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Abstract

Due to the recent diffusion of COVID-19 outbreak, the scientific community is making
efforts in analysing models for understanding the present situation and predicting future
scenarios. In this paper, we propose a Susceptible-Infected-Exposed-Recovered-Dead
(SEIRD) differential model [Weitz J. S. and Dushoff J., Scientific reports, 2015] for the
analysis and forecast of the COVID-19 spread in Italian regions, using the data from the
Italian Protezione Civile from February 24th 2020. In this study, we investigate an
adaptation of SEIRD that takes into account the actual policies of the Italian
government, consisting of modelling the infection rate as a time-dependent function
(SEIRD(rm)). Preliminary results on Lombardia and Emilia-Romagna regions confirm
that SEIRD(rm) fits the data more accurately than the original SEIRD model with
constant rate infection parameter. Moreover, the increased flexibility in the choice of
the infection rate function makes it possible to better control the predictions due to the
lockdown policy.

Introduction 1

The recent diffusion of the COVID-19 Corona-virus has renewed the interest of the 2

scientific and political community in the mathematical models for the epidemic. Many 3

researchers are making efforts for proposing new refined models to analyse the present 4

situation and predict possible future scenarios. 5

With this paper, we hope to contribute to the ongoing research on this topic and to 6

give a practical instrument for a deeper comprehension of the virus spreading features 7

and behaviour. 8

The modelling of infectious diseases is currently performed by Ordinary Differential 9

Equations (ODEs) deterministic compartmental models [1] or by stochastic 10

procedures [2]. The tuning of the parameters of the equations allows better modelling of 11

environmental features, such as social restrictions or changes of political strategies in 12

the outbreak containment. 13

We consider here deterministic compartmental models, based on a system of initial 14

value problems of Ordinary Differential Equations. This theory has been studied since 15

the beginning of the century by W.O. Kermack and A. G. MacKendrick [3] who 16

proposed the basic Susceptible-Infected-Removed (SIR) model. The SIR model and its 17

later modifications, such as Susceptible-Exposed-Infected-Removed (SEIR) [4] were later 18

introduced in the study of outbreaks diffusion. These models split the population into 19
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groups, compartments, and reproduce their behaviour by formalising their reciprocal 20

interactions. For example, the SIR model groups are Susceptible who can catch the 21

disease, Infected who have the disease and can spread it, and Removed those who have 22

either had the disease or are recovered, immune or isolated until recovery. The SEIR 23

model proposed by Chowell et al. [5] also considers the Exposed group: containing 24

individuals who are in the incubation period. 25

The evolution of the Infected group depends on a critical parameter, usually denoted 26

as R0, representing the basic reproductive rate and it measures of how transferable a 27

disease is. This quantity determines whether the infection will spread exponentially, die 28

out, or remain constant. When R0 > 1 the epidemic is spreading. The value of R0 can 29

be inferred, for example, by epidemic studies or by statistical data from literature or it 30

can be calibrated from the available data. In this paper, we use the available data for 31

determining the value of R0. 32

Compared to previous outbreaks, such as SARS-CoV or MERS-CoV [6], when the 33

disease stopped after a relatively small number of infected people, we are now 34

experimenting a completely new situation, and the COVID-19 epidemic has been 35

proclaimed pandemic by the WHO. Indeed, the number of infected people grows 36

exponentially, and apparently, it can be stopped only by a complete lockdown of the 37

affected areas, as evidenced by the COVID-19 outbreak in the Chinese city of Wuhan in 38

December 2019. 39

Analogously, in the Italian case, to limit the virus diffusion all over the Italian area, 40

the government has started to impose more and more severe restrictions since March 41

10th 2020. Hopefully, these measures affect the spread of the COVID-19 virus, reducing 42

the number of infected people and the value of the parameter R0. 43

The introduction of different levels of lockdown requires an adaptation of the 44

standard epidemic models to this new situation, see [6–8] for some example related to 45

the Chinese outbreak. Concerning the Italian situation, the outbreak started in 46

