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Abstract 10 

The novel coronavirus disease 2019 (COVID-19) became a rapidly spreading worldwide 11 

epidemic; thus, it is a global priority to reduce the speed of the epidemic spreading. 12 

Several studies predicted that high temperature and humidity could reduce COVID-19 13 

transmission. However, exceptions exist to this observation, further thorough 14 

examinations are thus needed for their confirmation. In this study, therefore, we used a 15 

global dataset of COVID-19 cases and global climate databases and comprehensively 16 

investigated how climate parameters could contribute to the growth rate of COVID-19 17 

cases while statistically controlling for potential confounding effects using spatial 18 

analysis. We also confirmed that the growth rate decreased with the temperature; 19 

however, the growth rate was affected by precipitation seasonality and warming velocity 20 

rather than temperature. In particular, a lower growth rate was observed for a higher 21 

precipitation seasonality and lower warming velocity. These effects were independent of 22 

population density, human life quality, and travel restrictions. The results indicate that the 23 

temperature effect is less important compared to these intrinsic climate characteristics, 24 

which might thus be useful for explaining the exceptions. However, the contributions of 25 

the climate parameters to the growth rate were moderate; rather, the contribution of travel 26 

restrictions in each country was more significant. Although our findings are preliminary 27 

owing to data-analysis limitations, they may be helpful when predicting COVID-19 28 

transmission.  29 
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1. Introduction 30 

The world-wide spreading of coronavirus disease 2019 (COVID-19) [1], an infectious 31 

disease caused by the novel coronavirus, severe acute respiratory syndrome coronavirus 2 32 

(SARS-CoV-2 / 2019-nCoV) was firstly identified in Wuhan, China [2]. The COVID-19 33 

epidemic has a serious impact on the public health and economy [3], the reduction of its 34 

spreading is thus a significant challenge. How climate parameters are associated with the 35 

spreading is intriguing concerning the coronavirus characterization and spreading 36 

prediction. Previous studies have suggested that temperature increase could reduce 37 

COVID-19 transmission both in China [4–6] and at the global scale [7–11]. However, a 38 

bell-shaped or quadratic relationship between the COVID-19 transmission rate and the 39 

temperature was observed, indicating that the optimal transmission temperature could be 40 

at ~8 °C. Moreover, part of the previous studies [4–6, 8] also reported that higher 41 

humidity is also associated with a lower transmission rate of COVID-19. These results 42 

are consistent with the influenza seasonality (i.e., the fact that influenza transmission is 43 

reduced due to temperature and humidity increase) [12]. Thus, previous studies have 44 

predicted that the arrival of summer and the rainy season would reduce COVID-19 45 

transmission. 46 

However, more careful examinations are required to conclude such COVID-19 47 

seasonality. As emphasized in part of the previous studies, temperature could account for 48 

a relatively modest amount of the total variation in the COVID-19 transmission rate [10]. 49 

In fact, despite the expectations, the spreading of COVID-19 has also been observed in 50 

warm and humid areas (e.g., Australia, Brazil, and Argentina, on Southern Hemisphere, in 51 

early March). This indicates that other climate parameters might also affect COVID-19 52 

transmission. For example, influenza transmission is also influenced by several 53 

environmental parameters, such as ultraviolet (UV) radiation, wind speed, precipitation, 54 

and air pollution. [13]; moreover, it also correlated with diurnal temperature ranges [14] 55 

and urbanization (human impacts) [15]. In addition to this, changing rapid weather 56 

variability (e.g., climate seasonality and climate change) increases the risk of an influenza 57 

epidemic [16]. In general, seasonal variations in temperature, rainfall, and resource 58 

availability can exert strong pressure on infectious disease population dynamics [17]. 59 

