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Abstract

As the Coronavirus contagion develops, it is increasingly important to understand the
dynamics of the disease. Its severity is best described by two parameters: its ability to
spread and its lethality. Here, we combine a mathematical model with a cohort analysis
approach to determine the range of case fatality rates (CFR). We use a logistical
function to describe the exponential growth and subsequent flattening of COVID-19
CFR that depends on three parameters: the final CFR (L), the CFR growth rate (k),
and the onset-to-death interval (t0). Using the logistic model with specific parameters
(L, k and t0), we calculate the number of deaths each day for each cohort. We build an
objective function that minimizes the root mean square error between the actual and
predicted values of cumulative deaths and run multiple simulations by altering the three
parameters. Using all of these values, we find out which set of parameters returns the
lowest error when compared to the number of actual deaths. We were able to predict
the CFR much closer to reality at all stages of the viral outbreak compared to
traditional methods. This model can be used far more effectively than current models
to estimate the CFR during an outbreak, allowing for better planning. The model can
also help us better understand the impact of individual interventions on the CFR. With
much better data collection and labeling, we should be able to improve our predictive
power even further.

Introduction 1

The Coronavirus Disease 2019, or COVID-19, is a new virus that causes respiratory 2

ailments [1]. Its origins can most likely be traced back to Wuhan, China, where it was 3

first reported in December of 2019. It is comparable to other zoonotic coronaviruses 4

such as SARS-CoV and MERS-CoV [2]. Although most earlier cases had been confined 5

to mainland China, notably Hubei Province, a considerable number of people have been 6

infected all over the world since, and the WHO characterized the outbreak as a 7

pandemic on March 11 [1]. As of March 17, over 179,000 have been confirmed to be 8

infected, with almost 7400 deaths [3]. 9

As the Coronavirus contagion develops, with its rapid spread inciting concerns over 10

the epidemic’s global impact, it is increasingly important to understand the dynamics of 11

the disease. Its severity is best described by two concepts: its ability to spread and its 12

lethality. Its transmissibility is best measured by R0 (the basic reproduction number), 13
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the average number of people to whom an infected person spreads the disease to [4]. Its 14

Case Fatality Rate (CFR) reveals the proportion of people who die from disease among 15

all individuals who contract the disease [5]. 16

Knowing the CFR is essential because it is the single most accurate metric to 17

appraise the threat posed by infectious diseases such as COVID-19 and predict its 18

prognosis. Although R0 is important to understand the rate of spread and 19

contagiousness, it does not describe the lethality of a disease. The case incidence would 20

describe the prevalence of the disease, but if it has a negligible CFR, the severity of the 21

disease is likely low. During the 2015 MERS outbreak in South Korea, there were only 22

186 cases, but the number of fatalities that resulted (38) was an adequate cause for 23

alarm [6]. Thus, the CFR, if calculated correctly, can help inform the appropriate 24

measures to control the epidemic. 25

The inaccuracies related to calculating the CFR during an ongoing disease outbreak 26

are a known problem. There are primarily three methods that have been discussed in 27

literature pertaining to the evaluation of the CFR. A simple statistical estimate is 28

evaluated by dividing the aggregate number of deaths over the aggregate confirmed 29

cases. This is problematic because it ignores the lag effect; people become infected on 30

different days and the mix of their onset-to-death intervals is not taken into account. 31

The second method calculates the CFR as the ratio of aggregate deaths to closed cases. 32

This ignores those who are still sick and only includes those who have had a definite 33

outcome (death or recovery). The third procedure [5] uses the Kaplan-Meier survival 34

procedure, jointly considering two the probability of two outcomes (death and recovery), 35

which is violated if mean duration from hospital admission to death is substantially 36

shorter than the mean duration from hospital admission to discharge. Here, we develop 37

a novel procedure that evaluates the risk of death among confirmed cases, explicitly 38

accounting for the time of the onset-to-death interval. This method, in principle, should 39

yield the best results. All these methods except the Kaplan-Meier survival procedure 40

will without converge in the future when the outbreak is no longer in-progress but 41

diverge during the outbreak. 42

To execute our proposed cohort-based method for calculating the CFR during an 43

ongoing outbreak, we explicitly model the death rates using a growth function to 44

simulate multiple conditions. This is done by specifically altering time from illness to 45

death and the slope of the growth of deaths. Our approach has multiple advantages over 46

the other methods. We can identify and compare the CFR of each cohort as well as its 47

evolution over time. Also, we can calculate the CFR earlier in the stage of disease 48

development, especially if we know the time from infection to time of death. Our 49

method can help increase the accuracy of calculated CFR for both COVID-19 and 50

future viral diseases. This analysis will assist in furthering efforts to halt the spread of 51