Lombardia on February 21st, and it is still affecting more and more regions. In the 47

beginning, severe lockdown measures were imposed in very restricted areas and only 48

after March 10th uniform restrictions were imposed all over the country. 49

We believe that a more flexible, time-dependent parameter related to the infection 50

rate, not only could it give a better fit of the measured data, but it also allows us to 51

represent possible future scenarios caused by different policies of the Italian 52

Government. In this paper, we propose to represent the infection rate as a piecewise 53

time-dependent function, which reflects the changes in external conditions. The 54

parameter R0, which is proportional to the infection rate, becomes a time-dependent 55

parameter Rt and it follows a different trend each time the external conditions change, 56

depending on the particular situation occurring in that period. For example, the 57

application of new restrictions to the population movements at time t0 should hopefully 58

cause a decrease of Rt when t > t0. 59

The idea of modelling the introduction of restricting measures through a 60

non-constant infection rate has been proposed in [5], where Ebola data coming from 61

Congo and Nigeria are analysed. Although the particular form of time-dependent 62

infection rate, used in [5], gave outstanding results in that particular situation, it is not 63

efficient in our case. Therefore, we propose a different function type for COVID-19 64

diffusion in Italy. We split the observation domain into several sub-intervals and 65

represent the infection rate as a piecewise rational function. 66

Moreover, we believe that relevant information is not only about Infected but also 67

Recovered and Dead numbers, hence we choose to apply the SEIRD, model by splitting 68

the Removed population into Recovered and Dead. 69

Finally, some considerations on how to use the proposed model and about the 70

effectiveness of the present research. The COVID-19 data, currently available in Italy, is 71
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quite raw and incomplete, due to the present emergency. Appropriate use and 72

interpretation require data preprocessing. For example, apparently, all the dead people 73

positive to COVID-19 are counted as Dead, but probably many of them might have died 74

in a few days for other diseases. For this reason, the model results, although coherent 75

with the available data, may not depict the Italian situation accurately. Of course, the 76

proposed model could be easily applied to new and possibly improved data. 77

Concerning the prevision obtained by applying the proposed model for times beyond 78

the measured interval, we remind that, as for all forecasts, the more considerable the 79

distance is from the observed data, the more unreliable is the forecast. However, the 80

model flexibility allows us to adapt it to changes in the data trends. 81

The paper is organized as follows. In section 1, we describe the details of SEIRD 82

model with constant and with time-dependent infection rate SEIRD(rm). Finally in 83

section 2 we test the model on some regional aggregated data published by the 84

Protezione Civile Italiana [9]. 85

1 Materials and methods 86

In this section we present the proposed mathematical model for the COVID-19 analysis 87

in Italy, the method used for estimating the model parameters by data fitting and the 88

strategies applied for predictions. 89

The proposed SEIRD model 90

The epidemiological compartmental model divides the population into groups, whose 91

evolution in time is described by continuous functions, and model the relations between 92

the groups with ODEs involving the relative functions. The first differential model 93

proposed in literature is the SIR model by Kermack and A. G. MacKendrick [3], 94

considering the groups of Susceptible (S), constituted by people that can be infected, 95

Infectious (I) and Removed(R), containing recovered and dead people. The more recent 96

SEIR model adds the Exposed (E) group to the previous one, representing people that 97

infected but not infectious. SEIR has been used to model breakouts, such as Ebola in 98

Congo and Uganda [4, 5]. In [4] the equations are modified by adding the quarantine 99

and vaccination coefficients. In our case, unfortunately, vaccination is not available. 100

In this paper we use a SEIRD model [10], where the class of Removed in the SEIR 101

model is partitioned into the Recovered (again labelled with (R)) and Dead (D). Hence 102

