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Summary

Background

The SARS-Cov-2 virus is spreading fast all over the world and has already imposed a significant social and
economic cost in many countries. Different countries have utilised a variety of containment policies with
an emphasis on social distancing as a strategy to stop the spread of COVID-19. Quantifying the effects of
such policies in different time-scales and comparing the efficacy of various available policies is of utmost
importance for policy-makers in different countries. That is even more important when the policy-makers
want to plan for long-term strategies and to weigh each option based on its epidemiological effects and
socio-economic costs. In the absence of detailed knowledge of the interactions between individuals in
a population and the characteristics of the SARS-Cov-2 virus, quantifying the effects of these policies is
very difficult. Hence, there is an immediate need for models that can predict the spread of COVID-19 in
a population, without the need for such detailed information.

The Method

In this manuscript, a method is presented that can be used to predict the spread of COVID-19 in any
country and under any containment policy imposed separately on different groups in the population.
The method tunes the parameters of a known stratified model based on the available data on the spread
of COVID-19. The model includes a set of nonlinear ordinary differential equations and is easy to simulate
and easy to understand. As it is presented in this manuscript, the population is divided into age-groups.
But given the availability of the data, there is no reason to limit the stratification into only age-groups and
we can consider any relevant groups. To estimate the parameters of the model such that it reflects the
characteristics of the spread of COVID-19 in a population, the method relies on an optimisation scheme.
More specifically, the optimisation scheme estimates the contact rates between different age groups in
the population. But a very important and useful feature of the model is that the estimated parameters for
one population can be translated and used for any other population with a known age-structure, which
in this day and age, includes almost any country or city in the world. Also, it is shown that the method
is quite insensitive to the underlying assumptions in the optimisation scheme and also to deliberate or
non-deliberate errors that might have occurred in collecting the data.

Results

The capabilities of the model are demonstrated using a case study under different containment policies,
from an uncontained population to mitigation and suppression policies. Also, we can use the model to
quantify the effects of strategies which include switching between different containment policies at pre-
determined points in time. The model allows us to quantify the effects of each of these policies on the
spread of the disease in a population, in particular, the instantaneous and total numbers of infectious
individuals in a population which are important parameters for policy-makers. The simulation results,
as explained in the following, provide some insight into various policies and some of the results are
possibly counter-intuitive for many people. For example, the model predicts that closing down schools
and universities without any other containment policy imposed on older age-groups has almost no impact
on the number of patients that might need support-care in hospitals. The method provides an easy-to-use
tool to use the information collected on the spread of COVID-19 in a country or region and then use that
information in another population which might not have been as widely affected by the disease yet.
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1 Introduction

There is an abundance of mathematical models
of various degrees of sophistication to model the
spread of a disease in a population. But there
are usually two problems in using these models for
real-world applications. One is the difficulty in es-
timating the values of the parameters of the model
based on the characteristics of the disease and the
host population. Second is how to translate the
requirements of different containment policies to
meaningful changes in the parameters of the math-
ematical model.

There have been some efforts to address both of
these issues. The most notable among them for
COVID-19 is [9] which is based on long-term ef-
fort going back to at least [10]. But those mod-
els rely on a detailed knowledge of the popula-
tion under study which is not easy to replicate for
many countries which have not been the subject of
similar studies. To fill this gap and to provide an
easy to use tool for policy-makers in different coun-
tries/regions/cities, in this manuscript, a known
stratified epidemiological model is used to predict
the spread of COVID-19 in an uncontained popula-
tion. In the model, the population is divided into
different age-groups, as will be explained shortly.
Hence, the model can be used to quantify the ef-
fects of various containment policies that affect dif-
ferent age-groups differently. The parameters of
the model are estimated based on available data
on the early stages of the progress of COVID-19 in
China. Although the parameters of the model are
estimated based on the data collected from China,
as we will see in the following, the structure of the
model allows us to adapt these parameters for any
other country or any population with a known age
structure.

2 Methods

The mathematical model used for the spread of
COVID-19 is an SIR compartmental model, as de-
tailed in SI Section S.1.1. In such models, the pop-
ulation is divided into compartments that capture
different stages in the progress of that disease. The
three compartments are Susceptible, S, which in-
cludes those who are healthy and can be infected
with the virus; Infectious, I, which includes those
who are infected and can transmit the disease; and
Removed, R, which includes those who were Infec-
tious but are not any more, because they recov-
ered or because they died. This choice is guided
by the common consensus among immunologists
that people have short-term immunity to seasonal
coronaviruses. For the SARS-CoV-2 virus, it is al-
ready shown to be the case for Macaque monkeys
in [5] and for humans in [4]. Although there has
been a report of a patient recovered from COVID-

19 to be infected again [11], which if proved to be
a common phenomenon, then SIS models would be
more suitable for COVID-19. But in the absence of
overwhelming evidence to the contrary, assuming
short-term immunity for COVID-19 seems to be a
reasonable choice. Although in the interest of com-
pleteness, the mathematical descriptions for both
SIS and SIR models are presented in Section S.1.

One important feature of the model used in this
manuscript is that in the model, each compartment
is divided into groups. The choice of how to group
the population is completely arbitrary from a the-
oretical perspective. But from a practical point of
view, such a choice should be informed by the char-
acteristics of the disease and also the availability of
the relevant data used to tune the parameters of
the model. And in that regard, a very good choice
for modelling the spread of COVID-19 is to divide
the population into age groups. More specifically,
the population in each compartment S, I and R is
divided into nine age groups 0-10, 10-20, ..., 70-80
and 80+. And the subsequent model is a set of 3×9
nonlinear ordinary differential equations (ODEs)
with some unknown parameters which we should
estimate based on the known characteristics of the
SARS-CoV-2 virus. These parameters are transfer
rates, and contact rates. Transfer rate, represented
with γi for each of the age-groups i = 1, · · · , 9, is
the rate at which individuals leave the Infectious
compartment and is relatively easy to estimate. It
depends on the average time period between the
moment an individual becomes Infectious and the
moment that the individuals are considered cured
or die. There are some estimates for this time
period, as reported in [2]. I have assumed this
time-period for COVID-19 to be 20 days. Consid-
ering one day to be the unit of time, and assuming
this time-period is on average the same for all age
groups, then γi = 0.05 for i = 1, · · · , 9.

