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Abstract

Detection of SARS-CoV-2 infections to date has relied on RT-PCR testing. However, a
failure to identify early cases imported to a country, bottlenecks in RT-PCR testing, and the
existence of infections which are asymptomatic, sub-clinical, or with an alternative presenta-15

tion than the standard cough and fever have resulted in an under-counting of the true preva-
lence of SARS-CoV-2. Here, we show how publicly available CDC influenza-like illness (ILI)
outpatient surveillance data can be repurposed to estimate the detection rate of symptomatic
SARS-CoV-2 infections. We find a surge of non-influenza ILI above the seasonal average and
show that this surge is correlated with COVID case counts across states. By quantifying the20

number of excess ILI patients in March relative to previous years and comparing excess ILI to
confirmed COVID case counts, we estimate the syndromic case detection rate of SARS-CoV-2
in the US to be less than 13%. If only 1/3 of patients infected with SARS-CoV-2 sought
care, the ILI surge would correspond to more than 8.7 million new SARS-CoV-2 infections
across the US during the three week period from March 8 to March 28. Combining excess ILI25

counts with the date of onset of community transmission in the US, we also show that the
early epidemic in the US was unlikely to be doubling slower than every 4 days. Together these
results suggest a conceptual model for the COVID epidemic in the US in which rapid spread
across the US are combined with a large population of infected patients with presumably
mild-to-moderate clinical symptoms. We emphasize the importance of testing these findings30

with seroprevalence data, and discuss the broader potential to use syndromic time series for
early detection and understanding of emerging infectious diseases.

1 Introduction
The ongoing SARS-CoV-2 pandemic continues to cause substantial morbidity and mortality around
the world [1, 2]. Regional preparation for the pandemic requires forecasting the growth rate of35

the epidemic, the timing of the epidemic peak, the demand for hospital resources, and the degree
to which current policies may curtail the epidemic, all of which benefit from accurate estimates
of the true prevalence of the virus within a population [3]. Confirmed cases are thought to be
underestimates of true prevalence due to some unknown combination of patients not reporting for
testing, testing not being conducted, and false-negative test results. Estimating the true prevalence40

informs the scale of upcoming hospital, ICU and ventilator surges, the proportion of individuals
who are susceptible to contracting the disease, and estimates of key epidemiological parameters
such as the epidemic growth rate and the fraction of infections which are sub-clinical.

The current literature suggests that the predominant symptoms associated with COVID are
fever, cough and sore-throat; that is, patients often present with an influenza-like illness (ILI) yet45

test negative for influenza [4, 5]. With many COVID patients having a similar presentation as
patients with influenza, existing surveillance networks in place for tracking influenza could be used
to help track COVID.
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Here, we quantify background levels of non-influenza ILI over the past 10 years and identify
a recent surge of non-influenza ILI starting the first week of March, 2020. This surge of excess50

ILI correlates with known patterns of SARS-CoV-2 spread across states within the US, suggesting
the surge is unlikely to be due to other endemic respiratory pathogens, yet is orders of magnitude
larger than the number of confirmed COVID cases reported. Together this suggests that the true
prevalence of SARS-CoV-2 within the US is much larger than currently appreciated and that the
syndromic case detection rate is likely less than 13%, corresponding to more than 2.8 million new55

ILI cases due to SARS-CoV-2 and, assuming influenza-like clinical rates, more than 8.7 million
total SARS-CoV-2 cases. Our analysis provides empirical corroboration of previous hypotheses of
substantial undocumented cases yet places the estimated undocumented case rate higher than prior
reports [6]. The SARS-CoV-2 prevalence estimates obtained from the ILI surge are consistent with
an epidemic doubling time of less than 4 days. A sub-4 day doubling time is substantially faster60

than many prior reports [7, 8] yet is consistent with the 3-day doubling time of observed deaths
due to COVID within the US. Our findings support a conceptual model for COVID spread in
the US in which more rapid spread than previously reported is coupled with a larger undiagnosed
population to give rise to currently observed trends. Finally, we find that the ILI surge peaks the
week starting March 15, and we discuss the potential explanations for this phenomenon.65

