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The COVID-19 pandemic has precipitated a global crisis, with more than 690,000 confirmed
cases and more than 33,000 confirmed deaths globally as of March 30, 2020 [1–4]. At present
two central public health control strategies have emerged: mitigation and suppression (e.g, [5]).
Both strategies focus on reducing new infections by reducing interactions (and both raise questions
of sustainability and long-term tactics). Complementary to those approaches, here we develop
and analyze an epidemiological intervention model that leverages serological tests [6, 7] to identify
and deploy recovered individuals as focal points for sustaining safer interactions via interaction
substitution, i.e., to develop what we term ‘shield immunity’ at the population scale. Recovered
individuals, in the present context, represent those who have developed protective, antibodies to
SARS-CoV-2 and are no longer shedding virus [8]. The objective of a shield immunity strategy
is to help sustain the interactions necessary for the functioning of essential goods and services
(including but not limited to tending to the elderly [9], hospital care, schools, and food supply)
while decreasing the probability of transmission during such essential interactions. We show that
a shield immunity approach may significantly reduce the length and reduce the overall burden of
an outbreak, and can work synergistically with social distancing. The present model highlights the
value of serological testing as part of intervention strategies, in addition to its well recognized roles in
estimating prevalence [10, 11] and in the potential development of plasma-based therapies [12–15].

In the absence of reliable pharmaceutical interven-
tions against SARS-CoV-2, multiple public health strate-
gies are being deployed to slow the coronavirus pandem-
ic [1, 5, 16]. These strategies can be broadly grouped into
two approaches: mitigation; and suppression. Mitigation
includes a combination of social distancing (including
school and university closures), case testing, and symp-
tomatic case isolation to reduce epidemic spread and bur-
den on hospitals. Mitigation is intended to lessen an out-
break, however the level of disease may still overwhelm
health services [5]. Instead, some jurisdictions have either
pre-emptively or reactively adopted a combination of
travel restrictions (shown to be effective in curtailing dis-
persion if implemented early enough [17, 18]) and sup-
pression: imposing complete shut-downs of the bulk of
non-essential services for extended periods (e.g., shelter-
ing in place). Suppression has led to marked decreases in
prevalence in the short term by combining case isolation,
quarantine, use of separate facilities for treating COVID-
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19 patients, and large-scale viral testing to reduce trans-
mission. Suppression also comes with significant costs,
threatening social order and socio-economic health.

Here, we propose a complementary intervention
approach that is intended to reduce transmission while
lessening the costs of suppression and mitigation. The
core idea is to leverage a mechanism of ‘interaction sub-
stitution’ by identifying and deploying recovered indi-
viduals who have protective antibodies to SARS-CoV-2.
The intent is to develop population-level ‘shield immu-
nity’ by amplifying the proportion of interactions with
recovered individuals relative to those of individuals of
unknown status (see Figure 1). Here, we assume that
recovered individuals (i.e., virus-negative and antibody-
positive) can safely interact with both susceptible and
infectious individuals, in effect substituting interactions
between susceptible and infectious individuals for inter-
actions with a recovered individual. The intervention
strategy is both local in scope and scales with outbreak
size, given that the potential impact of shield immuni-
ty grows with a local outbreak. We recognize that our
assumptions about safety for both recovered individuals
and those they interact with is of vital importance. We
return to this issue in discussing translational efforts of
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FIG. 1: Simplified schematic of intervention serology via
shield immunity. (Top) Population dynamics of suscepti-
ble, infectious, and recovered in which recovered individuals
reduce contact between susceptible and infectious individuals.
Arrows denote flows between population level-compartments.
(Bottom) Individual view of baseline scenario and shielding
scenario, in which the identification, designation, and deploy-
ment of recovered individuals is critical to enabling S-R and I-
R interactions to replace S-I interactions. Bonds denote inter-
actions between individuals. In the Shield Immunity panel,
the icon in the recovered individuals denotes the identifica-
tion of individuals with protective antibodies, and hence the
enhanced contribution of such individuals to shield immunity
in contrast to the Baseline panel.