Inspired by these results, previous studies evaluated the contributions of wind speed [8], 60 

precipitation and UV irradiation to COVID-19 transmission [9]. However, the remaining 61 

parameters have still been poorly investigated to date. In particular, the temperature 62 

might be associated with other climate parameters, it is thus necessary to control the 63 

potentially confounding effects [18–20]. 64 

To study the aforementioned subject, the application of spatial analysis might also be 65 

needed. Although spatial autocorrelations between observation areas and variables need 66 

to be evaluated when analyzing geographic data [18, 20, 21], previous studies have 67 

understudied them. It remains possible that the observed associations of COVID-19 68 

transmission with temperature and humidity are spatial autocorrelation artefacts. 69 

In this study, we thus aimed at conducting a more comprehensive investigation. Using 70 

global time-series data on confirmed COVID-19 cases[1] and global climate databases, 71 

we comprehensively investigated how climate parameters contribute to COVID-19 72 

transmission on a global scale while statistically controlling for potential confounding 73 
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effects using spatial analysis. Population density and quality of human life (human 74 

development index) were also considered when controlling for potential confounding 75 

effects because they might affect infectious disease transmission [15], including COVID-76 

19 transmission [4]. Similarly, we also considered the travel restrictions because the 77 

national emergency response, including travel bans, appears to have delayed the growth 78 

and limited the size of the COVID-19 epidemic in China [22, 23]. 79 

2. Material and methods 80 

2.1. The growth rate of COVID-19 cases 81 

We obtained global time-series data for the period between January 22, 2020 - April 6, 82 

2020, on the number of confirmed cases of COVID-19 [1] operated by the Johns Hopkins 83 

University Center for Systems Science and Engineering from their GitHub repository. In 84 

this repository, the global dataset and dataset of the (USA) were available. We combined 85 

these datasets after removing USA-related data from the global dataset. To estimate the 86 

COVID-19 transmission rate, many previous studies considered the measures based on 87 

the number of cases. However, it remains possible that the differences in the number of 88 

tested individuals between areas (countries) affect these measures. We thus used instead 89 

the growth rate of confirmed COVID-19 cases as a more suitable measure. The growth 90 

rate in each observation was computed using the R statistical software (version 3.6.2; 91 

www.r-project.org) and the package incidence(version 1.7.1) [24]; in particular, the fit 92 

function was used. To estimate the growth rate during the initial (exponential) phase, we 93 

used the data within 15 days (~2 weeks) starting from the date (call first date hereafter) 94 

when 30 and more cases were confirmed in cumulative counts, as described previously 95 

[7]. We confirmed that similar conclusions were obtained at the different cut-off values 96 

(using the data within 30 days starting from the date when 50 and more cases were 97 

confirmed). 98 

2.2. Climate parameters 99 

We obtained climate parameters from several databases based on the observation area 100 

latitudes and longitudes available in the dataset [1]. The data extraction and calculation of 101 

climate parameters were generally based on the procedures established in our previous 102 

publications [18, 20], which could be also accessed in our GitHub repository [25]. 103 

Climatic parameters with a spatial resolution of 2.5’ were obtained from the WorldClim 104 

database (version 2.1) [26] for each observation area. In particular, we extracted the 105 

following monthly climate data according to the month of the median date in the data 106 

used for computing the growth rate: monthly mean temperature (Tmean; °C), minimum 107 

temperature (Tmin; °C), maximum temperature (Tmax; °C), precipitation (mm), wind speed 108 

[ms–1], solar radiation (UV; kJ m–2day–1), and water vapor pressure [kPa]. Moreover, we 109 

computed monthly diurnal temperature range (i.e., Tmax – Tmin; DTR; °C) and relative 110 

humidity based on Tmean and water vapor pressure. We also obtained the following annual 111 

climate parameters: temperature seasonality (Tseasonality; standard deviation) and 112 

precipitation seasonality (Pseasonality; coefficient of variation). 113 

In order to evaluate the historical climate change, we computed warming velocity (WV) 114 
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[27, 28], defined as the temporal annual mean temperature (AMT) gradient divided by 115 

the spatial AMT gradient, where the temporal gradient is defined as the difference 116 

between the current and past AMT, available in the WorldClim database, and the spatial 117 

gradient was the local slope of the current climate surface at the observation area, 118 

calculated using the function terrain (with the option neighbors = 4) in the R package 119 

raster (version 2.9.5). 120 

2.4. Other related parameters 121 

To investigate the effect of population density, we obtained 2020 population density (PD) 122 

data with a spatial resolution of 2.5’ from the Gridded Population of the World (version 123 