2 Results

2.1 Influenza like illness surge
We identified excess ILI cases by first subtracting cases due to influenza and then subtracting the
seasonal signal of non-influenza ILI (Figure 1). Many states, including Washington, New York,
Oregon, Pennsylvania, Maryland, Colorado, New Jersey, and Louisiana, have had a recent surge70

in number of non-influenza ILI cases far in excess of seasonal norms. For example, in the second
week of March, 2020, Oregon saw 50% higher non-influenza ILI than it had ever seen since the
inception of the ILINet surveillance system within the US. We find that with 95% probability,
approximately 4% of all outpatient visits in Oregon during this time were for ILI that could not be
explained by either influenza or the normal seasonal variation of respiratory pathogens. We find75

that as the seasonal surge of endemic non-influenza respiratory pathogens declines, this excess ILI
correlates more strongly with state-level patterns of newly confirmed COVID cases suggesting that
this surge is a reflection of ILI due to SARS-CoV-2 (Pearson ρ > 0.35 and p < 0.05 for the last
three weeks; Figure S1A). Notably, we find that the ILI surge appears to peak during the week
starting on March 15 and subsequently decreases in numerous states the following week; notable80

exceptions are New York and New Jersey, two of the states that have been the hardest hit by the
epidemic, which have not started a decline by the week ending March 28.

2.2 Investigating ILI Admission Rates
The magnitude of this ILI surge could be falsely elevated if patient behavior has recently changed
leading to increasing detection of mild ILI. If the ILI surge reflected higher rates of detection85

of typically mild ILI, we would expect emergency department ILI rates would increase yet the
proportion of those ILI cases admitted to the hospital would decrease. We were able to obtain
data to evaluate this hypothesis from New York City’s influenza surveillance network [9]. In the
month of March, the daily number of ILI visits to emergency departments across New York City
increased while the proportion of those who went on to be admitted also increased by as much as90

3-fold compared to the baseline rate prior to March (Figure S1). This suggests that patients are
presenting less often for mild ILI, and such decrease in care-seeking behavior, if similar across the
US, could be deflating the size of the ILI surge in later weeks of March.

2.3 Estimating Prevalence from the ILI Surge
To provide an estimate of the SARS-CoV-2 infections from the ILI Surge we assume that the95

population reported by sentinel providers is representative of their state each week. Additionally,
we assume that the total number of patients needing medical care has not decreased since March
8th. Together these assumptions, as well as surveys describing the average number of patients seen
by providers [10], the number of providers in each state [11], and the total number of outpatient
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visits per year [12, 13], allow us to estimate that, if outpatient clinics remained open during the100

COVID epidemics, we would expect that between March 8th and March 28th, there would have
been approximately 2.8 million patient encounters with ILI due to COVID (95% credible set 2.6
million to 3.0 million; see Methods for full details).

Not all patients infected with SARS-CoV-2 will present to a health-care provider with ILI.
While we cannot directly measure the rate of such sub-clinical cases, we suggest that a number105

of prior studies can be used to produce a lower-bound on this contribution. A recent study of
passengers on the Diamond Princess cruise-ship accounted for right-censoring of patients sampled
and estimated that 17.9% of patients infected with SARS-Cov-2 are asymptomatic for the course of
their infection (95% credible set 15.5% to 20.2%). This estimate likely represents an underestimate
given that the majority of passengers were >60 years old, a demographic thought to have a lower110

asymptomatic rate than younger individuals [14]. Beyond asymptomatic individuals, prior studies
of ILI surveillance have suggested that only 20-50% of ILI cases seek medical care [15, 16]. To
produce a lower-bound prevalence estimate we take the higher end of this range and assume that
40% of ILI cases present to a health-care provider. Together these additional contributions from
sub-clinical cases produces a lower bound of 8.7 million SARS-CoV-2 infections between March115

8th and March 28th (95% credible set 8.0 million to 9.4 million). Prevalence estimates for each
state within this time-period are shown in Figure S4.

2.4 Syndromic Case Detection Rate
The rate at which SARS-CoV-2+ patients with ILI symptoms are identified as having COVID
varies by state and over time (Figure S2). Our estimated syndromic case detection rates have been120

increasing over the month of March, which can be expected given increases in testing capacity
across the US since the February 28 detection of community transmission in Washington State.
For the week ending March 14, COVID cases in the states with the highest estimated syndromic
case detection rate (Washington, Nevada, and Michigan) are only capturing approximately 1% of
ILI surges in those states.In the last week ending on March 28, we estimate the detection rate125

across the US increased to be 12.5% (95% credible interval 9.5%-18.3%).