shield immunity.
To illustrate the concept of shield immunity, consid-

er an epidemic model in which individuals tend to sub-
stitute their interactions with identified (or strategically
located) recovered individuals. Hence, rather than mix-
ing at random, we consider a relative preference of 1 +α
that a given individual will interact with a recovered indi-
vidual in what would otherwise be a potentially infectious
interaction. The dynamics of the fraction of susceptible
S, infectious I, and recovered R individuals are:

Ṡ = −β SI

1 + αR
(1)

İ = β
SI

1 + αR
− γI (2)

Ṙ = γI (3)

such that when α = 0 we recover the conventional SIR
model. Note that the denominator of 1 + αR can be
thought of as S+ I +R+αR. Given that S+ I +R = 1,
this is equivalent to the term 1 + αR. Detailed mixing
and substitution models could lead to variations of this
model, e.g., in spatially explicit domains, on networks,
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FIG. 2: Shield immunity dynamics in a SIR model. (Top)
Infectious case dynamics with different levels of shielding, α.
(Bottom) Final state of the system as a function of α. In both
panels, β = 0.25 and γ = 0.1.

etc [19–22]. Figure 2 illustrates shield immunity impacts
on an SIR epidemic with R0 = 2.5. In this SIR model,
shield immunity reduces the epidemic peak and reduces
epidemic duration. In effect, shielding acts as a negative
feedback loop, i.e., given that the effective reproduction
number is Reff (t)/R0 = S(t)/(1 + αR(t)). As a result,
interaction substitution increases as recovered individu-
als increase in number and are identified. For example, in
the case of α = 20, the epidemic concludes with less than
20% infected in contrast to the final size of approximately
90% in the baseline scenario without shielding.

We next apply the concept of shield immunity to the
epidemiological dynamics of the COVID-19 pandemic,
ignoring births and other causes of deaths for simplicity.
Consider a population of susceptible S, exposed E, infec-
tious asymptomatically Ia, infectious symptomatically
Is, and recovered R who are free to move, without restric-
tions in a ‘business as usual’ scenario. A subset of symp-
tomatic cases will require hospital care, which we further
divide into subacute Ihsub, and critical/acute (i.e., requir-
ing ICU intervention) Ihcri cases. We assume that a sub-
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FIG. 3: COVID-19 dynamics in a baseline case without interventions compared to two shield immunity scenarios, α = 2 and
α = 20, including deaths, ICU beds needed, and age distribution of fatalities. See the SI for more details on alternative
scenarios, high (left) and low (right).

stantial fraction of critical cases will die. Age-stratified
risk of hospitalization and acute cases are adapted from
the Imperial College of London report [5]. The full mod-
el incorporating shield immunity (see SI for equations
and details, and Figure S1 for a schematic) differs from
conventional SIR models with social distancing or case
isolation interventions in a key way: the rate of transmis-
sion is reduced by a factor of 1/ (Ntot + αRshields) where
Ntot denotes the fraction of the population in the ‘circu-
lating baseline’, and Rshields denotes the total number of
recovered individuals between the ages of 20-60 (a sub-
set of the total recovered population). In this model, we
assume that all recovered individuals have immunity, but
that only a subset are available to facilitate interaction
substitutions. The model assumes that the circulating
pool is not interacting with hospitalized patients, which
must be incorporated into implementation scenarios with
healthcare workers (HCW-s), who represent an intended
target for shield immunity [23]). The baseline epidemi-
ological parameters, age stratified risk, and population
structure are listed in the SI (adapted from [5, 24–27];
see github for code and full implementation details).

We use the baseline epidemiological parameters and
seed an outbreak with a single exposed individual until
the outbreak reaches 0.1% total prevalence, e.g., 10,000
individuals infected out of a population of 10,000,000, at