SEIRD consider five classes: Susceptible (S), Exposed (E), Infectious (I), Recovered (R) 103

and Dead (D). Their sum, at each time t, is the total number N of individuals in the 104

examined population, i.e. N = S + E + I +R+D. The system of equations in the 105

SEIRD model is given by: 106

dS

dt
= − β

N
SI

dE

dt
=

β

N
SI − αE

dI

dt
= αE − 1

TI
I (1)

dR

dt
=

(1− f)
TI

I

dD

dt
=

f

TI
I
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where N is the total population, β is the infection rate, a coefficient accounting for the 107

susceptible people get infected by infectious people, α represents the number of days for 108

the transition from Exposed to Infectious (i.e. the incubation rate), TI is the average 109

infectious period and f is the fraction of individuals who die. 110

The system (1) of ODEs is solved by starting from an initial time t = t0 where the 111

values of the populations S(t0), E(t0), I(t0), R(t0), D(t0) are assigned on the basis of the 112

available data at that time and integrated up to a final time T . 113

Following [10], we compute the basic reproduction number R0 as follows: 114

R0 = βTI . (2)

In order to consider different external conditions affecting the outbreak data, we 115

partitioned the integration interval [t0, T ] into sub-intervals [tk, tk+1], k = 1, . . . p and, in 116

each sub-interval, we adapt the model to the data. Possible conditions changing the 117

outbreak diffusion trend are the different restrictions imposed by the Italian government 118

since March 10th 2020, or different protocols regarding swabs. Since the applied 119

restrictions should cause a decrease in the number of contacts between Infected and 120

Susceptible, we model the coefficient β in (1) as a decreasing time-dependent function 121

β(t). 122

A similar model for the infection rate in SEIR equations can be found in [5], where 123

the function is assumed to have a decreasing exponential form. However, observing the 124

data trend, we have proved that the exponential β(t) has a too fast decreasing 125

behaviour and we choose to model it as a decreasing rational function: 126

β(t) = β0 (1− ρk(t− tk)/t)) , t ∈ (tk, tk+1] (3)

where ρk ∈ (0, 1) for k > 0 and ρ0 = 0. The introduction of β(t) (3) in the SEIRD
model (1) originates the SEIRD rational model (SEIRD(rm)) reported below,

dS

dt
= −β(t)

N
SI

dE

dt
=
β(t)

N
SI − αE

dI

dt
= αE − 1

TI
I (4)

dR

dt
=

(1− f)
TI

I

dD

dt
=

f

TI
I

since infection rate β(t) is time-dependent, the the basic reproduction number is written 127

as follows: 128

Rt = β(t)TI . (5)

Parameter estimation 129

We calibrate the parameters of SEIRD (1) and SEIRD(rm) (4) equations by solving 130

non-linear least squares problems with positive constraints. For example, in the SEIRD 131

model (1), we define the function u(t) = (S(t), E(t), I(t), R(t), D(t)), depending on the 132

vector of parameters q = (β, α, f), and the vector y of the acquired data at given times 133

tk, k = 1, . . . p. Let F (u,q) be the function computing the numerical solution u of the 134

differential system (1), the estimation of the parameter q is obtained solving the 135

following non linear least-squares problem: 136

min
q≥0

1

2
‖F (u,q)− y‖22 (6)
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where we introduce positivity constraints on q. The trust-region based method 137

implemented in the lsqnonlin Matlab function is applied to solve problem (6) (see [11] 138

for details about this aspect). 139

Actually, we implement the parameter identification step as a two phases process: 140

• Phase 1 Identification of the parameters (α, β, f) in (1), using a restricted data 141

set: in our examples we considered the data of the first 18 days. 142

• Phase 2 Identification of the parameters (α, f) in SEIRD(rm)(4) model, using all 143

the measures available (times t0, t1, . . . , tp) and modelling the infection rate as in 144