2.5 Epidemic Growth Rates and Clinical Rates
The true prevalence of SARS-CoV-2 is unknown at the time of this writing. However, if we assume
the excess non-influenza ILI is almost entirely due to SARS-CoV-2, an assumption that becomes
more valid as SARS-CoV-2 becomes more prevalent, we can use the excess non-influenza ILI to130

define bounds on the exponential growth rate of the US SARS-CoV-2 epidemic and understand
the mutual dependence of exponential growth rates, the rate of subclinical infections, and the time
between the onset of infectiousness and a patient reporting as ILI Figure 2. With a January 15
start date of the US epidemic [17], allowing early stochasticity from start-time to the onset of
regular exponential growth, we find that it’s improbable to explain the ILI surge with an epidemic135

whose doubling time is longer than 4 days, as such slow growth scenarios fail to produce enough
infected individuals to match the observed excess ILI.

Across the entire US, new deaths due to COVID doubled every 3.01 days over the month of
March (±0.001, p-value of test that doubling rate is less than 4 days approximately 0). An epidemic
starting January 15th with doubling time equal to the doubling time of deaths in the US would140

imply an expected 10.4% clinical rate for the week of March 8 (the proportion of patients who have
symptoms for which they would present to a health care provider) if the entirety of the first week
of ILI surge is comprised of COVID patients and there was a 1-day lag from onset to presentation
as ILI (Figure 3A). A four-day lag between the onset of infectiousness and presentation with ILI
yields an average clinical rate of 23% among the 90.25% of simulations which could account for145

the ILI surge. However, the ILI surge did not grow at the same rate as deaths in the US, nor
does an ILI surge adjusted to account for decreased care-seeking grow at the same rate as deaths,
suggesting additional factors can be affecting the ILI surge, such as successful interventions, even
faster decreases in care-seeking than observed in New York, or an early epidemic doubling faster
than every 3 days.150

Faster growth rates require lower clinical rates to explain the ILI surge. If the US epidemic prior
to March 14 grew at the rate of deaths in Italy, doubling every 2.65 days, it could better match
the curvature of the ILI surge by peaking around mid to late March, but would imply a clinical
rate of 1.7% the second week of March (Figure 2B). If researchers produce alternative estimates
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of growth rates for the US epidemic, the ILI surge can be used to estimate bounds and ranges of155

possible clinical rates (Figure 3C). If the entirety of the ILI surge is attributable to COVID, it
suggests a slowest-possible doubling time of 4 days for the US epidemic starting on January 15.
Any evidence of significant secondary introductions, super-spreading, or rapid transmission events
in early transmission chains will decrease these estimated clinical rates [18].

3 Discussion160

We use outpatient ILI surveillance data from around the US to estimate the prevalence of SARS-
CoV-2+. We find a clear, anomalous surge in ILI outpatients during the COVID epidemic that
correlates with the progression of the epidemic across the US. The surge of non-influenza ILI
outpatients is much larger than the number of confirmed case in each state, providing evidence
of large numbers of symptomatic probable COVID cases that remain undetected. The slowest165

epidemic doubling time that could explain the ILI surge would be 4 days and this rate could only
be achieved unusually fast early transmission or super-spreading events and a clinical rate near
100%. We measure the doubling time of deaths due to COVID with in the US to be 3.01 days
and note that this is consistent with the bound imposed by the ILI surge. Together, the surge in
ILI and analysis of doubling times suggest that SARS-CoV-2 has spread rapidly throughout the170

US since it’s January 15th start date and is likely accompanied by a large undiagnosed population
of potential COVID outpatients with presumably milder distribution of clinical symptoms than
estimated from prior studies of SARS-CoV-2+ inpatients.