Another set of parameters are contact rates, rep-
resented with βij for i, j = 1, · · · , 9 which denote
the rate at which Susceptibles in age-group i are
infected by Infectious individuals in age-group j.
Contact rates are very difficult to estimate because
they capture various characteristics of the popula-
tion and the dynamics of the virus. Their value can
depend on the average number of direct contacts
between the members of different groups, which
needs a comprehensive and detailed analysis of
the behaviour and mobility of the individuals in a
population. Contact rates can also depend on the
differences in susceptibility of each age-group to
the virus and also on the mechanisms of its trans-
mission. Hence, to directly calculate the values
of contact rates is a monumental task that even
if possible, might be extremely difficult and time-
consuming.

In this manuscript, a method is presented that
allows us to overcome the difficulties in estimat-
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ing contact rates between individuals or groups in
a population, and estimate these parameters indi-
rectly based on the available data. The method
uses an optimisation scheme to achieve this goal.
The optimisation scheme is based on two distinct
but important sets of data on the spread of COVID-
19. One is the estimate for basic reproduction num-
ber, R0, for COVID-19 in the early stages of the
spread of the virus. There are various estimates
for that parameter, but the one reported in [15],
which isR0 = 2.28 is used in this manuscript. A few
other groups have also reported values very close to
that [2]. The other piece of information is coming
from [1], which shows the relative distribution of
confirmed cases of COVID-19 in each age-group in
China as of February 11th, as shown in SI Section
S.2. Up until two weeks before this date, Chinese
authorities did not impose any meaningful contain-
ment strategies and the virus was spreading in an
uncontained population. Hence we can assume to
most part these numbers are the results of the un-
contained spread of the virus. But what makes the
adopted optimisation scheme so effective is that it
relies on the ratio of confirmed cases in age-groups,
not their absolute values. The advantage of this
choice is that it makes the resulting model quite in-
sensitive to the underlying assumptions in the opti-
misation scheme. The other advantage is that rely-
ing on the absolute numbers of confirmed cases can
make the methodology vulnerable to deliberate or
non-deliberate errors that might have occurred in
the reported data. But assuming similar probabili-
ties of occurrences of such errors in different age-
groups, the ratio between these values would be
less affected.

Mathematical details of both the model and the
optimisation schemes are explained in detail in the
Supplementary Information section. The important
thing to keep in mind is that although the optimi-
sation scheme uses data collected from China, the
structure of the mathematical model is such that
it allows us to use the obtained values for contact
rates in any other population or country. The model
has some advantages and disadvantages which are
discussed in Section 4. But it can serve as a useful
first step to evaluate various containment policies
in different countries. Next section explains some
of these applications.

3 Results

Using the methodology explained in the previous
section, we can predict the trajectory of Infectious
and Removed compartments in each age group in
any population with a known age-structure (which
includes almost every country in the world). In the
following, we can see results of such simulations for
different countries, with an emphasis on Iran. Iran

has been chosen as a case study mainly because
among the countries which are affected sooner and
wider, has been the one with almost no effective
containment strategy in place, and such a policy
can lead to consequences as explained in the next
section.

3.1 Uncontained Spread of the Virus

Let’s consider the case in which COVID-19 is spread
uncontained, i.e. the case that people in the society
interact with each other as in normal times, with
no external or self-imposed restrictions in the inter-
actions.

Figure 1.1 shows how the ratio of Infectious peo-
ple changes in the 18 months after the introduction
of SARS-CoV-2 virus in the population. And figure
1.2 shows the trajectory of the Removed ratio in
each population. As a reminder, Removed compart-
ment includes those who were Infectious, and then
were cured or died. It should be noted that the
model is not directly concerned with the mortality
rate or the number of those who might need respi-
ratory or intensive care in hospitals. Such informa-
tion can be inferred from the number of Infectious
and Removed compartments in each country, based
on the available data or estimates.

As can be seen, the model predicts the peak in
the number of Infectious people and the eventual
ratio of the Removed population which varies con-
siderably among different countries. That can be
explained based on differences in the population
pyramids in these countries. For example, in Iran,
66.8% of the population are under 40, while in
Italy only 39.8% are under 40 years old [3]. The
model predicts that countries with an older popu-
lation would be affected more if they let the virus
spread uncontained, in agreement with for exam-
ple [9] when comparing mortality rates in the USA
and UK.

To solve any system of Ordinary Differential
Equations (ODEs), apart from the equations them-
selves, we should also define the initial conditions,
which in our case means the initial ratios of Infec-
tious and Removed populations in each age group.
In all the figures presented in this manuscript, I
have assumed 1 in 10,000 in each age group is In-
fectious, and the Removed population is 0 in Day 1.
For a country of 10 million, that amounts to 1,000
Infectious in total. We should be cautious in using
a model based on a system of continuous ODEs for
numbers lower than that. It should be noted that
the peak values in Figures 1.1 and 1.2 are barely
affected by the choice of initial conditions. But that
is not true for the time it takes to reach the peak
values. Hence, in order to predict the day in which
the number of Infectious reaches the peak value,
we should have a reasonable estimate of the initial
conditions. But given the fact that usually in early
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Country Eventual Ratio of
Removed Population (%)

Maximum Instantaneous
Infectious Ratio (%)

Germany 80.34% 17.56%
Iran 65.29% 11.03%
Italy 81.05% 17.86%
Spain 80.49% 17.54%
China 74.78% 15.06%
USA 75.27% 15.75%
UK 78.18% 16.53%

France 77.44% 16.43%

Table 1: Maximum Instantaneous Infectious ratio and eventual Removed ratio in different countries in the uncontained scenario. The
Removed compartment includes those individuals who have been Infectious and then were cured or died.

stages of the spread of the virus, numbers usually
remain hidden from authorities, initial conditions
are almost impossible to guess. But the good news
is that having a good estimate of the numbers of
Infectious and Removed ratios in the age groups,
at any moment in time, not necessarily the early
stages of the spread of the disease, allows us to find
the initial conditions that will result in that specific
solution in that specific instance in time, and from
there, we can predict the time to reach the peak
value of the Infectious ratio.
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Figure 1.1: Aggregate ratio of Infectious in the uncontained sce-
nario in different countries.