which point a shielding strategy is implemented. Out-
break scenarios differ in transmission rates, with R0 =
1.57 and 2.33 in the low and high scenarios, respective-
ly. Early estimates of R0 from Wuhan are consistent
with a 95% CI of between 2.1 and 4.5 [28], putting our
high scenario on the conservative end of estimated ranges.
However, the R0 of the high scenario we examine here is
consistent with the range of 2.0 to 2.6 considered by the
Imperial College London group [5], and with the medi-
an of Reff = 2.38 (95% CI: 2.04-2.77) as estimated
via stochastic model fits to outbreak data in China that
accounts for undocumented transmission [26]. Moreover,
control measures reduce transmission, and our low sce-
nario is consistent with estimates of Reff = 1.36 (95%
CI: 1.14-1.63) in China from Jan. 24 to Feb. 3 after trav-
el restrictions and other control measures were imposed.
Figure 3 shows the results of comparing interventions to
the baseline case. As in the simple SIR model, shielding
(on its own) could potentially decrease epidemic burden
across multiple metrics, decreasing both the total impact
and shortening the peak event. In a population of size
10,000,000 for the high scenario, the final epidemic pre-
dictions are 71,000 deaths in the baseline case vs. 58,000
deaths given intermediate shielding (α = 2), and 20,000
deaths given enhanced shielding (α = 20). In a popula-
tion of size 10,000,000 for the low scenario, the final epi-
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FIG. 4: Impacts of combined interventions of shielding and social distancing in the high scenario. (Left) Fractional reduction
in deaths compared to baseline; (Right) Peak level of ICU beds needed on a given day during the epidemic; the red line denotes
25 ICU beds per 100,000 individuals as a demarcation point for surge capacity.

demic predictions are 50,000 deaths in the baseline case
vs. 34,000 deaths given intermediate shielding, and 8,300
deaths given enhanced shielding. The majority of deaths
are in those ages 60 and above, despite the lower fraction
of individuals in those ranges (see Figure 3), consistent
with estimates in related COVID-19 models [5, 25, 26]
and from outbreaks in Italy and China [29]. Note that
our simulation results consider impacts based on shield-
ing alone; whereas ongoing restrictions via social dis-
tancing and shelter in place orders will reduce interac-
tion rates (a point we revisit later). The effectiveness of
shielding depends on the product of the number of poten-
tial shields identified and their effective substitutability,
i.e, αR, combining identification of and interaction rate
by shields.

The population-scale impacts of shielding depends on
multiple factors, including demographic distributions,
the fraction of asymptomatic transmission ( [24, 26]),
and the duration of immunity. The SI treats each of
these items at length. First, we find that populations
with a strongly right-shifted demographic distribution
will receive more potential benefits from shielding. Even
though there are fewer recovered individuals between the
ages of 20-60 to draw from (in a relative sense), the
impact of shield immunity is greater. We find that the
relative reduction in deaths via shield immunity is pro-
portional to the relative differences in the fraction of pop-
ulation over 60 (e.g., see SI for details on US-state lev-
el analysis, similar results hold for countries like Italy
where more than 23% of the population is older than 65
and nearly 30% is older than 60; Figures S2-S3). Second,
shield immunity is robust to variation in asymptomat-
ic infection probabilities, improving outcomes in models
with varying baseline levels of asymptomatic transmis-
sion (see Figures S4-S6). In addition, the present model

results assumes that immunity has relatively fast onset
and is permanent in duration. Clinical work in Zhe-
jiang University, China, suggests that seroconversion of
total antibody (Ab), IgM and IgG antibodies developed
with a median period of 15, 18, and 20 days, respective-
ly (albeit for symptomatic patients in a hospital; simi-
lar data for seroconversion of asymptomatic individuals
was not included [30]). In the SI we show that impacts
of shield immunity is robust insofar as the duration of
immunity is 4 months or longer (Figures S7-S8); we note
that distinct control measures that extend the epidem-
ic would likely impact effectiveness of shield immunity.
For context, the titer of protective antibodies in indi-
viduals infected with related betacoronaviruses (causing
mild/moderate symptoms) reduced over a one year peri-
od such that re-exposure can lead to re-infection [31], in
contrast to evidence of multi-year immunity for individu-
als recovered from SARS [32]. In addition, we emphasize
that the accuracy of serological tests is key. The bene-
fits of shield immunity can be undermined if recovered
individuals can be reinfected (even with little danger to
them), or potentially misidentified, leading to interaction
substitution with individuals that could infect others (a
risk reduced by combining serology with PCR).