COVID-19 and drive an informed, comprehensive approach towards counteracting its 52

spread. The range of CFR possibilities and onset-to-death intervals will also raise 53

awareness among the public so that the correct measures are taken. 54

Methods 55

Data sources 56

We used publicly available datasets [7] on cases in Hubei province, China. Specifically, 57

we used the number of confirmed cases, new cases, recovery cases, and deaths from 58

January 22, 2020 to March 11, 2020. 59
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Cohort-based Method 60

Cohort analysis has been used in improving product retention [8] for many years. In 61

this piece, we apply this approach to describe the CFR over time for individual cohorts. 62

This would assist in keeping track of the CFR’s evolution and the impact of 63

interventions and other preventative/reactive measures. 64

A simulated Triangle chart best illustrates cohort CFRs. In Fig 1, the uppermost 65

rows depict older cohorts, and newer cohorts are represented by the lower rows. Each 66

column represents an additional day after they were infected (moving from left to right), 67

with the number in the box representing the cumulative CFR (cumulative deaths over 68

the number of people infected) within the cohort up to the day. Scanning each row from 69

left to right gives each individual cohort’s most recent CFR. Scanning down each 70

column yields the CFR for each cohort for exactly the same number of days of the 71

development of the infection. This can tell us about the effects of interventions if the 72

CFR abruptly rises or drops. For example, when Wuhan, China was placed under 73

lockdown, the CFR would have decreased in the following days. Scanning diagonally 74

reveals each cohort’s CFR on the same day. The intervention’s effects should also 75

manifest on the diagonal. Thus, with the right level of information, we would be able to 76

identify if the intervention measures are effective.

Fig 1. Simulated triangle chart that illustrates the cohort method. Each
cell contains the CFR for a given cohort on a given day. Each row represents a cohort
who experienced the onset of disease on the same day.

77

If the groups are homogenous and identical to each other in every way (have the 78

same mix), the cohorts would have the same CFR. This is because each cohort CFR 79

would change at the same rate, assuming they are the same age, have the similar 80

comorbidities (if any), etc. However, in reality this will likely not be the case since 81

groups will naturally have people with differing characteristics and their mix will affect 82

the CFR. In an idealistic sense, we would be able to have homogenous cohorts, filtered 83

by certain conditions (age group, smoking habits, etc.) and looking at the cohorts over 84

time, we would be able to establish a pattern, and obtain a reliable CFR [ [9], [10]]. 85

We would need to construct these triangle charts for groups that are as homogeneous 86

as possible to ensure that certain members do not skew the death rates. Age, high-risk 87

medical groups, and countries are the right granular segments to look at. Using these, 88

we can most accurately gauge the case fatality rate for each group. 89

Case Fatality Rate Model 90

The case fatality rate as a function of time since infection can be modeled in multiple 91

different ways [11]. We use a logistical function to describe the exponential growth, and 92

subsequent flattening, of COVID-19 case fatality rate; it is the simplest form that 93

satisfies the S-shaped growth [12]. This can be expressed as: 94

c(t) =
L

1 + exp−k(t−t0)
(1)

In this case, c(t) represents the CFR as a function of days since infection and 95

depends on three parameters: the final CFR (L), the CFR growth rate (k), and the 96

onset-to-death interval (t0). The final CFR is the case fatality rate when the epidemic 97

has run its course; a larger CFR would imply that a higher proportion of people 98

eventually die. The CFR growth rate is the slope of case fatality rate; a greater slope 99
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reveals a quicker progression to death. t0 is the inflection point and indicative of the 100

onset-to-death interval; a greater t0 reveals a longer progression to death. 101

Using the logistic model with specific parameters, we calculate the number of deaths 102

each day for each cohort by multiplying the case fatality rate by the number of cases (or 103

cohort size). We then create a triangle chart of the number of deaths for each cohort. 104