Figures 1.3 and 1.4 show the Infectious and Re-
moved population in each age-group in Iran. As
mentioned in the previous section, the output of
the model is the trajectory of the spread of the dis-
ease in each age group, and the plots in Figures
1.1 and 1.2 are calculated using the relative dis-
tribution of the population of each country in one
the nine age-groups; 0-10, 10-20, ..., 60-70, 70-80,
80+. The same applies to any aggregate plot pre-
sented in this manuscript. This characteristic of the
model is particularly useful when we want to eval-
uate the effects of different containment strategies
applied to different age groups, as shown in the fol-
lowing.
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Figure 1.2: Aggregate ratio of Removed compartment in the un-
contained scenario in different countries.

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

Time (days)

0

5

10

15

20

In
fe

ct
io

us
 R

at
io

 (v
al

ue
s i

n 
%

)

Un
co

nt
ai

ne
d

[0-10]
[10-20]
[20-30]
[30-40]
[40-50]
[50-60]
[60-70]
[70-80]
80+

Figure 1.3: The Infectious ratio in the uncontained scenario in each
age-group Iran.
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Figure 1.4: The Removed ratio (ratio of those who were infected
and then were cured or lost their lives) in the uncontained scenario
in each age-group Iran.

3.2 Suppression Strategies

The advantage of having a stratified model is that
we can quantitatively evaluate the effects of var-
ious containment strategies that affect different
age-groups differently. Table 2 has listed some of
the more common policies and how they are de-
fined. The column under Policy Description defines
to what extent the contacts of some age-groups are
assumed to be decreased under each policy. These
values are chosen intuitively, but any other defini-
tions and any other policies can be easily defined in
the software package that is developed as a part of
this study [6].

As can be seen in Figures 2.1 and 2.2, all the con-
tainment policies decrease both the peak instanta-
neous Infectious ratio and eventual Removed ratio,
which is to be expected. The most effective pol-
icy among the ones listed in the Table 2 is Lock-
down. Although it does not differ much from SD,
in which individuals in the population have 20% or
25% interactions compared to normal times, com-
pared to only 10% in Lock-down.Depending on the
social and economic circumstances in the country,
the slight decrease in peak Infectious ratios might
not be worth the cost of imposing a much more in-
vasive policy such as total lock-down.

One policy that seems to be performing better
than expected, is KI, shutting down all schools and
universities which is considered as the decrease of
contact rates of age groups 0-10 and 10-20 to 10%
of the normal times. This policy will decrease the
eventual Removed ratio (which is the ratio of the
population which has been Infectious at any time
during the time period of interest) by more than
20%. To see how this huge decrease has happened,
we should have a look at the break-down of the
model outputs in age-groups, as shown in Figure
2.3. As can be seen, this policy has decreased the
Removed ratios in the first two age groups to al-
most 0, but its effects tend to decrease for other age

groups, to the extent that it is almost non-existent
for 70-80 and 80+ age groups. Added to that the
fact that 17.4% of the Iranian population is in 0−10
age range and 13.9% in 10−20, we can see why this
policy has decreased aggregate numbers of the Re-
moved compartment so much. But we can also see
that this policy has less and less effect on the ra-
tio of Removed compartment in older age-groups
who are more vulnerable to COVID-19. Hence this
policy will have a minimal effect on the mortality
rate and the number of patients that need support
care in hospitals. Interestingly enough, the first pol-
icy that the Iranian government imposed was shut-
ting down schools and universities. At the time of
writing this text, offices and companies are ordered
to continue their normal operations, after a short
break during the Persian new year holidays, while
schools are kept closed, and while there is no offi-
cial decree to keep the elderly at home. A policy
that the model show is quite ineffective.

Table 2 also shows the basic reproduction num-
ber, R0, for each policies. As can be seen in Figure
2.1, and as it is well-known in epidemiology, when
R0 < 1, the disease starts to disappear from the
population. But as importantly, bringing the ratio of
the Infectious population down to a small enough
ratio of the total population can take months, even
if we impose a total lock-down strategy (the ex-
act time depends on the ratio of Infectious when
we start the policy). And maintaining such a strat-
egy might not be feasible in many countries with a
more fragile economy. In the next section, we will
see what happens if we switch between different
strategies as a long-term plan.
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Figure 2.1: How Infectious ratios change under different contain-
ment policies. Policies are defined in Table 2

3.3 Mitigation Strategies and Long-term Plans

In the previous section, we saw how different con-
tainment strategies can affect the spread of the
SARS-CoV-2 virus in the population. And we saw
that the total lock-down is a necessary strategy
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Policy
Label Policy Name Policy Description

Eventual
Removed
Ratio (%)

Maximum
Instantaneous

Infectious
Ratio (%)

R0

UN Uncontained All interactions
as in normal circumstances 65.29 11.03 2.28

KI Only Schools and
Universities Closed

interactions of [0-20] age groups
decreases to 20%

47.20 9.80 2.21

KIOF Schools, Offices
and Companies Closed

Combination of KI and
interactions of [20-70] age range

decreases to 50%
24.97 3.98 1.49

EL Only Elderly
Social Distancing

interactions of 70+ age groups
decreases to 25%

63.36 8.55 1.79

KIEL Schools Closed
Elderly Social Distancing combination of KI and EL 39.08 5.60 1.68

SD Social Distancing
combination of KI and EL
and interactions of people

in [20-70] age range reduce to 20%
9.46 3.72 0.49

LD Lock-down interactions of all individuals
reduced to 10%

7.90 3.72 0.23

Table 2: Effects of different policies in Iran, when COVID-19 is spread uncontained for the first 90 days, assuming 1 in 10,000 in the
population are Infectious on Day 1.
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Figure 2.2: Removed ratios under different policies. Removed pop-
ulation refers to those who were Infectious, and then recovered or
died.

when the number of Infectious people grows fast
and we need to immediately lower the growth rate.
Without such policies, Iran, or any other society for
that matter, will face a humanitarian disaster, and
the whole purpose of this report is to highlight this
imminent threat.