(3). This second phase uses the values of the parameters of Phase 1 as starting 145

guess, and sets β0 in (3) as the value β estimated in Phase 1. 146

Prediction 147

After having carried out the estimation of the parameters of (4), based on the data 148

available until March 26 2020, we use the model to obtain some predictions about the 149

infection behaviour in the successive few weeks. This information is extremely 150

important to evaluate if the restrictions give the expected results and to predict the 151

length of the epidemic spread. 152

Concerning the forecasts, we propose three possible ways to model the infection rate 153

for the subsequent times where the data is still not available. We extend the 154

computation domain by adding the interval [tp, ts], where tp is the time value of the last 155

measure and ts is the final simulation time. Then we solve equation (4) by applying (3) 156

for t ∈ [0, tp] and representing β(t) in one of the following three different ways: 157

1. piecewise constant function βc(t): 158

βc(t) = β(tp)ρk, t ∈ [tk, tk+1] ρk ∈ (0, 1) (7)

2. piecewise rational function βr(t): 159

βr(t) = β(tp) (1− ρk(t− tk)/t)) t ∈ (tk, tk+1], tk ≥ tp, ρk ∈ (0, 1). (8)

3. piecewise exponential function βe(t): 160

βe(t) = β(tk)e
−ρk(t−tk), t ∈ (tk, tk+1], tk ≥ tp, ρk > 0. (9)

By changing the number of partition points tk of the simulation domain and the weights 161

ρk, for each formula it is possible to take into account the different restriction measures 162

and estimate possible developments of the epidemic, such as the behaviour of the 163

Infected, Recovered or Dead individuals. 164

2 Results 165

In this section, we apply the SEIRD (1) and the SEIRD(rm) (4) models to monitor the 166

Covid-19 outbreak in Italy during the period 24/02/2020-27/03/2020. The epidemic 167

spread started on February 21st affecting the northern regions. Lombardia in particular 168

registered the first sources of epidemic followed by the Veneto and Emilia-Romagna. 169

Since initially each region applied different containment measures to some restricted 170

areas, at different times, we choose to calibrate the SEIRD and SEIRD(rm) models in 171

each region separately. This study considers two regions, Lombardia and 172

Emilia-Romagna, for which the available data can be found in the GitHub repository [9]. 173

All the computations are performed using Matlab R2019b 2,9 GHz Intel Core i7 174

quad-core 16 GB ram. We separately present the results of the two steps described in 175

section 1: 176
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• Identification. This step computes estimates of the model parameters using a 177

set of measured data and solving the minimization problem (6). 178

• Simulation. This step applies the SEIRD(rm) (4) model, with the identified 179

parameters, to monitor the epidemic evolution in subsequent times. Since 180

currently the epidemic has not still reached the peak of infection, we test different 181

types of variable infections rates (7), (8), (9) to predict the possible evolution. 182

The differential systems SEIRD and SEIRD(rm) are solved applying the ode45 Matlab 183

function, implementing a variable step Runge-Kutta method based on Dormand-Prince 184

formulae, with the following initial condition: S(t0) = N , E(t0) = I(t0) = Iinit, 185

R(t0) = D(t0) = 0, where the value Iinit corresponds to the Infected individuals in the 186

first measurement day and N is the total population of the region. From the database 187

in [9], we considered the Infected individuals in the 11th column (the given number of 188

total positive cases). 189

The average infectious period, obtained from data estimations as well as from 190

clinical observation, is assumed as TI = 20. 191

To test the precision of our data estimation process, we consider the following
relative error between the vector Xmod of the modelled data and the vector Xdata of the
the measured data for the days 1, 2 . . . 31:

Erel(X) =
‖Xmod −Xdata‖
‖Xdata‖

where X represents the considered model compartment {S,E,I,R,D} respectively, and 192