By adding along the diagonal, we are able to estimate the number of deaths from all 105

cohorts on any given day. Thus, given a set of values from L, K and t0 we are able to 106

estimate the aggregate number of deaths from all cohorts. 107

Finally, we build an objective function that minimizes the root mean square error 108

between the actual and predicted values of cumulative deaths and run multiple 109

simulations by altering the three parameters. Using all of these values, we find out 110

which set of parameters returns the lowest error when compared to the number of actual 111

deaths. Using this methodology, we determine the probable range of case fatality rates. 112

Results 113

Best fit 114

We ran 125,000 simulations, modifying the onset-to-death interval, the CFR, and the 115

CFR growth rate. The CFR was kept in the range of 0.5% to 20.0%; the slope was held 116

between 0·005 and 0·20; and the onset-to-death interval was simulated between 0.1 and 117

20·0. We picked these ranges after some modeling exploration that convinced us that 118

the solution would certainly be within these parameters. We calculated the coefficient 119

of determination (R2) for all of these simulations and identified the value for which the 120

fit was the best. We show results from two cases: one where we are relatively early in 121

the disease phase and another that is later. We studied these two cases to understand 122

how the progression of the outbreak affected the results. 123

Fig 2 compares the modeled and actual number of cumulative deaths for the best fit 124

for the late stage case. For this simulation, we used data from Jan 22 through March 11. 125

The model is able to fit the actual data extremely well with a very high R2 of 0·998, 126

indicating that the model and parameters chosen are strongly representative of the 127

reality. Specifically, the model closely matches the actual data where the CFR is 4·88%, 128

the number of days to the point of inflection is 3·35, and the slope is 0·088. 129

Fig 2. Comparison of modeled and actual number of deaths for the late
stage case. Used data from January 22 through March 11.

Fig 3 compares the modeled and actual number of cumulative deaths for the best fit 130

for the early stage case. For this simulation, we used data from January 22 through 131

February 8. Again, the model is able to fit the actual data extremely well with a very 132

high R2 of 0·986. In this case, CFR is 5·67 %, the number of days to the point of 133

inflection is 10·3, and the slope is 0·01. 134

Fig 3. Comparison of modeled and actual number of deaths for the early
stage case. Used data from January 22 through February 8.

The difference in decrease in case fatality rates could be due to a number of factors 135

including the tactics employed by the Chinese government. These two cases 136

demonstrate the strong predictive power of the cohort-based methodology. Thus, using 137

a combination of known cohort sizes and the number of deaths on each day, we are able 138

to predict mortality very well. 139
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Simulations 140

Fig 4 shows combinations of onset-to-death interval and case fatality rate under which 141

the R2 between the model and reality is ¿= 0·98 for the shorter time frame (up to Feb 142

8). This demonstrates that the range of possibilities for the case fatality rate is from 143

4·8% to 6·1%. Furthermore, the case fatality rate is most likely between 5·5% and 6% 144

due to its higher frequency. There is a wide range of values of onset to death that are 145

theoretically possible. However, if we know the onset to death to be 10%, then the only 146

possible case fatality rate that satisfies this is a case fatality rate of 5·7%. Therefore, a 147

very important implication of this work is that we can accurately ascertain the case 148

fatality rate given the onset-to-death interval. The practical implication is to calculate 149

this value accurately and evaluate then ascertain case fatality rate. 150

Fig 4. Onset-to-death interval and case fatality rate that yield the best fit.
The parameters where R2 ¿= 0·98 for the early stage case. Demonstrates that the range
of possibilities for the case fatality rate is from 4·8% to 6·1%.