Excess ILI appears to have peaked during the week starting on March 15th, leading the observed
ILI dynamics to diverge from the overall epidemic dynamics implied by the growth rate of COVID175

deaths in the US. If the ILI dynamics were proportional to the epidemic curve then the two
could be related with a constant subclinical rate. However, the changing ratio between the ILI
surge and the epidemic curves parameterized by the growth rate of US deaths suggests additional
mechanisms may be behind the ILI slowdown. First, a slowdown in ILI outpatient arrivals could
be due to decrease in care-seeking where patients with mild ILI are less likely to present to the180

hospital as evident in emergency departments across New York City. Adjusting our ILI prevalence
estimates based on the effect observed in New York City aligns ILI estimates more closely with
predicted dynamics, yet the discrepancy remains. The remaining deviation could reflect more
extreme changes in patient behaviors than those seen in New York City or successful interventions
leading to lower transmission rates.185

Our study has several limitations. First, the observed ILI surge may represent more than just
SARS-CoV-2 infected patients. A second epidemic of a non-seasonal pathogen that presents with
ILI could confound our estimates of ILI due to SARS-CoV-2. Alternatively, it is also possible
that our use of ILI data has underestimated the prevalence of SARS-CoV-2 within the US. While
early clinical reports focused on cough and fever as the dominant features of COVID [5], other190

reports have documented digestive symptoms as the complaint affecting up to half of patients
with laboratory-confirmed COVID [19], and alternative presentations, including asymptomatic or
unnoticeable infections, could result in ILI surges underestimating SARS-CoV-2 prevalence.

Additionally, our models have several limitations. First we assume that ILI prevalence within
states can be scaled to case counts at the state level. This is based on the assumption that the195

average number of cases seen by sentinel providers in a given week is representative of the average
number of patients seen by all providers within that state in a given week. Errors in this assump-
tion would cause proportional errors in our estimated case counts and syndromic case detection
rate. Second, our epidemic models are crude, US-wide SEIR models varying by growth rate alone
and as such do not capture regional variation or intervention-induced changes in transmission. Our200

models were used to estimate growth rates from ILI for testing with COVID data and to estimate
the mutual dependency of growth rate, the lag between the onset of infection and presentation
to a doctor, and clinical rates; these models were not intended to be fine-grained forecasts for
municipality hospital burden and other common goals for COVID models. Finer models with re-
gional demographic, and case-severity compartments are needed to translate our range of estimated205

prevalence, growth rate, and clinical rates into actionable models for public health managers.
While an ILI surge tightly correlated with COVID case counts across the US strongly sug-

gests that SARS-CoV-2 has potentially infected millions in the US, laboratory confirmation of
our hypotheses are needed to test our findings and guide public health decisions. Our findings
make the testable predictions that one would find relatively high rates of community seropositivity210
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in states that have already seen an ILI surge and that seroprevalence of individuals infected in
March is proportional to the size of the ILI surge. A study of ILI patients from mid-march who
were never diagnosed with COVID could produce a focused test our predictions about the num-
ber and regional prevalence of undetected COVID cases presenting with ILI during that time. If
seroprevalence estimates are consistent with our estimated prevalence from these ILI analyses, it215

would strongly suggest lower case severity rates for COVID than were assumed in late March and
indicate the value of ILI and other public time-series of outpatient illness in facilitating early esti-
mates of crucial epidemiological parameters for rapidly unfolding, novel pandemic diseases. Since
not all novel pandemic diseases are expected to present with influenza-like symptoms, surveillance
of other common presenting illnesses in the outpatient setting could provide a vital tool for rapidly220

understanding and responding to novel infectious diseases.

4 Methods
In what follows, let i index state i and let t index week t (with t = 0 referring to October 3, 2010;
the start of ILINet surveilance).

4.1 Data Sources225

Since 2010 the CDC has maintained ILINet for weekly influenza surveillance. Each week approx-
imately 2,600 enrolled providers distributed throughout all 50 states as well as Puerto Rico, the
District of Columbia and the US Virgin Islands, report the total number of patient encounters nit
and the total number of which met criteria for influenza-like illness (ILI – defined as a tempera-
ture 100F [37.8C] or greater, and a cough or sore-throat without a known cause of than influenza;230

yit) [20]. For scale, in the 2018-2019 season ILINet reported approximately 60 million outpatient
visits. Coupled to these data are weekly state-level reports from clinical and public health labs
detailing the number of patient samples tested for influenza nfluit as well as the number of these
samples which are positive for influenza yfluit . Therefore ILINet data can be thought of as a weekly
state-level time-series representing the superimposed prevalence of various viruses which can cause235