‖ · ‖ is the Euclidean distance. 193

2.1 SEIRD calibration 194

In this paragraph we test the SEIRD model (1) to estimate the model parameters 195

q = (β, α, f) twice, first by using the data in [9] from 18 days (24/02/2020-12/03/2020) 196

and then by using the data of all the 31 days (24/02/2020-27/03/2020), respectively. 197

From the values reported in table 1 we observe that the parameters obtained from 31 198

days mostly lead to worse errors, compared to those obtained from the first 18 days. 199

Moreover, observing the plots in figures Fig. 1, Fig.2, Fig.3 and Fig.4, we conclude that

Region N days Erel(I) Erel(R) Erel(D)
Lombardia 18 6.17 10−2 1.33 10−1 1.76 10−1

31 2.33 10−1 2.67 10−1 4.32 10−1

. Emilia R. 18 2.24 10−1 2.33 7.75 10−1

31 2.43 10−1 4.70 10−1 3.84 10−1

Table 1. SEIRD Relative Errors in two different time intervals: 18 days
(24/02/2020-12/03/2020); 31 days (24/02/2020-27/03/2020).

200

SEIRD model does not seem to reproduce accurately the slopes of the Infected, 201

Recovered and Dead data; hence any prevision based on this model is not reliable. The 202

reason is that, since the data trend is not the same for the whole period of 31 days, a 203

constant value for the β parameter, i.e. for the transmission rate, is not correct. 204

However, the computed parameters reported in table 2 can be used a starting guess for 205

the SEIRD(rm) model at Phase 2. 206
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Fig 1. Infect, Recovered and Dead fit based on Lombardia data 18 days.

Fig 2. Infect, Recovered and Dead fit based on Lombardia data 31 days.

Fig 3. Infect, Recovered Dead fit based on Emilia Romagna data 18 days.

Fig 4. Infect, Recovered Dead model fit on Emilia Romagna data 31 days.
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Region N days β α f R0

Lombardia 18 0.27 1.51 0.355 5.4
31 0.20 10.45 0.320 3.9

Emilia R. 18 0.29 12.47 0.602 5.8
31 0.24 69.24 0.613 4.8

Table 2. SEIRD Model parameters. Lombardia and Emilia Romagna regions

2.2 SEIRD(rm) calibration 207

In this paragraph we perform the calibration of the SEIRD(rm) model (1) where the 208

coefficient β is assumed as the time dependent function (3). We perform a two phase 209

process, where Phase 1 is carried out by running the classical SEIRD (1) for 18 days 210

and Phase 2 applies the time dependent piecewise infection ratio β(t) in (3) all aver the 211

measurements interval [t0, tp], partitioned as reported in table 3. 212

Region t0, t1, . . . ρ0, ρ1, . . .
Lombardia [0, 10, 18, 24, 29] [0, 0.9, 0.95, 0.999]
Emilia R. [0, 7, 14, 21, 29] [0, 0.2, 0.75, 0.9]

Table 3. Phase 2 parameters of β(t) in (3)

In table 4 we report the relative errors obtained the SEIRD(rm) after calibration of 213

SEIRD(rm) in the measurement interval [t0, tp]. Comparing the relative errors in the 214

second and fourth rows of table 1 and 4, we can appreciate the improvement obtained 215

by the calibrated model for lombardia region. Concerning Emilia Romagna only the 216

Infected compartment reports a substantial improvement. We point out that while the

Region Erel(I) Erel(R) Erel(D)
Lombardia 5.60 10−2 6.80 10−2 7.75 10−2

Emilia R. 5.40 10−2 1.07 6.03 10−1

Table 4. SEIRD(rm) Phase 2 Relative Errors

217

behaviour of the Infected population is similar in the two regions, the Recovered and 218

Dead are quite different, partly due to non homogeneous data acquisitions procedures in 219

Lombardia and Emilia-Romagna. 220

The model parameters α and f obtained by this calibration phase are reported in 221

table 5 and the functions β(t) are plotted in Fig. 5. 222

Region α f
Lombardia 4.66 0.38
Emilia R. 40.13 0.61

Table 5. SEIRD(rm) parameters.