4) [29]. 124 

To evaluate human impact, we used the human footprint (HF) scores, obtained from the 125 

Last of the Wild Project (version 3) [30]. The HF scores have a spatial resolution of 1 km 126 

grid cells and are defined based on human population density, human land use and 127 

infrastructure, and human access. 128 

To evaluate the quality of human life, we used the gross domestic product (GDP) per 129 

capita and human development index (HDI), obtained from the Gridded global datasets 130 

for Gross Domestic Product and Human Development Index over 1990-2015 [31]. HDI is 131 

defined based on life expectancy, education, and income (GDP per capita). 132 

To evaluate the effect of travel restrictions, we manually extracted the dates when travel 133 

restrictions were imposed in each country from the Wikipedia page “Travel restrictions 134 

related to the 2019–20 coronavirus pandemic”[32]. The travel restrictions were classified 135 

into three categories: countries and territories implementing a global travel ban (Ban), 136 

countries implementing global quarantine measures (Qua), and non-global restrictions 137 

(NonG). When a country imposed multiple restriction types, the date when the strongest 138 

restriction was imposed was selected, where the order of the strength of travel restrictions 139 

was considered as follows: Ban > Qua > NonG. Many countries imposed travel 140 

restrictions after March 17, 2020 (see Figure S1 in our GitHub repository [25]). Thus, we 141 

considered a categorical variable (Ban) for the global travel restriction trend: 0 if the first 142 

date (see Section 2.1) is before March 17, 2020, and 1 otherwise. 143 

2.3. Data analyses 144 

The statistical analyses were based on the procedures in [18, 20]. To evaluate the 145 

contribution of each variable to the growth rate, regression analysis was performed using 146 

R. Both ordinary least-squares (OLS) regression and the spatial analysis approach were 147 

considered. The dataset and R script for data analyses, used in this study, are available in 148 

our GitHub repository [25]. 149 

For the OLS regression, full models were constructed encompassing all explanatory 150 

variables (Tmean, DTR, Tseasonality, wind speed, precipitation, Pseasonality, UV, humidity, PD, 151 

HDI, WV, and Ban), and the best model was selected in the full model. The HF scores 152 

and GDP per capita were omitted because they were strongly correlated with PD and 153 

HDI, respectively. The best model was selected based on the sample-size-corrected 154 
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version of the Akaike information criterion (AICc) values using the R package MuMIn 155 

(version 1.43.6). Moreover, a model-averaging approach using MuMIn was adopted. The 156 

averaged model was obtained in the top 95% confidence set of models. A global Moran’s 157 

test was performed to evaluate spatial autocorrelation in the regression residuals using the 158 

function lm.morantest.exact in the R package spdep, version 1.1.3. 159 

PD and WV were log-transformed for normality. Precipitation and Pseasonality were square-160 

root transformed for normality. Tmean was rescaled with !(#!"#$ − 7.8)% to the 161 

quadratic relationship between temperature and transmission rate of COVID-19 [5, 7, 8, 162 

10, 11]. The quantitative variables were normalized to the same scale, with a mean of 0 163 

and a standard deviation of 1, using the scale function in R before the analysis. 164 

For spatial analysis, a spatial eigenvector mapping (SEVM) modeling approach [21, 33] 165 

was also considered to remove spatial autocorrelation in the regression residuals. 166 