ILI. ILINet data was obtained through the CDC FluView Interactive portal [21].
In addition to ILINet data, US State population data for the 2020 year was downloaded from

https://worldpopulationreview.com/states/. The number of primary care providers in each state
per 100,000 residents bi was obtained from the United Health Foundation [11]. COVID confirmed
case counts were obtained from The New York Times’ database maintained at https://github.com/nytimes/covid-240

19-data. This dataset contains the daily cumulative confirmed case count for COVID for each
state zil for day l. The dataset of deaths in Italy was downloaeded from https://github.com/pcm-
dpc/COVID-19 on April 6, 2020.

4.2 Data Processing
Within the ILINet dataset, New York City and New York were summed into a combined New York
variable representing both New York city and the surrounding state. Due to incomplete data in one
or more of the data-sources described above the Virgin Islands, Puerto Rico, The Commonwealth
of the Northern Mariana Islands, and Florida were excluded from subsequent analysis. In addition,
daily cumulative confirmed COVID cases were converted to weekly counts of new cases by

z̃it =
∑
l∈t

zit − zi(t−1).

4.3 Extracting non-influenza ILI signal245

To subtract influenza signal from yit we assume that the population of patients with ILI within a
state are the same population that are potentially tested for influenza. This assumption allows us
to calculate the number of non-influenza ILI cases as

ỹit =

(
1− yfluit

nfluit

)
yit.

The resulting time-series ỹit are shown in Figure S3.

5

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2020. .https://doi.org/10.1101/2020.04.01.20050542doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.01.20050542
http://creativecommons.org/licenses/by/4.0/


4.4 Identifying ILI Surges
We identified ILI surges in ỹit by training a model on ỹit for all data prior to July 21, 2019. We then
used this model to predict the prevalence of non-influenza ILI (π̂it) for dates after and including
July 21, 2019. We calculated the ILI surge as the difference between the observed proportion of250

non-influenza ili ỹit/nit and π̂it.
More specifically, to account for variation in the number of reporting providers, we trained the

following binomial logistic-normal model

ỹit ∼ Binomial(πit, nit) (1)

πit =
exp(ηit)

1 + exp(ηit)
(2)

ηit ∼ N(λi(t), σ
2) (3)

λi(t) ∼ GP(θ, σ2Γ) (4)

σ2 ∼ InverseGamma(υ, ξ) (5)
θ(t) = θ (6)

Γ(t, t+ s) = α exp

(
−s2

2ρ2

)
(7)

We made the following prior specifications: We set the bandwidth parameter for the squared
exponential kernel as ρ = 3 representing a strong local correlation in time that died off sharply
beyond 3 weeks, α = 1 representing a signal to noise ratio of of approximately 1, υ = 1 and
ξ = 1 representing weak prior knowledge regarding the overall scale of variation in the the latent255

space. Finally, we set θ = −2.197 representing an off-season prevalance of 0.1% non-influenza ILI.
Samples from the posterior predictive density p(πit|yi1, . . . , ỹiT , ni1, . . . , niT ) were collected using
the function basset from the R package stray [22]; a total of 4000 such samples were collected in
this analysis. We define the prevalence of non-influenza ILI in excess of normal seasonal variation
as y∗it = ỹit/nit − π̂it.260

To exclude variation attributable to unseasonably high rates of other ILI causing viruses (such
as the outbreak of RSV in Washington state in November-December 2019) we only investigate
y∗it for weeks after March 7th 2020 as only these later weeks had high correlation to the COVID
confirmed case rate (Figure S1).

4.5 Calculating scaling factors to relate ILINet data to COVID cases265

As COVID new case counts z̃it represent the number of confirmed cases in an entire state and
ILINet data represents the number of cases seen by a select number of enrolled providers, we must
estimate scaling factors wi to enable comparison of ILINet data to confirmed case counts at the
state level. Let π∗it denote the probability that a patient with ILI in state i has COVID as estimated
from ILINet data. Let pi denote the population of state i and let bi denote the number of primary
care providers per 100,000 people in state i. We translate the inferred proportion of individuals
with ILI due to COVID to the state level by considering the average number of patients seen across
all providers in the state in a 5 day work-week. In addition, we add a discount factor λ = 0.55
to calibrate these estimates with prior reports regarding the total number of outpatient visits per
year [13]. This yields our estimated number of COVID cases (excess ILI at the state level) as

wi =
5bipi
105

mλ (8)

y†it = wiπit (9)

where m = 20.2 is the mean number of patients seen by physicians per day [10].

