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Abstract In this paper, we analyze the real-time in-
fection data of COVID-19 epidemic for nine nations.

Our analysis is up to 7 April 2020. For China and
South Korea, who have already flattened their infection
curves, the number of infected individuals (I(t)) ex-

hibits power-law behavior before flattening of the curve.
Italy has transitioned to the power-law regime for some
time. For the other six nations—USA, Spain, Germany,
France, Japan, and India—a power-law regime is begin-

ning to appear after exponential growth. We argue that
the transition from an exponential regime to a power-
law regime may act as an indicator for flattening of the

epidemic curve. We also argue that long-term commu-
nity transmission and/or the transmission by asymp-
tomatic carriers traveling long distances may be induc-

ing the power-law growth of the epidemic.

Keywords COVID-19 · Epidemic spread · Power law
growth

1 Introduction

COVID-19 pandemic has caused major disruptions in
the world. As of 1 April 2020, it has infected approx-
imately 1.7 million humans, killed more than 0.1 mil-
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lion individuals, and has brought most of the world to a
standstill in lockdowns [1,2]. Hence, modeling and fore-

cast of this epidemic is of critical importance. In this
paper we analyze the publicly available data set given
in the worldOmeter [1]. The data show that countries

that have achieved flattening of the epidemic curve ex-
hibit power law growth before saturation. This feature
can be used as an important diagnostic for flattening of

the epidemic curve.

Epidemiologists have made various models for un-
derstanding and forecasting epidemics. Kermack and

McKendrick [3] constructed one of the first models,
called SIR model, for epidemic evolution. Here, the vari-
ables S and I describe respectively the numbers of sus-
ceptible and infected individuals. The variable R rep-

resents the removed individuals who have either recov-
ered or died. The SIR model has been generalized to
SEIR model that includes exposed individuals, E, who

are infected but not yet infectious [4,5].

SARS-CoV-2 is an extremely contagious virus. In
addition, many infected individuals, called asymptomatic
carriers, who show mild or no symptoms of infection
have contributed significantly to the spread of the epi-
demic unwittingly [6]. Hence, modelling COVD-19 re-
quires more complex models of epidemiology, including

features of quarantine, lockdowns, stochasticity, inter-
actions among population pockets, etc. Note that quar-
antines and lockdowns help in suppressing the max-
imum number of infected individuals; such steps are
critical for the epidemic management with limited pub-
lic health resources. The saturation or flattening of the
curve in China is attributed to strong lockdowns.

For COVID-19 epidemic, some of the new models
have managed to provide good forecasts that appears
to match with the data. Peng et al. [7] constructed a
seven-variable model (including quarantined and death
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variables) for epidemic spread in China and predicted
that the daily count of exposed and infectious individ-
uals will be negligible by 30 March 2020. Their predic-
tions are in good agreement with the present data. Chi-
nazzi et al. [8] studied the effects of travel restrictions
on the spread of COVID-19 in China and in the world,
and Hollewell et al. [9] performed feasibility studies of
controlling COVID-19 epidemic by isolation. Mandal et
al. [10] constructed a India-specific model for devising
intervention strategies; they focussed on four metros—
Delhi, Mumbai, Kolkata, and Bengaluru—along with
intercity connectivity. To account for spatio-temporal
behavour, Min et al. [11] simulated how a disease could
spread within a network with different mixing styles,
and showed that the average epidemic size and speed
depend critically on network parameters. In addition,
there are many epidemic models that are inspired by
population growth models [5,12]. There are several other
models designed to understand the spread of COVID-
19 [13–15].

2 Data Analysis and Results

In this paper we report our results based on a compre-

hensive data analysis of nine major countries–China,
USA, Italy, France, Spain, Germany, South Korea, Japan
and India. We chose the above nations because of the
large numbers of positive cases here. For our analysis,

we employed the real-time data available at worldOme-
ter [1].

We digitized the data up to 7 April 2020 and stud-

ied the temporal evolution of the cumulative count of
infected individuals, which is denoted by I(t), where t
is time in days. In Fig. 1 we plot the time series of I(t)
and its derivative İ(t) in semi-logy format using red and
blue curves respectively. The derivatives İ(t) have been
computed using Python’s gradient function. In these
plots we represent time using dates with month/date
format; the starting date for each plot is chosen as t = 0.

No single function appears to fit with I(t), hence we
employ different functions to fit at different time inter-

vals. As is well-known, in the early phase, the growth
is exponential, but it transitions to power laws sub-
sequently. Hence, we employ exponential function and
polynomials for constructing best fit curves to different
parts of I(t). The best functions are listed in Table 1, as
well as exhibited in all the plots. We have computed the
best fit curves using Python’s polyfit function, and the
errors as the relative errors between the original data
and the fitted data.

In the early phase, all the curves exhibit exponential
growth as I(t) = A exp(βt), where β is the growth rate.

