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In this letter we analyze the real-time infection data of COVID-19 epidemic for nine nations. We
observe that till 27 March 2020, the number of infected individuals (I(t)) in USA, Spain, Germany,
Iran, France, and India are growing exponentially. On the contrary, I(t) curves for China and South

Korea exhibits power law behavior before flattening of the curve. The derivative İ(t), which is
also the daily infection count, is proportional to I(t) for the exponential regime, but not for the
power law regime. These valuable indicators could be used for epidemic forecast. We also argue
that long-term community transmission and/or the transmission by asymptomatic carriers traveling
long distances may be inducing the power law growth of the epidemic.

COVID-19 epidemic has caused major disruptions in
the world. As of 1 April 2020, it has infected nearly
a million humans, killed around 41000 individuals, and
has brought most of the world to a standstill in lock-
downs [1, 2]. A major economic recession is underway.
Hence, modeling and forecast of this epidemic is of crit-
ical importance. In this letter we analyze the publicly
available data set of the epidemic. The data show that
countries that have achieved flattening of the epidemic
curve exhibit power law growth before saturation. This
feature can be used as an important diagnostic for flat-
tening of the curve.

SARS-CoV-2 is an extremely contagious virus. In ad-
dition, many infected individuals show mild or no symp-
toms of infection. The epidemic has spread unwittingly
via these individuals, who are called asymptomatic car-
riers. In a study, Li et al. [3] segregated the documented
(reported) cases and undocumented cases (asymptomatic
carriers) of 375 cities of China, and showed that “undoc-
umented infections often experience mild, limited or no
symptoms and hence go unrecognized, and, depending
on their contagiousness and numbers, can expose a far
greater portion of the population to virus than would
otherwise occur.”

Epidemiologists have made various models for under-
standing and forecast of epidemic. Kermack and McK-
endrick [4] constructed one of the first models, called SIR
model. Here, the variables S and I describe respectively
the numbers of susceptible and infected individuals. The
variable R represents the removed individuals who have
either recovered or died. The SIR model has been gener-
alized to SEIR model that includes exposed individuals,
E, who are infected but not yet infectious [5, 6].

More complex models of epidemiology include fea-
tures of quarantine, lockdowns, stochasticity, interactions
among population pockets, etc. Note that quarantines
and lockdowns help in suppressing the maximum num-
ber of the infected individuals; such steps are critical
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for the epidemic management with limited public health
resources. The saturation or flattening of the curve in
China is attributed to strong lockdowns.

For COVID-19 epidemic, some of the new models have
managed to provide good forecasts that appears to match
with the data. Peng et al. [7] constructed a seven-variable
model (including quarantined and death variables) for
epidemic spread in China and predicted that the daily
count of exposed and infectious individuals will be neg-
ligible by 30 March 2020. Their predictions are in good
agreement with the present data. Wang et al. [8] em-
ployed another model and studied the effects of epidemic
on variour age groups. Using different models, Labadin
and Hong [9] and Shim et al. [10] studied the COVID-19
epidemic in Malaysia and South Korea respectively.

Kucharski et al. [11] and Roosa et al. [12] employed
epidemic models for making short-term predictions in
China. Chinazzi et al. [13] studied the effects of travel re-
strictions on the spread of COVID-19 in China and in the
world. Hellewell et al. [14] performed feasibility studies
of controlling COVID-19 epidemic by isolation. Mandal
et al. [15] constructed a India-specific model for devising
intervention strategies; they focussed on four metros—
Delhi, Mumbai, Kolkata, and Bengaluru—along with in-
tercity connectivity. To account for spatio-temporal be-
havour, Min et al. [16] simulated how a disease could
spread within a network with different mixing styles, and
showed that the average epidemic size and speed depend
critically on network parameters. Meyer and Held [17]
studied the effect of power-law movements of humans on
the disease spread. In addition, there are many epidemic
models that are inspired by population growth models [6].
For example, refer to Wu et al. [18].

In this letter we report our results based on a com-
prehensive data analysis of nine major countries–China,
USA, Italy, France, Spain, Germany, Iran, South Korea,
India–and the world. We chose the above nations because
of large numbers of positive cases here. Note however
that count for India is on a lower side. For our analysis,
we employed the real-time data available at worldOmeter
[1]. Similar data set is available at the Corona Resource
Center of John Hopkins University [2].

We digitized the data up to 27 March 2020 and stud-
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FIG. 1. (color online) For the COVID-19 epidemic, the semi-logy plots of total infected individuals (I(t)) vs. time (t) (red

curves) for USA, Spain, Germany, Iran, France, and India. We also plot İ(t) vs. t (blue curves). The black dotted curves
represent the best fits using the exponential functions.

ied the temporal evolution of the cumulative count of in-
fected individuals, which is denoted by I(t). We observed
that till March 27, I(t) for USA, France, Spain, Ger-
many, Iran, and India exhibit exponential growth, with
some nations having two different growth rates. How-
ever, China, South Korea, and Italy exhibit two different
scaling regimes: power-law growth after an exponential
growth. We present the former data in Figure 1 using
semi-logy plots with thin red curves, while the latter
in Figure 2 using log-log plots with same color conven-
tion. In these plots we represent time using dates with
month/date; the starting date for each plot is chosen

as t = 0. In Table I we present the best fit curves for
I(t), along with errors. We have computed the best fit
curves using Python’s polyfit function, and the error as
the relative error between the original data and the fitted
data. Figure 2 also contains I(t) for the world, in which
the red-colored part is dominated by I(t) from China,
and the unfilled region by the new cases from rest of the
world. Note that the apparent spike in I(t) for China and
the world on 12 February 2020 was due to the change in
the procedure adopted for counting the infections (from
laboratory to clinically confirmed cases).