We observe from the values of Rt, reported in Fig.6, that Rt > 2 in both regions, 223

meaning that the epidemic is still spreading, although less than in the first days. 224

2.3 Epidemic Evolution forecasts 225

In this paragraph, we apply SEIRD(rm) to obtain information about the expected 226

evolution of Infected, Recovered and Dead until 20/10/2020. We have chosen an 227
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Lombardia Emilia Romagna
Fig 5. Infection Rate β(t) of SEIRD(rm) model.

Lombardia Emilia Romagna
Fig 6. Reproduction Rate Rt of SEIRD(rm) model.

April 3, 2020 9/15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2020. .https://doi.org/10.1101/2020.04.03.20049734doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.03.20049734
http://creativecommons.org/licenses/by-nc-nd/4.0/


extended period for prevision, but we are aware that the effectiveness of the model 228

decreases by getting away from the data. 229

In the following, we denote as [tp, ts] the prevision interval [28/3/2020, 20/10/2020]. 230

Applying SEIRD(rm), calibrated in section 2.2, to the whole prevision interval, we 231

obtain quite dramatic forecasts, as evident in table 6, where the Infected reach the 232

maximum value around July 31 2020 (Lombardia ) and June 4 2020 (Emilia Romagna), 233

and there is an impressive number of deaths. 234

region Peak Infected Peak Recovered Peak Dead
day Number (%) day Number (%) day Number (%)

Lombardia 149 1615056 (16.0%) 240 4823468 (47.8%) 240 2893530 (28.7%)
Emilia R. 102 1305746 (29.3%) 240 1750131 (39.2%) 240 2411924 (54.1%)

Table 6. SEIRD(rm) prediction of Infected, Recovered Dead maximum values over 240
days.

In Fig. 7, we can see, for example, the trend of Infected individuals in both regions. 235

Although the actual SEIRD(rm) model fits the observations quite accurately, we believe

Fig 7. Infect trends SEIRD(rm) model.

236

that it does not reproduce the effects that the restrictions recently imposed, produce in 237

the next future. Hence in the prediction interval [tp, ts] we change the model of the 238

infection rate function, in the hypothesis that it continues to decrease. 239

In particular we show the results obtained by applying in the prevision interval 240

[tp, ts] the SEIRD(rm) model with α and f as in table 5, and change β(t) with functions 241

βr (8), βc (7) and βe (9), with the value β0 set as β(tp), computed in the calibration 242

phase 2.2. The tk and ρk parameters for each formula are reported table 7.

function t0, t1, . . . ρ0, ρ1, . . .
βr [32, 59, 240] [0.9999, 0.999999]
βc [32, 46, 60, 240] [0.75, 0.55, 0.30, 0.20]
βe [32, 46, 60, 240] [0.05, 0.07, 0.09, 0.1]

Table 7. Prevision parameters of the infection rate in the interval [tp, ts .

243

2.3.1 Emilia Romagna Forecasts 244

From results in table 8, we observe that the piecewise exponential model (function βe) 245

gives the smallest number of Infected-Recovered-Dead individuals. 246

These results represent the best situation, where the restriction measures have the 247

strongest impact. The epidemic peak is expected on April 15th (Fig. 8). The piecewise 248
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Data Peak Infected Peak Recovered Peak Dead
β(t) day Number (%) day Number (%) day Number (%)
βr 92 76815 (1.7%) 240 169493 (3.8%) 240 233586 (5.2%)
βc 60 37143 (0.8%) 240 58418 (1.3 %) 240 80509 (1.8%)
βe 52 25581 (0.6%) 240 26298 (0.6%) 240 36242 (0.8%)

Table 8. SEIRD(rm) Emilia Romagna prediction, Infected, Recovered Dead maximum
values over 240 days

constant decreasing βc has a slightly different result, with the maximum Infections 249

reached on the first week of April 2020 (Fig. 10). The piecewise rational model βr 250

provides the most pessimistic prevision, with about 77000 infectious people and more 251

than 233000 dead (Fig. 9). Concerning the epidemic spread we can appreciate the 252

different behaviours of the basic reproduction function Rt in Fig. 11. The

Fig 8. Emilia R. forecast Infect-Recovered-Dead, piecewise exponential model.