Interestingly, the I(t) plots for USA, Spain, Germany,

Table 1 For the COVID-19 data for various countries, the
best fit functions and the respective relative errors for various
stages of evolution shown in Fig. 1. The figure also exhibits
the respective best fit curves.

Countries Best fit functions functions and errors

China 1) 380e0.4t (±2.2%)

2) 89t2 + 750t− 4100 (±2.8%)

3) 2000t+ 17000 (±0.31%)

4) 4900
√
t+ 49000 (±0.08%)

S.Korea 1) 15e0.67t (±2.2%)

2) 7.1t3 − 260t2 + 3700t− 17000 (±1.7%)

3) 160t+ 40000 (±0.67%)

4) 880
√
t+ 3600 (±0.09%)

Germany 1) 7.6e0.34t (±11%)

2) 24e0.25t (±2.9%)

3) 22t2 + 4100t− 11× 104 (±1.2%)

France 1) 5e0.46t (±11%)

2) 110e0.18t (±6.5%)

3) 7t3 − 360t2 + 4200t+ 39000 (±1.6%)

Italy 1) 56e0.35t (±1.7%)

2) 0.7t4 − 63t3 + 2300t2 − 36000t

+21× 104 (±1.7%)

3) 16t3 − 2000t2 + 85000t

−12× 105 (±0.27%)

Japan 1) 58e0.09t (±4.6%)

2) 0.53t3 − 61t2 + 2500t− 33000 (±1.4%)

Spain 1) 15e0.33t (±8.1%)

2) 230e0.19t (±3.6%)

3) 27t2 + 6000t− 14× 104 (±0.34%)

USA 1) 4.5e0.28t (±4.1%)

2) 17e0.24t (±3.5%)

3) 100t3 − 14000t2 + 64× 104t

−1× 107 (±0.48%)

India 1) 17e0.16t (±7.1%)

2) 560t− 14000 (±1.1%)

and France require two exponential functions for the
fits. For example, Germany’s data requires two func-
tions, exp(0.34t) and exp(0.25t). Note that the growth
rate β varies for different countries, which is because
β depends on various factors such as immunity level
of the population, climate, local policy decisions (lock-
down, social distancing), etc.

Larger the β, larger the growth rate for the in-
fection. Also, the inverse of the constant β yields the
growth time scale. In fact, in the exponential phase,
the number of cases double in time T = (log 2)/β. For

South Korea, β = 0.67, hence, T ≈ 1; that is, I(t) for
South Korea doubled every day in the early phase (18
February to 23 February). The doubling time for India
in the exponential phase was log(2)/0.16 ≈ 4.3 days.
Note that for the exponential regime, İ ≈ βI.
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Fig. 1 (color online) For the COVID-19 epidemic, the semi-logy plots of total infected individuals (I(t)) vs. time (t) (red thin
curves) for the nine nations. We also plot İ(t) vs. t (blue thick curves). The black dotted curves represent the best fit curves.
For the best fit functions, refer to Table 1.

After the exponential phase, the curves transition to
power laws, polynomials to be more precise. The curve
for China exhibits three power laws: t2, t, and then

√
t,

after which I(t) saturates. For South Korea, we observe
t3 growth rather than t2 growth. Among the nine na-
tions, only China and South Korea have flattened their
epidemic curves. We make a remark that the best fit
curves are polynomials (see Table 1); the power laws
mentioned above and those indicated in the plots are
the leading-order terms of the respective polynomials.

The other seven nations exhibit transition to their
power law regimes after the initial exponential growth,
with the power law exponents ranging from 2 to 4. Note
however that the power law regimes are quite small,
except for Italy. We believe that the curves will flatten
further down from here, that is, they will transition to
subsequent power laws with lower exponents. However,
we need more data of subsequent days for a definitive
conclusion.

Figure 1 also contains plots for İ, derivatives of I(t),
that represents daily new count of infections. Similar to
I(t), İ increases exponentially in the beginning. After
this, we observe a transition to power law regimes. For
the power law I(t) ∼ Btn, we derive that İ ∼ I1−1/n.
Clearly, this slope is suppressed compared to the expo-
nential regime by a factor of I−1/n. From time t0, I(t)
doubles at t = 21/nt0. For South Korea, n = 3, hence
for t0 = 10, the count doubles at t = 10 × 21/3 ≈ 12.6
day, or in the interval of 2.6 days. This is a slower dou-
bling rate than that in the exponential phase, which
was one day. Note however that the epidemic growth
in the power law regime is still very significant because

I(t) is large. For large n (e.g., 4 or 5), İ ∝ I, which is
same as the formula for the exponential growth (refer
to the t4 regime of Italy and Japan). Also note that
in the linear regime, İ is constant, implying a constant
number of new cases every day.
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In Fig. 1, in the exponential regimes, I(t) and İ(t)
curves run almost parallel to each other because İ ≈ βI.
In contrast, in the power law regimes, İ(t) deviates from
being parallel to I(t), consistent with the suppression in
İ(t) mentioned in the previous paragraph. For Japan, İ
exhibits a marginal deviation from the form İ ≈ βI(t);
this is due to the fact that n = 4, which is large.