Specifically, the Moran eigenvector approach was adopted using the function 167 

SpatialFiltering in the R package spatialreg (version 1.1.5). As with the OLS regression 168 

analysis, full models were constructed, and then the best model was selected based on 169 

AICc values. The spatial filter was fixed in the model-selection procedures [33]. 170 

The contribution (i.e., non-zero estimate) of each explanatory variable to the growth rate 171 

of COVID-19 cases was considered significant when the associated p-value was less than 172 

0.05. 173 

3. Results and discussion 174 

The data in 300 areas were investigated (Figure 1). The OLS regression analysis (Table 1) 175 

and spatial analysis (Table 2) showed almost similar results because the statistical 176 

significances of spatial autocorrelations were moderate in the full model (Moran’s I = 177 

0.077, and the associated p-value = 0.021) and best model (I = 0.084, p = 0.027) of the 178 

OLS regression analysis. The full, best, and averaged models showed almost similar 179 

results in both the OLS regression analysis and spatial analysis. The details of the results 180 

are as follows. 181 

The temperature negatively correlated with the growth rate of COVID-19 cases. This 182 

indicates that high temperature (e.g., the arrival of summer season) reduces COVID-19 183 

transmission, consistent with several previous studies [4–11]. However, no humidity 184 

contribution was observed. This discrepancy might be due to differences in the datasets 185 

and data analyses between this study and previous studies. Previous studies (e.g., [4]), 186 

reported the association with humidity, was limited to the data on China; moreover, they 187 

used the measures based on the number of confirmed cases, although these measures may 188 

be affected by the difference of COVID-19 testing between areas. The contribution of 189 

humidity may be limited on a global scale. A similar tendency is observed in the case of 190 

influenza [13]; in particular, using specific humidity to determine transmission has a low 191 

predictive power at low- and mid-altitude sites, although humidity is believed to affect 192 

the transmission. 193 

More importantly, however, we found that the growth rate was associated with the other 194 

parameters rather than temperature. In particular, we found that the growth rate of 195 
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COVID-19 cases showed a correlation with precipitation seasonality and warming 196 

velocity. Specifically, a lower growth rate was observed during a higher precipitation 197 

seasonality and a lower warming velocity; however, the contribution of precipitation 198 

seasonality was higher than that of warming velocity, according to the estimates of the 199 

models of the OLS regression analysis and spatial analysis. The observed associations 200 

may be reasonable in the context of the effects of seasonality and changing rapid weather 201 

variability on population dynamics of infectious diseases [17]. In particular, theory and 202 

experiment have indicated that climate seasonality can alter the spread and persistence of 203 

infectious diseases and that population-level responses can range from simple annual 204 

cycles to more complex multiyear variations. Therefore, climate seasonality and 205 

historical climate change can affect infectious disease transmission. In fact, rapid weather 206 

variability played a significant role in changing the strength of the influenza epidemic in 207 

the past [16]. However, the reason why temperature seasonality did not correlate with the 208 

growth rate remains unclear. Nevertheless, these results (the contribution of precipitation 209 

seasonality, in particular) may explain the exceptions (i.e., why the spreads of COVID-19 210 

are also observed in warm areas although previous studies suggest that high temperature 211 

reduces COVID-19 transmission). This may be because of the difference in precipitation 212 

seasonality between the observation areas. For example, the areas in Australia, Brazil, 213 

and Argentina were warm in March; however, they show low precipitation seasonality 214 

(Figure 2). Thus, the spreads might occur in these areas. Moreover, Europe and the USA 215 

might have undergone rapid spreads because they show low precipitation seasonality; on 216 

the other hand, the spread might have reached a peak relatively quickly in China because 217 

of relatively high precipitation seasonality. 218 

The contribution of solar radiation is currently ambiguous. Solar radiation showed a 219 

positive association with the growth rate of COVID-19 cases. However, the results were 220 

less robust; in particular, the contribution was statistically significant in spatial analysis 221 