But let’s assume that there is an immediate con-
tainment policy in place and the ratio of the Infec-
tious population starts to drop. As we saw, bring-
ing down the ratio of Infectious to a level that can
be considered small enough for eradicating the dis-
ease from the population can take months. And the
economy might collapse if such a stringent strategy
imposed for such a time-period. Apart from that,
even if the virus is eradicated in one country, in
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Figure 2.3: Break-down of the Infectious ratio of each age-group
in Iran when the containment strategy includes only shutting down
schools and universities. As can be seen, the Infectious ratio in age-
groups more vulnerable to disease has not changed significantly.

our globalised and connected world there is always
the possibility that the virus is re-introduced from
other countries who have not imposed containment
strategies. So, the natural question is, what policy
is suitable as a long-term strategy?

Let’s first see what kind of policy can keep R0

close to 1.0, so the Infectious ratio does not in-
crease, even if it does not decrease in the short-
term. To find the answer to that, we need to run an
optimisation scheme to find the coefficients for con-
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tact rates in each age group which would bring R0

from the original estimated 2.28 for the spread of
COVID-19 in an uncontained population, to around
1.00. In the simplest case, when we decide to im-
pose a uniform policy to all age groups, the coeffi-
cient is 0.4386 or 43.86%. It means that if everybody
brings down their direct contacts with other indi-
viduals to 44% of what it was in the normal times in
Iran, the ratio of Infectious would stay the same or
decrease at a slow pace. Please note that this value
applies to the age structure of Iran and is different
for other countries. This value is calculated using
the same optimisation algorithm as explained in SI
Section S.2, but with a different objective function.

Now let’s see how these values change if we want
to impose different policies for each age group. To
make it realistic, I have assumed a different policy
for people under 20, between 20 and 70, as the
workforce in the society, and above 70. And let’s
assume the minimum feasible coefficient is 10% for
all age groups. Running the optimisation scheme
again, we get values of [15.76%, 14.39%, 99.92%]
for the three age brackets, 0-20, 20-70, and 70+.
But bringing down the interactions of the work-
ing force to 14% of the normal level while not en-
forcing any changes to the contacts of the elderly
does not seem like a sound policy. Let’s set a lower
threshold of 40% to the interactions of the work-
ing force and keep it at 10% for the other two
age ranges. Also, let’s set an upper limit of 20%
on the interactions of 70-80 and 80+ age groups,
meaning we ask them to self-isolate until further
notice, and an upper limit of 50% for people in 0-
20 age-bracket. The optimised coefficients are now
[29.84%, 60.74%, 10.15%]. So, under such a policy, if
kids and teenagers’ interactions are brought down
to around 30%, adults to 61% and elderly to 10%,
number of Infectious would stay more or less the
same for a long period of time.

To bring this idea one step further, let’s assume
we plan to impose a switching policy, i.e. we
switch between uncontained and different contain-
ment strategies at pre-specified time points. To clar-
ify, let’s assume we impose a lock-down strategy for
30 days, and then remove the regulations for 30
days to ease the economic burden, and continue
the switching for a few times. Figures 3.1 and 3.2
shows how the spread of the virus changes. As
can be seen, the ratio of Infectious follows a sea-
saw pattern and in general decreases. Given that
we switch to the uncontained policy, it is no sur-
prise that the decrease does not happen as fast as
the continuous lock-down policy. Nonetheless, we
have managed to stop the Infectious ratio to reach
its potential peak value and ease the burden on the
healthcare system in the most critical time.

Now let’s add the R0 = 1.0 policy to the mix.
This time we switch between uncontained, lock-
down and R0 = 1.0 policies. Figures 3.3 and 3.4

show how Infectious and Removed ratios change
under such a policy. Since this time there are 60
and not 30 days between uncontained periods, we
see a more significant decrease in the Infectious ra-
tio. But that means more people in the population
remain susceptible, and if we stop the containment
strategy too early, the Infectious ratios bounce back
to a greater degree compared to the previous case.

And as the last switching policy, let’s consider
switching between uncontained and R0 = 1.0 poli-
cies. As expected, such a relatively lax policy has a
more attenuated effect on the Infectious ratio. But
if any of the previous policies cannot be imposed in
a country, policies such as this one can at least ease
the burden on the healthcare systems by temporally
distributing the Infectious population.
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Figure 3.1: Long-term strategy: switching between uncontained
and lock-down scenarios. The Infectious ratio.
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Figure 3.2: Long-term strategy: switching between uncontained
and lock-down scenarios. The Removed ratio.

4 Discussions

The method presented in this manuscript can be
used to predict the trajectory of the spread of
COVID-19 in any population with a known age-
structure. The model is capable of predicting the
effects of various containment policies imposed on
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Figure 3.3: A less strict long-term strategy: switching between un-
contained and lock-down and R0 = 1.0 scenarios. The Infectious
population.
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Figure 3.4: Switching between uncontained and lock-down and
R0 = 1.0 scenarios. The Removed population.

different age groups or on the whole population.
The output of the model is the ratio of Infectious
and Removed population in each age-group. The
Removed population includes those who have been
Infectious and then recovered or died. The main
advantage of the model is that it needs no a priori
knowledge of the interactions between individuals
in a population, or how the virus affects each age-
group. The contact rates are estimated based on
the available data on the spread of COVID-19. The
model itself is a set of nonlinear Ordinary Differ-
ential Equations (ODEs), hence simulating various
containment policies in different time frames does
need any special computational power.