I(t)
,· I(t)

t
eβt

tn
t

Const

Flat

I(t)

S4S1 S2 S3

tn
−1 ·I(t)

Fig. 2 (color online) For COVID-19 epidemic: Schematic
plots for I(t) and its derivative İ(t) vs. t. S1, S2, S3, S4 rep-
resent the four stages of the epidemic: exponential growth in
count (exp(βt)), power law growth (tn), linear growth (t),
and flat.

We can combine the above ingredients into a com-

prehensive picture for the epidemic forecast, specially
for flattening or saturating the I(t) curve that is prime
objective for most affected nations. As illustrated in
the schematic diagram of Fig. 2, the I(t) curve follows

four stages: exp(βt), tn, t, and constant, which are rep-
resented by S1, S2, S3, and S4 respectively. It is an
elementary observation that the I(t) curve transitions

from a convex form (S1) to a concave form (S2, S3, S4).
Such a simple observation of the data reveals insights
into the temporal evolution of the epidemic. For exam-
ple, before flattening of I(t), we look for flattening of
the growth rate İ(t), which is the third stage in Fig. 2.

Note that the above features of Fig. 2 appear in al-
most all epidemic models, however with shorter or neg-
ligible power law regime. For example, Wu et al. [12]
considered a model with İ = rIp(1 − (I/κ)α), where
r, p, κ, α are free parameters, to provide a fit to the epi-
demic curve for China. In our paper, the focus is on the
data itself, rather than models that may involve many
parameters.

3 Discussions and Conclusions

COVID-19 appears to be a unique epidemic to exhibit
a power law regime, which was not exhibited by ear-
lier epidemics, such as SARS and EBOLA [16,17]. We

believe this feature to be related to the super spread-
ing of COVID-19 by asymptomatic carriers. As is evi-
dent from the data, such carriers have unwittingly trav-
eled far and wide, and formed clusters of infections in
the new areas. Modeling such cases is difficult, but it
may be reasonable to assume that İ ∼ Iζ with ζ < 1,
rather than İ ∼ βI (see next paragraph). Consider-
ing strong similarities between the rumor spreading and
epidemics [5], the aforementioned long-distance travels
and power-law regimes may also play a major role in ru-
mor spreading. Note that the social media and internet
provide means for fast transmission of rumor.

The aforementioned power-law growth of epidemic
appears to have similarities with turbulent diffusion or
Taylor diffusion, which is faster than molecular diffu-
sion [18–22]. In turbulent diffusion, the separation be-
tween two particles, D(t), increases as t3/2, and Ḋ ∼
D1/3. The relative velocity between the particles, Ḋ,
increases with time because larger eddies have larger
speeds. This feature has a qualitative resemblance with

aforementioned long-distance travels by asymptotic car-
riers.

There is possibly another connection of COVID-19
epidemic with turbulence and critical phenomena. In
early stages, the epidemic spreads via contacts between
infected and susceptible individuals. However, once the

epidemic has spread widely, then indirect transmissions—
contacts with infected surfaces, public transport, air—
begin to play an important role in the epidemic growth.

Such transmissions are referred to as community spread
or transmission. This is analogous to interactions among
clusters of molecules in phase transition, and those among
large fluid vortices in turbulence. Such interactions are

responsible for the dynamic scaling in phase transition,
and for the aforementioned turbulence diffusion [23,24,
18–22]. Super spreading of COVID-19 and the power-
law regime of I(t) may be connected to the above phe-
nomena. Note however that community spread could
also contribute in the exponential growth phase; the

two exponential regimes in Fig. 1 may be due to these
reasons. These issues need further exploration.

The I(t) plots of Fig. 1 exhibit different values for
the growth rate β and the power law exponent n. These
constants depend on various factors, such as immunity
levels of the population, climate conditions, extent of
lockdowns and social distancing, etc. South Korea and
China exhibit power law growths of t3 and t2 respec-
tively, from which we may infer that a stricter lock-
down may result in a relatively lower power-law expo-
nent. The second exponential regime for USA, France,
Germany, and Spain, as well as stretched power law
regimes for Italy may be due to delay in the lockdowns.

For India, for around a week, the exponent appears to
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be unity, but it may be too early to deduce anything
from it. We also believe that a careful study of the I(t)
curves may help in forecasting when the epidemic curve
will flatten.

Now we summarize our findings. The COVID-19
real-time data of infected individuals, I(t), contains use-
ful information that may help forecast the develop-
ment of the epidemic. We conjecture that the power
law growth of I(t) may be due to the epidemic transmis-
sion by asymptomatic carriers traveling long distances,
and/or due to community spread.
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