Comparison of Methods 151

We compare three methods (Fig 5): the completed case fatality rate (deaths/ (deaths + 152

recovered)), the simple case fatality rate (deaths/confirmed), and the cohort-based 153

mortality defined in this work. The completed case fatality rate ignores people in the 154

midst of the infection and the simple method ignores the lag effect. The completed case 155

fatality rate is very high at the start of an outbreak as very few have recovered 156

compared to the amount of people who died. However, as the outbreak spreads, the 157

number of recoveries begins to outpace the number of deaths. As the number of 158

outstanding cases begin to reduce toward the end of an outbreak, this method converges 159

to the true case fatality rate. 160

Fig 5. Comparison of CFR calculated with 3 methods. The three methods:
completed CFR (deaths/ (deaths + recovered)); the simple CFR (deaths/confirmed);
the cohort-based CFR defined in this work. Onset-to-death interval and case fatality
rate that yield the best fit.

The simple case fatality rate begins low primarily because there are likely many 161

more confirmed cases than deaths. Over time, as the deaths begin to increase, this ratio 162

increases as well. As the number of new cases start to diminish, this ratio begins to 163

converge to the true case fatality rate. 164

Although they are both erroneous in the midst of an outbreak, they are accurate 165

when the outbreak is over: when everyone who has ever contracted it either recovers or 166

dies, and no one new contracts it. In this situation, the CFR calculated with the simple 167

method would equal the CFR calculated with the completed method. This is because 168

the only difference between the two is that the second method includes ongoing cases. 169

So, when the epidemic is over, there will be no ongoing cases and they will yield the 170

same CFR. 171

The best-fit cohort-based method produces a case fatality rate that lies between the 172

simple and completed methods. It produces far more realistic estimates at the earlier 173

stages than the other two methods. Additionally, towards the later stages, it begins to 174

converge much more quickly. Moreover, it appears that the other two methods are 175

beginning to converge towards the cohort-based method. 176
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Conclusion 177

We combined a mathematical model with a cohort analysis approach to determine the 178

range of CFR. We were able to predict the CFR much closer to reality at all stages of 179

the viral outbreak compared to traditional methods such as dividing deaths by all 180

closed cases and dividing deaths by the total number of cases. We also estimated that 181

the mortality in Hubei province declined with the passage of time very likely due to 182

government interventions. 183

Our analyses highlight the importance of collecting data such as the onset-to-death 184

interval which will help us narrow the range of possibilities of the CFR early in the 185

outbreak. Furthermore, using the triangle chart methodology and obtaining additional 186

granular data, we are able to understand the evolution of the outbreak and the effect of 187

interventions on the CFR. Moreover, even without the granular information of the 188

progression of the disease (such as cough or fever) at the individual level, we are able to 189

predict the CFR quite well. 190

However, numerous factors pose challenges to calculating the CFR using the cohort 191

method. Firstly, the date of infection is difficult to determine since the onset-to-death 192

interval is still uncertain. This is because there are numerous stages to contracting a 193

disease: initially contracting the disease, showing symptoms, reporting the symptoms, 194

being tested, getting results, going to a hospital and reaching an outcome. If different 195

agencies measure the onset differently, there can be high degrees of bias. Defining a 196

common terminology and language and measuring at all the stages is very important for 197

future progress in estimating mortality. 198

Additionally, the CFR varies significantly with factors such as age, smoking habits, 199

etc. If the proportions of differing-risk groups in each infected cohort varies, the CFR 200

will be mis-representative [ [9], [10]] 201

Finally, the risk of mortality varies by place. With any rapidly spreading contagion, 202

the samples chosen for determining the CFR are biased since the virus propagates so 203

quickly, affecting different people in different places. So far, the CFR is heavily skewed 204

by the numbers from Hubei Province, where the majority of cases originate. As the 205

virus moves to different places, the mortality will inherently be different, and must, 206

therefore, be representative of the threat posed so adequate precautions can be taken. 207

For example, the danger it poses to people in developing countries would be significantly 208

higher than the danger to people in developed countries, due to factors such as the 209

people’s immunity/health, sanitation, access to medical services, etc. Thus, to give an 210

accurate appraisal of the threat, there should be cohorts organized by place as well. 211

Even with all the above limitations, the cohort-based methodology is much better in 212

estimating the case fatality rates and should be used for the current outbreak of 213

COVID-19 in other regions as well as for future outbreaks. We should additionally 214

modify the cohort-based methodology to model recovered patients in addition to the 215

dead which would help us reach higher degrees of accuracy in calculating CFR. 216
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