But the methodology has some shortcomings that
we should keep in mind while interpreting the re-
sults. The method assumes the virus affects in-
dividuals (of the same age) in different countries
similarly. If it is the case that the differences in
genetic backgrounds or vaccination histories in dif-
ferent countries can affect the infection rate, such
differences would be lost in this model. Also, it is
an implicit assumption in the model that the gen-
eral interactions between people in different coun-
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Figure 3.5: A less stringent long-term strategy when we switch
between uncontained and R0 = 1.0 scenarios. Unlike the two
previous scenarios, the Infectious population grows, but the peak is
less than the uncontained case.
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Figure 3.6: Removed population when we switch between uncon-
tained and R0 = 1.0 scenarios.

tries and societies are in general similar to each
other. To clarify the point, if, for example, people
older than 70 years in one country live with or have
more contacts with the next generations, and in an-
other country, they live in isolation or in nursing
homes, then such differences in contacts between
age groups are lost in the model. Another issue
we should keep in mind relates to the test dataset
used in this paper, which was the number of con-
firmed cases in China in each age-group as of Febru-
ary 11th, and from that, we calculated the desired
ratios between the states of the model. And my un-
derstanding is that these confirmed COVID-19 cases
has been mostly those who have developed symp-
toms. Hence, the implicit assumption is that the
ratio of symptomatic to total number of those in-
fected with SARS-CoV-2 virus is the same for all age
groups. If this assumption is proven to be wrong,
then the symptomatic to total infected ratio should
also be incorporated in calculating the desired ra-
tios between the states of the models.

The method can be extended in various direc-
tions to make the results even more useful. We
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can, for example, divide each age-group into sub-
groups based on their vulnerability to the virus, or
based on the relative amount of interactions with
other individuals in the population. For example,
we can divide the population in each group to those
with normal levels of contacts, and two sub-groups
with one order of magnitude less or more contacts
with other members of the populace. Even a rough
estimate of the relative numbers of these three sub-
groups in each age group can give us more insight
into more effective ways to contain the spread of
the virus with less social and economic impact. The
compartmental model can be extended if necessary.
For example, we can add compartmentE to include
latent periods, if it is shown such a time-period is
significant in COVID-19. Also, in this manuscript, I
have assumed a simultaneous introduction of the
virus to different cities and regions in a country,
which is not always a realistic choice. Given the fact
that nowadays the population structure in different
cities/regions in almost every country is known, we
can use the model to describe the spread of the
virus for each region or city, and then, assuming
in and out-flow traffic to each city is known, con-
sider them as exogenous inputs to our system of
ODEs. That would allow us to consider time-lags
that might exist in the spread of COVID-19 to differ-
ent parts of a country. But even as it is, this model
with its estimated parameters can be a useful tool
for different policy-makers in different countries.
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Supplementary Material

S.1 The Mathematical Model

To understand the model discussed in this section,
it is enough to know the basics of Ordinary Differ-
ential Equations (ODEs) and some basic concepts
in linear algebra are needed. Although knowing
the following notations and reminding some basic
definitions can be helpful.

S.1.1 Notations and Some Basic Definitions

R is the field of real numbers and R+ is The set of
non-negative real numbers. Rn is The space of col-
umn vectors of size n of real numbers and Rn×n is
The space of n × n matrices of real numbers. I use
xi to represent The ith entry of the vector x in Rn,
for i ∈ {1, · · · , n}. Please note that x0 is a vector
in Rn that usually represents initial condition. No-
tation aij is used for (i, j) entry of the matrix A.
D = diag (x) is an n × n diagonal matrix in which
dii = xi for all i. A−1 is The inverse of the matrix
A. I is the identity matrix of proper dimensions and
0 is the zero matrix of proper dimensions. σ(A) is
the set of all eigenvalues (spectrum) of the matrix
A. ρ(A) is the spectral radius of the matrix A, i.e.
the maximum of the absolute values of all eigen-
values. µ(A) is The spectral abscissa of the matrix
A.
A � B means aij > bij , for all i, j ∈ {1, · · · , n}.

It should not be mistaken with Positive Definite
(PD) matrices. A > B means aij ≥ bij , for all
i, j ∈ {1, · · · , n} and A 6= B and A ≥ B means
aij ≥ bij , for all i, j ∈ {1, · · · , n}. Rn

+ is The
positive orthant of Rn, given by {x ∈ Rn : x ≥ 0}.

Knowing the following basic definitions can help
in understanding the text better.

A matrix A is called Hurwitz, if µ(A) < 0.
A real n × n matrix A = (aij) is Metzler if its

off-diagonal entries are non-negative.
The matrix A is irreducible if and only if for ev-

ery non-empty proper subset K of N := {1, · · · , n},
there exists an i ∈ K, j ∈ N \K such that aij 6= 0.
When A is not irreducible, it is reducible.

For any subset U of Rn, a point x0 is called an
interior point of U if there is an open ball around
x0 which is wholly contained in U . The set of all
interior points of U is called the interior of U and is
denoted by int (U).

Consider a continuous-time nonlinear systems of
the form:

ẋ(t) = f(x), x(0) = x0 (1)

where f : D 7→ Rn is a nonlinear vector field on
a subset D of Rn and x0 ∈ D is called the initial
condition.

S.1.2 SIS Model

Although we only use the SIR model in this
manuscript, SIS is also presented here, both in the
interest of completeness and to provide a theoret-
ical basis for the SIR discussions. The formulation
presented in this section is adopted from [8]. In
this model, the population of interest is first divided
into two compartments S, Susceptibles, and I, In-
fectious. For COVID-19, if a latent period exists, it
seems to be negligible for practical purposes [12].
Otherwise, we can add another compartment called
E, for Exposed, of those who are infected but not
yet Infectious. Each compartment is sub-divided
into n groups. These groups can represent differ-
ent age groups, different health conditions, profes-
sions, etc. In this manuscript, I consider the pop-
ulation in each compartment is divided into n = 9
age-groups defined as 0-10, 10-20, ..., 70-80 and
80+.