Thus far we have focused on the impacts of shield
immunity as a singular strategy, yet in practice, multiple
interventions will be used in parallel. Hence, we evaluat-
ed the synergistic potential of utilizing shield immunity
in combination with social distancing. Social distancing
is modeled as a reduction in the transmission rates sus-
tained over the post-intervention period. As is apparent
in Figure 4, shielding can augment social distancing, par-
ticularly when social distancing is relatively ineffective.
For example, contour lines of reduction in total fatalities
suggest that a combination of 10% reduction in trans-
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mission with α = 20 is equivalent to a nearly 50% reduc-
tion in transmission in the absence of shield immunity.
However, there is a trade-off. Because social distancing
reduces contacts and transmission, there are fewer recov-
ered individuals when β is reduced by 50%. Nonetheless
benefits of shielding accrue at all levels of social distanc-
ing. Social distancing and shield immunity may work in
combination to improve outcomes in terms of expected
hospitalization burden, again suggesting a role for shield
immunity in reducing transmission and reducing the neg-
ative impacts of suppression-level social distancing poli-
cies. Finally, we note that targeted shield immunity may
also enhance population outcomes by focusing the effort
of recovered individuals in subsets of the population. In
the SI, we show heuristic solutions to an optimization for-
mulation of targeted (i.e., age-specific) shield immunity
in this model. In effect, by preferentially targeting old-
er individuals, it is possible to further reduce cumulative
deaths by ≈ 30% (see Figures S9-S11).

Serology testing is needed now, at scale, for many rea-
sons. Here, we have shown a rationale for serology test-
ing as a means to facilitate interventions beyond those
of mitigation and suppression. Identifying and deploy-
ing recovered individuals could represent more than just
a metric of the state of the COVID-19 epidemic, e.g.,
to better measure prevalence and the ‘denominator’,
but an opportunity to slow transmission by developing
population-level shield immunity. Many logistical, social,
and dynamical challenges remain if such an idea were
to move from theory to feasibility. Accurate and rapid
serological tests are needed at scale, including targeted
surveys to identify essential workers and via population-
level surveys. The potential scale of shield immunity
depends on both the intrinsic epidemic dynamics, driving
the number of recovered individuals able to provide shield
immunity, and also on the ability to identify and deploy
them (e.g., via the shielding parameter α). Yet, even if
such tests were available, who should get them? Public
health authorities and governmental agencies should con-
sider how to prioritize those in critical roles, those with
experience in disaster response, as well as prior individ-
uals who have tested positive for COVID-19 (and could
then return for both serology-based and viral shedding
assays). Positive confirmation of immunity and cessa-
tion of viral shedding could help identify and deploy (tens
of) thousands of individuals as part of a shield immunity
strategy, with the greatest concentration likely co-located
with areas in greatest need of intervention. A national (or
global) strategy could consider the deployment of critical
response workers to help control new outbreaks.

We recognize there are significant challenges to devel-
oping and implementing interventions that aim to devel-
op population-wide shield immunity. Nonetheless, the
magnitude of the current public health and economic cri-
sis demands large-scale action (e.g., [33, 34]). The effi-
cacy of a shield immunity strategy will be demographic-
, test- and context-dependent. Beyond the near-term,
the duration of immune memory is also relevant in pro-
jecting to a multi-year post-pandemic framework where
demographic dynamics and strain evolution are increas-
ingly relevant [35, 36]. In moving forward, it will be
critical to understand how shield immunity is modulated
by spatial and network structure. In a network, well-
connected individuals have a disproportionate effect on
the spread of disease [20]. Network structure represents
an opportunity to position immune shields at focal points
of ‘essential’ services, and even to prioritize the focus of
population-scale serological prevalence assays based on
the connectivity of targeted individuals. Although the
number of laboratory confirmations is both staggering
and growing, the actual number of infections is high-
er – likely far higher; for example in China, 80% of
transmission of new cases were from undocumented infec-
tions [26] and there is significant uncertainty with respect
to case ascertainment [37]. Asymptomatic transmission
may paradoxically provide a greater pool of recovered
individuals to develop shield immunity at scale. We con-
tend that it is time for collective action to ascertain more
information on prevalence and to consider strategic use
of serology as the basis for public health intervention to
slow the pandemic spread of COVID-19.

Data availability: All simulation and codes used in the
development of this manuscript are available at https:
//github.com/WeitzGroup/covid_shield_immunity.
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