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The simplest approximation for the first stages of the infection spread is

considered. The specific feature of the COVID-19 characterized by its long latent

period is taken into account. Exponential increase of numbers of infected people

is determined by the half period of the maximal latent time for the COVID-19.

The averaging over latent period leads to additional increase of the infected numbers.
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I. INTRODUCTION

The new virus named COVID-19 appeared first in China in December 2019 and to this

moment (17 March 2020, 11:29 GMT) led to 186665 confirmed cases of disease and 7467

deaths in the World. The percent of the deathes is unusually high, especially in the group of

old people, in comparison with the other flu infection associated with other viruses (see the

website https://www.worldometers.info/coronavirus/coronavirus-cases/). 11 March 2020

this disease is recognized by the World Health Organization (WHO) as a pandemic. We

consider the simplest model of the COVID-19 spread which takes into account a long latent

period of this disease.
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There are various scenario and models for the description of the epidemic situation. The

most models are concentrated on the spontaneous development of the infection spread to

describe all stages of the process. An example is, e.g., the susceptible-infected-susceptible

(SIS) - one of the basic themes in the mathematical epidemiology [1,2]. These models

describe the balance between the susceptible and infected individuals in population under

the various conditions of infection transfer [3]. Kinetic approach can be applied on the basis

of works [4], [5]. However, the situation with the COVID-19 has the specific features which

should be taken into account.

There are essential efforts to confront the epidemic, to localize its spread. In general we

can characterize its development as a non-spontaneous epidemic process. It is especially

important also to slow down the propagation velocity to enable medicine to provide treat-

ment for patients. Under these conditions the investigation of the initial stage of infection

is needed. The long latent period of the COVID-19 is the feature which is considered in this

paper.

II. THE INFECTION DEVELOPMENT

If the number of dangerous (at distance less s ≃ 2 meters) contacts per day equals Nc

for one infected person and k is the coefficient of infection transfer (the ratio of the number

of people accepting virus to the number of dangerous contacts Nc) we find that the average

number of infected persons in population after l0 days equals the half of the maximal latent

time 2l0 days for the COVID-19.

Ni(Nc; k; l0) = (Nc · k + 1)(Nc · k)l0−1, (1)

where l0 is the average number of days between obtaining the virus and appearance of the

illness after which persons have to be isolated.

As an example, let us consider Nc = 50, k = 0.1 and l0 = 7 (based on the half of the

maximal latent period equals of 14 days). As easily seen, in this example Ni(50; 0.1; 7) =

93750. If Nc = 25, k = 0, 1 and l0 = 7 we find Ni(25; 0.1; 7) = 854. The value of k parameter

is unknown. It can be roughly estimated but practically cannot be changed. The average

value l = l0 is well known, but of course, there is some distribution on l, which is not included

in the simplest model under consideration. In Fig.1 the dependence of the infected cases
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Figure 1: Infected cases Ni versus the dangerous contacts Nc for the different coefficient of infection

transition k. The solid line corresponds to k = 0.1, the dot line to the value k = 0.08 and the

dashed line k = 0.07 after l0 = 7 equals the half period of the maximal latent time.

Ni on the number of dangerous contacts Nc per one infected person is shown in the typical

interval 50 ≥ Nc ≥ 0. The various curves correspond to the coefficient of infection transfer

(or probability of infection) equals k = 0.1, 0.08, 0.07.

To generalize the above consideration for the case of distribution on l, which always exists,

we use the Gauss normalized distribution around l0 (the restriction for the maximal latent

period is removed due to exponential decrease of the distribution)√
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Using the stationary-phase method we arrive at the approximate result for the the integral

in Eq. (3) ∫ ∞
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Figure 2: Averaged over l infected cases ⟨Ni(Nc; k; l)⟩l versus the dangerous contacts Nc for the

coefficient of infection transit k = 0.08 and the parameter D = 0.1 (solid line) and D = 0.05

(dashed) in comparison with the curve Ni(Nc; k = 0.08; l0 = 7) (the dotted line which coincides

with the same on Fig. 1)

Therefore for the averaged over the Gauss distribution l number of infected people in

population is given by

⟨Ni(Nc; k; l)⟩l ≃ exp

(
ln2(Nc · k)

4D

)
Ni(Nc; k; l0), (5)

that is generalization of Eq. (1). For D → ∞ we arrive to the result of Eq (1). As is clear the

distribution on l always leads to increase of the infected cases ⟨Ni(Nc; k; l)⟩l in comparison

with Ni(Nc; k; l0). The curves in Figure 2 illustrate the role of averaging over l with different

values of the averaging parameter D=0.1 and D = 0.05 (shown, correspondingly, in solid and

dashed lines) and their comparison with the non-averaged curve (dotted line - the function

Ni(Nc; k; l0 = 7) with Nc = 20 ÷ 50 and k = 0.08. The difference between ⟨Ni(Nc; k; l)⟩l
and Ni(Nc; k; l0 = 7) increases with Nc increase and can be essential for Nc > 40 for the

considered parameters.
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III. CONCLUSIONS

The typical for the virus COVID-19 long maximal latent period 2l leads to the fast

exponential increase of the average infected people with the exponent l. The subsequent

restriction of the infection spread is related with the fast and true quarantine actions, which

transfer first the exponential increase to saturation, as it is in China at the moment and to

further decrease.

Acknowledgment

Author is thankful to M.V. Fedorov and A.M. Ignatov for the useful discussions.

[1] H. W. Hethcote, Qualitative analysis of communicable disease models, Math. Biosci. 28,

335 (1976)

[2] F. Ball, Stochastic and deterministic models for SIS epidemics among a population parti-

tioned into households, Math. Biosci., 156, 41 (1999)

[3] Felix Frey, Falko Ziebert, and Ulrich S. Schwarz, Stochastic Dynamics of Nanoparticle and

Virus Uptake, Phys. Rev. Lett. 122, 088102 (2019)

[4] S. A. Trigger, Fokker-Planck equation for Boltzmann-type and active particles: Transfer

probability approach, Phys. Rev. E 67, 046403 (2003)

[5] G. Ghoshal, L. M. Sander, I. M. Sokolov, SIS epidemics with household structure: the

self-consistent field method, http://arxiv.org/abs/cond-mat/0304301v1 (2003)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2020. .https://doi.org/10.1101/2020.04.13.20063701doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.13.20063701
http://creativecommons.org/licenses/by-nc-nd/4.0/