4.6 Accounting for sub-clinical infections
To account for the contribution of sub-clinical SARS-CoV-2 infections we use a recent analysis
of cohort surveillance from the Diamond Princess [23]. Monte-Carlo simulations were used to
propagate error from our uncertainty regarding potential asymptomatic infections affecting the
clinical rate δb into our calculation of posteriors for epidemic trajectories. To match posterior

6
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estimates from Mizumoto et al.[23], we use quantile matching to parameterize δc ∼ Beta(α, β) to
achieve a mean of .179 and a 95% probability set of (.155, .202). In addition, we take δc = 0.4 as
a conservative estimate of the proportion of patients with ILI who would seek medical care in a
typical year [15, 16]. To account for these sub-clinical contributions we use adjusted scaling factors

w∗ =
wt

(1− δc)(1− δb)
.

4.7 Estimating syndromic case detection rates
Assuming that the majority of SARS-CoV-2 testing within the US has been directed by patient
symptoms[24], the pool of newly diagnosed SARS-CoV-2+ patients is a subset of the pool of SARS-270

CoV-2+ patients who are identified as having ILI. Therefore, we calculate the probability that a
SARS-CoV-2+ patient with ILI who seeks medical care will be identified as having SARS-CoV-2
as δsit = z̃ij/y

†
it (Figure S2).

4.8 Growth Rate estimation
Growth rates were estimated for the US and Italy by poisson generalized linear models predicting275

new deaths with date. Data on COVID deaths in the US were obtained from https://github.com/nytimes/covid-
19-data on April 6, 2020 and all deaths from March 5, 2020 to April 1, 2020, were summed
by date. Initially, April 2-5 were included but were found to have extremely high leverage and
were hence excluded from our analysis. Data on COVID deaths in Italy were obtained from
https://github.com/pcm-dpc/COVID-19. The same procedure was applied, focusing on deaths280

from February 24 until March 12. The slope from poisson regression was used as the estimated
exponential growth rate, yielding a US growth rate rUS = 0.23 or a 3.01 day doubling time and
rIT = 0.26 or a 2.65 day doubling time.

4.9 Epidemic simulations and clinical rates
SEIR models,

Ṡ = ζ − βSI − ωbS (10)

Ė = βSI − γE − ωbE (11)

İ = γE − νI − ωiI (12)

Ṙ = νI − ωbR (13)

were parameterized for the US to a timescale of units days by setting ζ = 3.23×10−5 corresponding285

to a crude birth rate of 11.8 per 1000 per year, a baseline mortality rate ωb = 2.38 × 10−7 corre-
sponding to 8.685 per 1000 per year, an infectious mortality rate ωi = 4.96× 10−4, corresponding
to a infection fatality rate of 0.5% required to fit US deaths under a 20-day lag from osnet to
death. Further, we used an incubation period γ−1 of 3 days, infectious period ν−1 of 10 days, and
β parameterized to ensure I(t) grew with a specified exponential growth rate early in the epidemic.290

A total of 2,000 simulations were run for each of the two growth rates (US and Italy) analyzed.
Growth rates were drawn at random with rUS N(rUS , 0.1) and rIT N(rIT , 0.1). To illustrate the
mutual dependence between estimates of growth rate, clinical rate, and the lag between the onset
of infectiousness to presentation to a doctor with ILI, 2,000 simulations with uniform growth rates
in the interval [0.173,0.365] corresponding to a range of doubling times between 1.9 days and 4295

days.
Each simulation was initialized with (S,E, I,R, t) = (3.27 × 108, 0, 1, 0, 0) where time 0 was

January 15. To simulate the stochastic time it took from the first case to the onset of regular
exponential growth, a Gillespie algorithm was used from the initial conditions until either t = 50
(March 5, 2020) or E(t) + I(t) = 100. The initial Gillespie algorithm was implemented on the300

assumption that a large amount of variation in the epidemic trajectory stems from uncertainty in
trajectory of early transmission chains. The output from Gillespie simulations was input as an
initial value into the system of differential equations and integrated until the August 5, 2020. The
number of infected individuals on a given day was the last observed I(t) for that day, and a weekly
pool of infected patients was computed by a moving sum over the number of infected individuals305

every day for the past week, Iw(t) =
∑k=6

k=0 It−k.