Let Ii(t) and Si(t) be the number of Infectious
and Susceptibles at time t in group i for i =
1, · · · , n, respectively. Also, let Ni(t) = Si(t) + Ii(t)
be the total population of group i. The total pop-
ulation of each group is assumed to be constant;
formally, Ni(t) = Ni. This does not oversimplify
the model, especially when the total population is
significantly greater than the number of Infectious,
which is still the case for COVID-19 at the time of
writing this manuscript. But even if that assump-
tion is not deemed realistic for a population, the
formulation stated below can be easily altered ac-
cordingly.

Here, βij , the contact rate between groups i and
j, denotes the rate at which Susceptibles in group
i are infected by Infectious in group j for i, j =
1, · · · , n. Further, γi, the transfer rate, is the rate at
which an infective individual in the group i leaves
the Infectious compartment. We also consider birth
and death in the population, although to keep the
total population constant, we should set the birth
and death rates in each age-group to be the same
value µi. Using the mass-action law, the basic SIS
model is then described as follows [8]:


Ṡi(t) = µiNi − µiSi(t)−

n∑
j=1

βi,j
Si(t).Ij(t)

Ni
+ γiIi(t)

İi(t) =

n∑
j=1

βi,j
Si(t).Ij(t)

Ni
− (γi + µi)Ii(t)

(2)

Since the population of each group is constant, it
is sufficient to know Ii(t). If we set xi(t) = Ii(t)/Ni

and β̃i,j = βi,jNj/Ni and αi = γi + µi, we obtain
the following differential equation:

ẋi(t) = (1− xi(t))
n∑

j=1

β̃i,jxj(t)− αixi(t), (3)
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for all i = 1, · · · , n. Based on the definition, x ∈ Bn

where Bn := {x ∈ Rn
+ : x ≤ 1}. We can write the

differential equation (3) in compact form as:

ẋ = [D +B − diag (x)B]x (4)

where D = −diag (αi) and B = (β̃ij) > 0. Please
note that in the simulations I have assumed the
birth and death rate is negligible compared to trans-
fer rate, in other words, αi = γi.

The following properties of (4) are easy to check.

(i) f(x) = [D + B − diag (x)B]x with D and B
defined as above is C1 in Rn, therefore, the
solution for every initial condition in Rn exists
and is unique for all t ≥ 0.

(ii) The origin is an equilibrium point of (4). This
equilibrium is referred to as the disease-free
equilibrium (DFE) of the system (4).

(iii) System (4) may have an equilibrium in
int (Rn

+) (also referred to as an endemic equi-
librium). Conditions for existence of endemic
equilibrium for the system (4) depends on pa-
rameter R0, explained below.

One important parameter in mathematical epi-
demiologically is the basic reproduction number, R0.
There are different definitions for the basic repro-
duction number. Probably the most common defi-
nition is as follows.

Definition S.1.1 (Basic reproduction number)
The basic reproduction number is the expected
number of secondary cases produced, in a com-
pletely susceptible population, by a typical infective
individual during its entire period of Infectiousness
[7].

For the SIS model (4), following the reference
[8], it can be proved that R0 = ρ(−D−1B). The re-
production number can be used to characterise the
existence and stability of the equilibria of (4). As
shown in [8, Theorem 2.3], the disease-free equi-
librium, i.e. the origin, is a globally asymptotically
stable equilibrium of the system (4) if and only if
R0 < 1 (if matrix B is irreducible). And the en-
demic equilibrium, an equilibrium in int (Rn

+), is
globally asymptotically stable if and only if R0 > 1.
In other words, the necessary and sufficient con-
dition to eradicate a disease fro a population is to
satisfy R0 < 1 condition.

S.1.3 SIR Model

The SIR model is quite similar to SIS, with a minor
difference, namely, those who are cured, join the

Removed, R, population, not S. Hence, the formu-
lation for an SIR model is as follows:

Ṡi(t) = µiNi − µiSi(t)−
n∑

j=1

βi,j
Si(t).Ij(t)

Ni

İi(t) =
n∑

j=1

βi,j
Si(t).Ij(t)

Ni
− (γi + µi)Ii(t)

Ṙi(t) = γiIi(t)− µiRi(t)
(5)

Again, assuming Ni(t) = Si(t) + Ii(t) + Ri(t)
is constant, similar to what was done in the pre-
vious section, if we set xi(t) = Ii(t)/Ni and yi(t) =
Ri(t)/Ni and β̃i,j = βi,jNj/Ni and αi = γi + µi,
µi = 0, we obtain the following differential equa-
tion: ẋi(t) = (1− xi(t))

n∑
j=1

β̃i,jxj(t)− αixi(t)

ẏi(t) = γixi(t)

(6)

∀i = 1, · · · , n. In compact from, (6) can be written
as follows:{

ẋ = [D +B − diag (x)B]x
ẏ = Γx

(7)

where D = −diag (αi) and B = (β̃ij) > 0 and
Γ = diag (γi) for i = 1, · · · , n.

The system (7) has the following properties.

(i) f(x) = [D + B − diag (x)B]x and g(y) = Γx
with D, B and Γ defined as above are C1 in
Rn, therefore, the solution for every initial con-
dition in Rn exists and is unique for all t ≥ 0.

(ii) To calculate the equilibria of the system we set
f(x) = 0 and g(x) = 0. The resulting condi-
tion is x = 0. Which corresponds to disease-
free equilibrium, the origin, and the case that
the disease has swept through the population
and every remaining person is now either in
Susceptible or Remove compartments.

(iii) Basic Reproduction Number for (7), can be
used using the same formula R0 = ρ(−D−1B).

