	7/275 (2.3%)	17/266 (6.4%)	0.036
Conjugated bilirubin >8 µmol/L		50/541 (9.2%)	17/275 (6.3%)	33/266 (12.6%)	0.017
Blood urea nitrogen >7.5 mmol/L		85/539 (15.8%)	18/273 (6.6%)	67/266 (25.2%)	0.000
Creatinine >85 µmol/L		146/539 (27.1%)	61/273 (22.3%)	85/266 (32.0%)	0.015
IL-1 β > 5 ng/L		51/306 (16.7%)	34/170 (20.0%)	17/136 (12.5%)	0.091
IL-2R >710 U/mL		164/309 (53.1%)	73/171 (42.7%)	91/138 (65.9%)	0.000
IL-6 >7 ng/L		221/312 (70.8%)	107/175 (61.1%)	114/137 (83.2%)	0.000
IL-8 >62 ng/L		24/309 (7.8%)	10/171 (5.9%)	14/137 (10.1%)	0.200
IL-10 >9.1 ng/L		83/307 (27.0%)	34/170 (20.0%)	49/170 (35.8%)	0.003
TNF- α >8.1 ng/L		182/309 (58.9%)	89/171 (52.1%)	93/138 (67.4%)	0.008
Proteinuria		200/330 (60.6%)	98/193 (50.8%)	102/137 (74.5%)	0.000

638 Data are expressed as median (IQR), n (%), or n/N (%), where N is the total number of patients with

639 available data. P values comparing nonsevere cases and severe cases are from χ^2 test, Fisher's exact test,

640 or Mann-Whitney U test. IL=Interleukin. TNF=Tumor necrosis factor.

641 * SARS-CoV-2 nucleic acid test was performed pre-admission.

	Journal Pre-proof
660	
000	
661	
662	
663	
664	
665	
666	
667	
668	
669	
670	
671	
672	
673	
674	Table 3. Complications and treatment during hospitalization and clinical outcomes of COVID-19
675	patients

	All patients (n=548)	Nonsevere (n=279)	Severe (n=269)	p value
Complications				
ARDS	210/548 (38.3%)	27/279 (9.7%)	183/269 (68.0%)	0.000
Cardiac injury	119/548 (21.7%)	25/279 (9.0%)	94/269 (34.9%)	0.000
Liver dysfunction	106/548 (19.3%)	44/279 (15.8%)	62/269 (23.0%)	0.040
Acute kidney injury	95/548 (17.3%)	33/279 (11.8%)	62/269 (23.0%)	0.001
Bacteremia	42/548 (7.7%)	4/279 (1.4%)	38/269 (14.1%)	0.000
DIC	42/548 (7.7%)	5/279 (1.8%)	37/269 (13.8%)	0.000
Hyperglycemia	182/548 (33.2%)	60/279 (21.5%)	122/269 (45.4%)	0.000
Administration of systemic corticosteroids	341/548 (62.2%)	145/279 (52.0%)	196/269 (72.9%)	0.000
Duration, days	4 (0-11)	1 (0-10)	5 (0-12)	0.000
Cumulative dose, mg	200 (0-450)	50 (0-400)	295 (0-575)	0.000
Administration of antiviral drugs				
Lopinavir/ritonavir	164/548 (29.9%)	91/279 (32.6%)	73/269 (27.1%)	0.163
Umifenovir	401/548 (73.2%)	222/279 (79.6%)	179/269 (66.5%)	0.001
Oseltamivir	221/548 (40.3%)	127/279 (45.5%)	94/269 (34.9%)	0.015
Ribavirin	29/548 (5.3%)	8/279 (2.9%)	21/269 (7.8%)	0.012
Interferon α nebulization	168/548 (30.7%)	97/279 (34.8%)	71/269 (26.4%)	0.041
Intravenous Immunoglobulin	213/548 (38.9%)	103/279 (36.9%)	110/269 (40.9%)	0.381
Vasopressor	79/548 (14.4%)	5/279 (1.8%)	74/269 (27.5%)	0.000
Oxygen therapy	355/548 (64.8%)	131/279 (47.0%)	224/269 (83.3%)	0.000
Nasal cannula or mask	228/548 (41.6%)	118/279 (42.3%)	110/269 (40.9%)	0.000
High-flow oxygen therapy	24/548 (4.4%)	2/279 (0.7%)	22/269 (8.2%)	
Noninvasive mechanical ventilation	78/548 (14.2%)	10/279 (3.6%)	68/269 (25.3%)	
Invasive mechanical ventilation	25/548 (4.6%)	1/279 (0.4%)	24/269 (8.9%)	
Continuous renal replacement therapy	2/548 (0.4%)	0	2/269 (99.3%)	0.241
Clinical outcomes				
Discharge from hospital	287/545 (52.7%)	202/277 (72.9%)	85/268 (31.7%)	0.000

	Journal Pre-proof							
	In-hospitalization	168/545 (30.8%)	72/277 (26.0%)	96/268 (35.8%)				
	Death	90/545 (16.5%)	3/277 (1.1%)	87/268 (32.5%)				
676	Data are expressed as median (IQI	R), n (%), or n/N (9	%), where N is the	total number of patients with				
677	available data. P values comparing nonsevere cases and severe cases are from χ^2 test, Fisher's exact test,							
678	or Mann-Whitney U test. ARDS	=acute respiratory	distress syndrome	e. DIC=diffuse intravascular				
679	coagulation.							
680								
681								
682								
683								
684								
685								
686								
687								
688	Table 4. Unadjusted and adjuste	ed cox proportion	al hazards regressi	ion model for death among				
689	severe COVID-19 patients							

		Unadjusted	95% CI	p value	Adjusted	95% CI	р
Variable		HR			HR		value
Sex, male v	vs. female	1.96	1.24-3.11	0.004	1.72	1.05-2.82	0.032
Age, ≥65 ye	ears vs. <65 years	1.69	1.09-2.59	0.018	1.72	1.09-2.73	0.021
Blood leuke	bcyte count, $>10\times10$ ·/L vs.						
≤10×10 •/L	_	3.85	2.50-5.93	0.000	2.04	1.26-3.31	0.004
Lactose deh	nydrogenase, > 445 U/L vs.						
≤445 U/L		3.94	2.48-6.28	0.000	2.00	1.21-3.30	0.007
Complication	ons						
	Cardiac injury	3.89	2.52-6.01	0.000	2.92	1.80-4.76	0.000
	Hyperglycemia	2.49	1.61-3.87	0.000	1.77	1.11-2.84	0.017
Treatment							
	Corticosteroids			0.000			0.000
	No steroid (ref)						
	Low dose*	1.07	0.57-2.01	0.825	1.26	0.61-2.580	0.534
	High dose#	3.32	1.85-5.97	0.000	3.50	1.79-6.86	0.000
	Lopinavir/ritonavir	0.26	0.13-0.52	0.000	0.43	0.21-0.89	0.022
	Umifenovir	0.46	0.30-0.71	0.000	0.54	0.34-0.84	0.007

690 P values are from cox proportional hazards regression model. The final model was adjusted for sex, age, 691 blood leukocyte count, lactose dehydrogenase, cardiac injury, hyperglycemia, and administration of 692 corticosteroids, lopinavir/ritonavir, and umifenovir. * Low dose of steroid indicates that the maximum 693 dose was less than 1 mg/kg/d prednisone. # High dose of steroid indicates that the maximum dose was 694 equivalent to or more than 1 mg/kg/d prednisone. CI=confidence interval. HR=hazard ratio.

Journal Pre-proof