Fig 9. Emilia Romagna forecast Infect-Recovered-Dead, piecewise rational model.

253

2.3.2 Lombardia forecasts 254

In table 9 we report the peak values of the Infected-Recovered-Dead populations 255

obtained with the proposed SEIRD(rm) model relative to the Lombardia region. Table 256

9 shows that again the piecewise exponential model predicts the peaks sooner than the 257

others and with the lowest number of Infected, Recovered and Dead (see figures Fig. 15, 258

14, 13). The behaviour of the epidemic spread is reported in Fig. 12. 259

April 3, 2020 11/15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2020. .https://doi.org/10.1101/2020.04.03.20049734doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.03.20049734
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 10. Emilia R. forecast Infect-Recovered-Dead, piecewise constant model.

βr βc βe
Fig 11. Emilia Romagna R t functions obtained with SEIRD(rm) and βr (8), βc (7)
and βe (9) in the prediction interval [tp, ts].

β(t) Peak Infected Peak Recovered Peak Dead
β day Number (%) day Number (%) day Number (%)
βr 67 47257 (0.5%) 240 139389 (1.4%) 240 83617 (0.8%)
βc 60 36668 (0.4%) 240 93388 (0.9%) 240 56022 (0.6%)
βe 47 33277 (0.3%) 240 54135 (0.5%) 240 32475 (0.3%)

Table 9. SEIRD(rm) Lombardia prediction, Infected, Recovered Dead maximum
values over 240 days

βr βc βe
Fig 12. Lombardia R t functions obtained with SEIRD(rm) and βr (8), βc (7) and βe
(9) in the prediction interval [tp, ts].
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Fig 13. Lombardia forecast Infect-Recovered-Dead, piecewise rational model βr.

Fig 14. Lombardia forecast Infect-Recovered-Dead, piecewise constant modelβc.

Fig 15. Lombardia forecast Infect-Recovered-Dead, piecewise exponential model βe.

April 3, 2020 13/15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 6, 2020. .https://doi.org/10.1101/2020.04.03.20049734doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.03.20049734
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusion 260

In this paper, we proposed a SEIRD model for the analysis of the COVID-19 outbreak 261

diffusion in Italy. In our new formulation, we have partitioned the integration time into 262

subintervals, where the infection rate coefficient has been adaptively modelled as a 263

decreasing function of the time. This model flexibly takes account of the successive 264

lockdown restrictions imposed by the Italian Government to contain the outbreak. The 265

results obtained by fitting the data of two Italian regions, Lombardia and 266

Emilia-Romagna, available since February 24th 2020, show a very good fit to the data, 267

with very small errors. 268

We have then used the model to forecast the epidemic spread for future times. We 269

have considered three different time-dependent functions to describe the infection rate 270

coefficient and shown the simulation results obtained with each of them in Lombardia 271

and Emilia-Romagna. 272

We highlight that only a few days passed since restrictions started in Italy and, 273

maybe in the next few days, the effects of such measures will be more evident, hopefully 274

causing a further decrease in the infection trend. In this case, the previsions shown in 275

this paper should be updated by introducing a new time intervals at which the 276

decreasing slope of βt should be easily changed by simply modifying one parameter. 277

The proposed model is flexible and can be quickly adapted to monitor various 278

infected areas with different restriction policies. Moreover, the parameters ρi, now fixed, 279

as in table (3), could be estimated in the future by an identification procedure. 280
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