Property (iii) follows from the discussion in [13,
Section 3] and the fact that this equation is de-
rived from the model linearised around the ori-
gin. This also means that as the Infectious ra-
tio increases, the effective R0 becomes less than
ρ(−D−1B). The observant reader might have no-
ticed that in Figures 3.3 and 3.5, when the policy
guarantees ρ(−D−1B) = 1.0, the Infectious ratio
decreases.

11

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2020. .https://doi.org/10.1101/2020.04.10.20060681doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.10.20060681
http://creativecommons.org/licenses/by/4.0/


S.2 An Optimisation Scheme to Estimate the Pa-
rameters of the Epidemiological Model

In order to solve ordinary differential equations
(ODEs) (7) or (4), we need to have a reliable es-
timate of β̃i,j and γi for all i, j. γi is easy to esti-
mate. If the average duration that individuals in a
group i are Infectious is 20 days, which seems to
be a reasonable estimate for COVID-19 [2], then
γi = 1/20 = 0.05, given that we have chosen one
day to be the unit of time. Estimating β̃i,j , on the
other hand, is very difficult, and this section ex-
plains how we can estimate contact rates based on
real-world data on the spread of COVID-19.

Column C2 in Table 3 shows the distribution
of confirmed cases of COVID-19 in different age
groups in China as of Feb. 11th [1]. But we should
normalise these numbers to the relative distribu-
tion of each age group in the general population to
be able to compare the differences in how different
age groups are affected by the virus. We can do so
by dividing values in Column C2 to those of Column
C1. We can further divide the resulting numbers to
the smallest of them, which happens to be the first
row. By doing so, we obtain the last column of Table
3, which shows the normalised relative distribution
of infective people in the Chinese population as of
Feb. 11th.

The optimisation scheme aims to find the contact
rates such that at a given time tg, the ratio of the
values of the states in Systems (7) or (4) matches
the values reported in the last column of Table 3.
At the same time, we should keep the basic repro-
duction number R0 to be equal to the estimated
R0 for the spread of COVID-19 in an unconstrained
population. There are various estimates for R0 for
COVID-19, some are listed in [2]. Most estimates
fall in [1.5, 3.5] range. I have chosen R0 = 2.28, as
reported in [15].

Hence, the optimisation problem we need to
solve is as follows: finding the matrix B such that
the following two conditions are satisfied:

(i) For a given dialogical matrix D and scalar
R0 = 2.28, R0 = ρ(−D−1B)

(ii) The relative values of the states of system (4)
or (7) at a given time tg and initial condition
x0 satisfy the values of the last column of Table
3.

But how to choose tg and x0? For that, I have
relied on reports that the spread of the virus has
probably started in a wet market in Wuhan city, in
late November [14]. Hence I have set tg = 75 days
(meaning the spread of the virus has initiated 75
days before Feb 11th), and x0 to be 0 for all groups
except 0.0001 in the fourth age group, which cor-
responds to people aged 40-50. Later on, we will
see that the results are robust with respect to the

choices of initial conditions and exact value of tg.
I have also set constrained for the minimum and
maximum of the elements of matrix B to be 0.0001
and 0.1 to avoid solutions with anomalous values.

Now that all the required parameters are set, we
can solve the optimisation problem to find a Bopt.
In order to solve the optimisation problem, I have
used sqp algorithm in globalsearch function in
Global Optimisation Toolbox in Matlab c©.
Optimisation is done in two steps, in the first step,
initial values for matrix B are chosen randomly
from a uniform distribution. When the optimisa-
tion algorithm converges to a solution, the optimi-
sation procedure is repeated, this time with the op-
timum value obtained in the first step as the initial
values. The objective function in the optimisation
scheme is the weighted sum of two terms. One is
the 2-norm of the difference between the ratio of
trajectories of an SIS or SIR model at time tg with
initial condition x0 with the desired ratio extracted
from Table 3. The second term is the difference be-
tween ρ(−D−1B) and the desired basic reproduc-
tion number of R0 = 2.28. The second term is given
a weight big enough so each term is not obscured
by the other during the optimisation steps.

The optimisation algorithm runs in 5-15 min-
utes on 40 hyper-threaded CPUs of type Intel(R)
Xeon(R) CPU E5-2687W v4 @ 3.00GHz.

Note S.2.1 It should be noted that the values ob-
tained from the optimisation schemes are β̃i,j which
are usable only for population distribution in China.
But using the relationship βi,j = β̃i,jNi/Nj , we can
obtain universal values that can be used for all popu-
lation densities, where Ni, Nj are the population ra-
tios in age groups i and j. For each other target pop-
ulation we can use the equation β̃i,j = βi,jNj/Ni to
calculate the β̃i,j and then solve ODEs (4) or (7) to
find the spread of the disease in each age group over
time.

Note S.2.2 This methodology can be applied to any
uncontained or contained population if the effective
basic reproduction number, R0 is known. But given
the difficulty in estimating R0 in a contained popu-
lation, and the fact that most countries in the world
now have a form of containment policy in place, the
data collected in early stages of the spread of the virus
in China seems to be the best available option as an
input to the optimisation scheme.

S.2.1 Sensitivity Analysis

To solve the optimisation problem, I made some as-
sumptions on when and how the disease started
to spread in the city of Wuhan. In the absence
of concrete facts about the exact moment that the
virus was introduced in the human population, we
should run a sensitivity analysis to figure out how
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Age
Group

Population Ratio
in % (C1)

Confirmed COVID-19
Ratio in % (C2) C2/C1 C2/C1 normalised

to first age-group

0-10 11.9 0.9 0.075 1.0
10-20 11.6 1.2 0.107 1.4
20-30 13.5 8.1 0.600 8.0
30-40 15.6 17.0 1.089 14.5
40-50 15.6 19.2 1.230 16.4
50-60 15.0 22.4 1.493 19.9
60-70 10.4 19.2 1.846 24.6
70-80 4.7 8.8 1.872 25.0
80+ 1.7 3.2 1.882 25.1

Table 3: Population distribution in China and the distribution of Confirmed COVID-19 cases in China as of Feb. 11th. To normalise the
distribution of confirmed cases, we can divide the values over the population ratio of that age group. The resulting values are then used
to estimates parameters of both SIS and SIR epidemiological models.

sensitive is the methodology to the assumptions
that were made in regard to the initial conditions.