(Table 2), but not in the full and averaged models in the OLS regression (Table 1). Thus, 222 

it remains possible that the contributions partly observed in the analyses are artefacts. 223 

Assuming the positive association, the result is inconsistent with the fact that solar (UV) 224 

radiation is expected to reduce infection disease (e.g., influenza) transmission [13]. 225 

Moreover, a pairwise correlation analysis showed no association between the growth rate 226 

and solar radiation (Spearman’s rank correlation coefficient r = –0.06, p = 0.31). 227 

The contributions of wind speed and precipitation were also limited. This is inconsistent 228 

with previous studies [8, 9]; however, statistical significances were not evaluated in these 229 

studies. This discrepancy might be due to differences in the data analyses between this 230 

study and previous studies. In particular, previous studies used the measures based on the 231 

number of confirmed cases; however, these measures may be affected by the difference 232 

of COVID-19 testing between areas. Hence, further examinations may be needed, given 233 

the importance of these climate parameters in infectious disease transmission [13, 17]. 234 

Non-climate parameters were also associated with the growth rate of COVID-19. 235 

According to the estimates of the models of the OLS regression analysis and spatial 236 

analysis, the contribution of travel restrictions was most significant than those of the 237 

climate parameters; in particular, travel restrictions showed a negative association with 238 

the growth rate. This result may be an extension of the result that the reduction of 239 

COVID-19 transmission due to interventions, including travel restrictions, in China [22, 240 
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23]. Our result implies that the travel restrictions in each country contributed to reducing 241 

COVID-19 transmission on a global scale. 242 

The quality of human life (HDI) showed a positive association with the growth rate of 243 

COVID-19. This may be because HDI reflects life expectancy (i.e., areas with a higher 244 

HDI tend to have more older individuals because of a higher quality of human life). 245 

COVID-19 has the age specificity of cases and attack rates [34]; in particular, the 246 

epidemic risks of disease given exposure are likely to be the highest among adults aged 247 

from 50-69 years. Thus, the growth rate is expected to increase with HDI. 248 

4. Conclusions 249 

Intrigued by the question why COVID-19 transmission is observed in warm areas 250 

despites previous expectations of COVID-19 transmission reduction at high temperatures, 251 

we comprehensively investigated how several climate parameters are associated with the 252 

growth rate of COVID-19 cases and found that it was affected by precipitation 253 

seasonality and warming velocity rather than temperature. The effects were independent 254 

of population density, quality of human life, and travel restrictions. Our findings must 255 

necessarily be considered preliminary due to several limitations; in particular, it remains 256 

possible that the observed association is indirect. However, they may enhance our 257 

understanding of the COVID-19 transmission. As previous studies mentioned, high 258 

temperatures might reduce COVID-19 transmission. However, the effects may be 259 

restricted by intrinsic climate characteristics, such as precipitation seasonality and 260 

warming velocity. Moreover, the contributions of climate parameters to the growth rate of 261 

COVID-19 cases were moderate, while those of national emergency responses (i.e., travel 262 

restrictions) were more significant. Thus, slowing down the spread of COVID-19 due to 263 

the arrival of the summer season might not be expected. Instead, global collaborative 264 

interventions might be necessary to halt the epidemic outbreak. 265 
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Tables 
 
Table 1. Influence of explanatory variables on the growth rate of COVID-19 cases based on the ordinary least squared regression 
approach. The results of the full model, best model, and averaged model are shown, respectively. The abbreviations of variables are as 
follows: Tmean (monthly mean temperature), DTR (monthly diurnal temperature range), Tseasonality (temperature seasonality), Pseasonality 
(precipitation seasonality), UV (monthly solar radiation index), WV (warming velocity), PD (population density), HDI (human 
development index), and Ban (travel restrictions). R2 denotes the coefficient of determination for full and best models based on the OLS 
regression. SE is the standard error. Values in brackets are the associated p-values. 
 