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2020. .https://doi.org/10.1101/2020.04.01.20050542doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.01.20050542
http://creativecommons.org/licenses/by/4.0/


Defining Yt =
∑

i y
†
it as the national excess ILI, the clinical rate implied by a given simulation

was estimated as
δc(td) =

Yt
Iw(t−td)

(14)

for a given time delay td it takes from the onset of infectiousness to a patient reporting to the
doctor with ILI.310

4.10 Code Availability
All code and data required to reproduce our results is publicly available at https://github.com/jsilve24/ili_surge.
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Figure 1: The excess non-influenza ILI is extracted from all non-influenza ILI by identifying the
amount of non-influenza ILI in excess of seasonal norms (blue point and error bars represent the
posterior median and 95% credible set for ILI not explained by non-COVID endemic respiratory
pathogens). A binomial logistic-normal non-linear regression model was fit to non-influenza ILI
data from 2010-2018 (grey lines). The model predicted the expected amount of non-influenza ILI
in the 2019-2020 season (grey ribbons represent the 95% and 50% credible sets; the black line
represents the posterior median). Observed non-influenza ILI beyond seasonal norms are shown as
a blue line (posterior median) and blue ribbon (posterior 95% credible set). A number of regions
are not represented due to insufficient laboratory influenza data to complete our analysis (see
Methods for full details).
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Figure 2: (a) The excess ILI estimated falls within the range of what one could expect from a US
epidemic growing at the exponential growth rate defined by the growth of new deaths. Adjusting
the ILI surge based on an estimated influenza-like subclinical rate, 17.9% asymptomatic infections
and decreased care seeking in New York does not reconcile the difference in magnitude or slope
between the ILI surge and the epidemic curve from US growth rates, suggesting additional forces are
at play. The cause of the apparent deceleration in the ILI surge is hypothesized to be due to some
combination of successful social distancing, faster decreases in care-seeking behavior than measured
in New York, and/or other possibilities including faster growth and higher subclinical rates. (b) If
the growth rate in the US is faster than US deaths suggest, such as a growth rate observed in Italy
prior to the Italian lockdown (2.645 day doubling time), it could provide alternative explanations
of the curvature of the excess ILI through a larger subclinical rate and epidemic curves near
their peak at the time of the peak of the ILI surge. Serology or other measures of prevalence
are needed to reconcile these alternative hypotheses. (c) More generally, the ILI surge forces a
dependence between growth rate (doubling time), the clinical rate, and the lag between the onset
of infectiousness and presentation to the doctor with ILI, where faster growth implies a slower
clinical rate.
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Figure S1: (A) Excess ILI correlates strongly with patterns of newly confirmed COVID cases. This
correlation is strongest for the last three weeks of data, when other seasonal respiratory pathogens
are at their lowest. (B) Of all ED visits for ILI in New York City, the proportion (black line) of
those severe enough to warrant admission to the hospital has increased in the past month.
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Figure S2: Since March 1, 2020, the case-detection of symptomatic COVID patients has increased
by a factor of ≈ 100. This likely represents increased awareness of community transmission within
the US combined with increased availability of testing. Still, the syndromic case detection rate
remains below 1% for most states with many states with detection rates closer to 0.1%.
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Figure S3: Once the signal attributable to influenza is extracted, the proportion of Patient encoun-
ters in which patient had non-influenza ILI (ỹit/nit) displays strong seasonal trends. The most
notable deviations from these trends occur around Febuary to March of the 2019-2020 flu season
and align with the onset of the COVID epididemic within the US.
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Figure S4: Prevalence of SARS-CoV-2 infections between March 8 and March 28, 2020 (posterior
median and 95% credible set, black). Corresponding estimates based on confirmed case counts are
shown in Grey.
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