In order to do so, firstly, we start the value of tg,
which was assumed to be 75 days, i.e. I assumed
the disease has started to spread 75 days before
February 11th. I have changed the value of tg in
[55, 95] days range. For the SIS case, solving the
system of ODEs (3), we can calculate x(tg) for ev-
ery t − g in [55, 95] range, and then calculate the
error between the ratios of the states in the result-
ing vector and the desired values as reported in the
last column of Table 3. The maximum relative er-
ror over all elements of x(tg) and all values of tg
was 0.019. In other words, if the initial guess of
tg = 75 days was wrong and the spread of the dis-
ease started any time from 95 days to 55 days be-
fore the Feb. 11th date, the values we obtained β̃i,j
would lead to a ratio between states that match the
desired ratios with a maximum error of 0.019 in all
age groups. For SIR case, maximum relative error
when tg changes in [55, 95] days range is 0.047.

We can perform similar sensitivity tests on the
assumption of the values of initial conditions. As a
reminder, to solve the optimisation problem, I as-
sumed x0 is 0 everywhere except its 4th element
(corresponding to the age group 40-50) which is
set to 1e-4. Note that this value represents the ra-
tio of the population of infective in that age group
to the total population in that age group. So, if
the age group [40-50] includes millions of individ-
uals, which is a reasonable assumption for the re-
gions of China which were reported to be affected
by COVID-19 as of Feb 11th. To test the sensitiv-
ity to x0, in the first step, I assumed that instead
of [40− 50] age-group, one other age group among
[20,30], [30,40], and [50,60] has an initial condi-
tion of 1e-4 while others are 0. For the SIS case,
the total relative error over all such cases was 0.051.
I then assumed all four age groups from 20 to 60,
which are the likely age-groups that might frequent
a wet market, have a value of 1e-4 while others

are 0, and the maximum error was 0.012, which is
even less than the previous case, and I find peculiar.
To make the sensitivity analysis even more compre-
hensive, I have done the same procedure for initial
values being of an order of magnitude smaller than
what we have assumed so far, it means 1e-5. Once
assuming just one age group in [20,30], [30,40],
[40,50], [50,60] has such a value, and then all of
them together. When the initial condition was set
to 1e-5 for just one of the four age groups between
20 and 60 years, the maximum error in these two
cases was 0.050. When the initial condition was set
to 1e-5 in all four of them the maximum error be-
comes 0.008.

Repeating the same procedure in the SIR case,
which is the adopted model for COVID-19 in this
manuscript, we get different values, but still, the re-
sults show small errors. When any of the 3rd, 4th,
5th or 6th elements of x0 is set to 1e-5 or 1e-4,
maximum relative error in each case for the solu-
tion of the SIR system (7) over all four cases is 0.032
and 0.027,respectively. When all four age groups
start from those initial values, the maximum rela-
tive errors are 0.006, 0.020. To provide a context for
what the change of initial condition from 1e-4 to
1e-5 means, we should note that if the initial con-
dition is set to 1e-5 for age group of [40−50] years
and 0 for other age groups, it takes 69 days until
the Infectious ratio in [40 − 50] age groups reaches
1e-4.

To summarise, the sensitivity analysis shows that
even if our guess for when and how fast the SARS-
CoV-2 virus has started to spread in the human pop-
ulation is off by 20 days, or if the initial number of
Infectious is of one order of magnitude lower than
what we have guessed, the model obtained from
the optimisation scheme generally performs well in
reaching the desired values presented in Table 3.
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S.3 Normalised Contact rates for COVID-19

Below, you can find the normalised values of contact rates for the spread of COVID-19 in different pop-
ulations. These are the results of the optimisation scheme described in SI Section S.2. You can insert
these values in the SIR model, (6) in Section S.1.2 or (7) in Section S.1.3, and then solve the ODE with
any desired initial conditions to calculate the trajectory of Infectious and Removed populations in each
age-group. But please note that in those equations, you need β̃i,j which is calculated as β̃i,j = βi,jNj/Ni,
in which βi,j is the element in row i, column j of the matrix B defined below, and Ni and Ni are the
relative ratios of age groups i and j in the population of interest. As a reminder, the nine age groups used
in this manuscript are defined as 0-10, 10-20, ..., 60-70, 70-80 and 80+. You can find the age structure
of countries in many online resources, for example in [3]. Also, the values of contact rates for both SIS
and SIR models, and the code used to run the model and generate the figures we saw in this manuscript
can be found in a publicly available online repository [6].

As a last note, when applying a containment policy, the values of the contact rates should be changed
accordingly. As an example, when a policy requires the contacts between the first age-group, [0 − 10], is
decreased to 10% of the uncontained case, the values of the first row of the matrix B should be multiplied
by 0.1.

B =



0.0641 0.0133 0.0012 0.0003 0.0001 0.0002 0.0001 0.0003 0.0007
0.0016 0.0024 0.0025 0.0045 0.0001 0.0012 0.0002 0.0004 0.0011
0.0123 0.0226 0.0123 0.0074 0.0048 0.0141 0.0011 0.0088 0.0471
0.0210 0.0193 0.0152 0.0231 0.0061 0.0246 0.0060 0.0303 0.1012
0.0551 0.0458 0.0223 0.0105 0.0129 0.0141 0.0152 0.0206 0.2140
0.0542 0.0262 0.0446 0.0138 0.0248 0.0248 0.0083 0.0486 0.0819
0.0394 0.0325 0.0211 0.0202 0.0154 0.0148 0.0117 0.0539 0.0855
0.0152 0.0129 0.0123 0.0060 0.0077 0.0111 0.0030 0.0236 0.0358
0.0043 0.0063 0.0051 0.0035 0.0024 0.0009 0.0023 0.0063 0.0273
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