Variables Full model Best model Averaged model 
Estimate SE p-value Estimate SE p-value Estimate SE p-value 

Tmean ‒0.18 0.07 0.014 ‒0.17 0.06 9.0×10−3 ‒0.16 0.07 0.032 
Humidity ‒0.10 0.09 0.27    ‒0.12 0.08 0.14 
DTR 0.02 0.09 0.86    0.08 0.09 0.36 
Tseasonality –0.14 0.09 0.14    ‒0.13 0.09 0.15 
Wind speed ‒0.05 0.07 0.53    ‒0.04 0.07 0.57 
Precipitation –0.03 0.08 0.73    –0.01 0.08 0.90 
Pseasonality –0.30 0.10 1.3×10−4 ‒0.28 0.07 7.2×10−5 –0.30 0.08 9.2×10−5 
UV 0.13 0.03 0.18 0.23 0.07 5.4×10−4 0.18 0.09 0.060 
WV 0.18 0.07 9.1×10−3 0.14 0.06 0.017 0.15 0.07 0.028 
PD ‒0.06 0.06 0.27    ‒0.06 0.06 0.35 
HDI 0.24 0.08 9.1×10−3 0.21 0.07 1.8×10−3 0.23 0.08 1.7×10−3 
Ban –0.68 0.13 3.2×10−7 –0.71 0.12 1.8×10−8 –0.68 0.13 1.0×10−7 
Moran’s I 0.077 (0.021) 0.084 (0.027)    
R2 0.26 (2.1×10−13) 0.24 (1.2×10−15)    
AICc 791 783    
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Table 2. Influence of explanatory variables on the growth rate of COVID-19 cases based on the spatial analysis approach. The 
results of the full model, best model, and averaged model are shown. R2 denotes the coefficient of determination for full and best models 
based on the SEVM modelling. SE is the standard error. Values in brackets are the associated p-values. See Table 1 for description of table 
elements. 
 

Variables Full model Best model Averaged model 
Estimate SE p-value Estimate SE p-value Estimate SE p-value 

Tmean –0.20 0.07 4.8×10−3 ‒0.21 0.06 1.4×10−3 ‒0.20 0.07 3.1×10−3 
Humidity ‒0.03 0.09 0.73    ‒0.05 0.08 0.55 
DTR 0.07 0.09 0.47    0.09 0.07 0.21 
Tseasonality ‒0.01 0.09 0.89    0.00 0.09 0.99 
Wind speed ‒0.03 0.07 0.68    ‒0.04 0.07 0.59 
Precipitation 0.02 0.08 0.77    0.01 0.08 0.87 
Pseasonality ‒0.32 0.08 1.2×10−4 ‒0.31 0.07 1.5×10−5 ‒0.33 0.08 2.1×10−5 
UV 0.24 0.10 0.013 0.30 0.07 2.1×10−5 0.27 0.08 1.0×10−3 
WV 0.19 0.07 3.7×10−3 0.20 0.06 8.7×10−4 0.19 0.06 2.8×10−3 
PD ‒0.03 0.06 0.55    ‒0.04 0.06 0.49 
HDI 0.21 0.08 9.3×10−3 0.21 0.07 2.1×10−3 0.21 0.07 3.1×10−3 
Ban ‒0.73 0.13 2.5×10−8 ‒0.72 0.12 4.8×10−9 ‒0.73 0.12 < 2.0×10−16 
Moran’s I ‒0.052 (0.51) ‒0.054 (0.60)    
R2 0.33 (2.9×10−16) 0.32 (< 2.2×10−16)    
AICc 773 763    
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Figures 
 
 

 
Figure 1. Distribution of the observation areas included in this study. Red symbols 
indicate the observation areas. Symbol size indicates the growth rate of COVID-19 cases. 
 
 
 
 
 
 

 
Figure 2. World distribution of precipitation seasonality. 
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