For all the I(t) curves, we compute the derivatives İ(t)
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FIG. 2. (color online) For the COVID-19 epidemic, the log-log plots of total infected individuals (I(t)) vs. time (t) (red curves)

for the world, China, Italy, and South Korea. We also plot İ(t) vs. t (blue curves). The x-axis represents days in month/day
format. The black dotted curves are the best fit curves using the exponential functions and power laws. In the plot for the
world, the red region is dominated by I(t) from China, and the unfilled region by rest of the world.

TABLE I. The best fit curves along with their relative errors
for the COVID-19 data for various countries. The best fit
curves are shown in Figs. 1 and 2.

Fits along with estimated errors

Country Region 1 Region 2

USA 4.5e0.28t(±4.1%) 11e0.26t(±2.6%)

Spain 15e0.33t(±8.1%) 230e0.19t(±3.6%)

Germany 7.6e0.34t(±11%) 24e0.25t(±2.9%)

Iran 11e0.45t(±4.7%) 1200e0.1t(±2.3%)

France 10e0.36t(±10.3%) 110e0.18t(±6.5%)

India 17e0.16t(±7.1%) –

China 380e0.4t(±2.3%) 100t2(±17%)

Italy 56e0.35t(±1.7%) 0.03t4(±11%)

South Korea 15e0.67t(±2.2%) t3(±20%)

using Python’s gradient function and present them in
Figs. 1 and 2 using thick blue curves. These derivatives
represent the daily count of infected individuals.

Our analysis shows that I(t)’s for countries other than

China, South Korea, and Italy are going through an ex-
ponential growth. That is, I(t) ∼ exp(βt). In Fig. 1 we
illustrate the plots for some of the nations. Interestingly,
the I(t) plots for USA, Spain, Germany, Iran, and France
require two exponential functions for the fit. For exam-
ple, Germany’s data requires two functions, exp(0.34t)
and exp(0.25t), for the fit. Note that the constant β
varies for different countries, which is because β depends
on various factors such as immunity level of the popu-
lation, climate, local policy decisions (lockdown, social
distancing), etc.

Larger the β, larger the growth rate for the infection.
Also, the inverse of the constant β yields the growth time
scale. In fact, in the exponential phase, the number of
cases double in time T = (log 2)/β. For South Korea,
β = 0.67, hence, T ≈ 0.91 ≈ 1; that is, I(t) for South
Korea doubled every day in the early phase (18 Febru-
ary to 23 February). Also, note that for the exponential

regime, İ ≈ βI.

As illustrated in Fig. 2, the plot for China exhibits a
transition from initial exponential growth to power law
growth (t2), after with it moves towards saturation. In
between we encounter a narrow band of linear growth
(I(t) ∝ t). China has achieved flattening of the curve,
that is, very few new cases of infections have been de-
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tected recently. South Korea exhibits all the aforemen-
tioned stages, except the last one. For these plots, the
linear regime (I(t) ∝ t), though narrow in log scale yet
containing significant range of t, is very useful for the
forecast because it represents constant number of new
daily cases. For example, for South Korea, the linear
regime corresponds approximately to 1st March to 10th
March that agrees with the data at worldOmeter. Note
however that daily new cases show strong fluctuations
compared to I(t), which is more reliable for the forecast.
In addition, the plot for Italy exhibits a steep power law
(∼ t4), but no linear regime or saturation. Clearly, the
power law regime and the subsequent linear regime pro-
vide valuable indicators for an approach to the plateau.

For the power law function I(t) = Atn, we derive that

İ ∼ I1−1/n. Clearly, this slope is suppressed compared
to the exponential regime by a factor of I−1/n. Hence,
the growth rate for power law regime is relatively slower
than that for the exponential regime. From time t0, I(t)
doubles at t = 21/nt0. For South Korea, n = 3, hence for
t0 = 10, the count doubles at t = 10×21/3 ≈ 12.6 day, or
in the interval of 2.6 days. This is a slower doubling rate
than that in the exponential phase, which was one day.
Note however that the epidemic growth in the power law
regime is still very significant because I(t) is large. For

large n (e.g., 4 or 5), İ ∼ I, which is same as the for-
mula for the exponential growth. This is the reason why
Italy is still some distance away from flattening of the
curve. Also note that in the linear regime, İ ∼ constant,
implying a constant number new cases every day.

In Figs. 1 and 2 we plot İ(t) using thick blue curves. In

the exponential regimes, I(t) and İ(t) curves run almost

parallel to each other because İ ≈ βI. In contrast, in the
power law regimes of China and South Korea, İ(t) are far
from being parallel to I(t), confirming the suppression in

İ(t) mentioned in the previous paragraph. For Italy, İ

exhibits a marginal deviation from the form İ ∼ βI(t);
this is due to the fact that n = 4, which is large.

We can combine the above ingredients into a compre-
hensive picture for the epidemic forecast, specially for
flattening or saturating the I(t) curve that is prime ob-
jective for most affected nations. As illustrated in the
schematic diagram of Fig. 3(a), the I(t) curve follows four
stages: exp(βt), tn, t, and constant. The corresponding

İ(I) vs. I curve is shown in Fig. 3(b). It is an elementary
observation that the I(t) curve transitions from convex
(first stage) to concave form (next three stages). Such
simple observations of the data reveal insights into the
temporal evolution of the epidemic. For example, before
flattening of I(t), we look for flattening of the growth

rate İ(t), which is the third stage. We also remark that
some epidemic models generate I(t) profile of Fig. 3(a)
by several adjustable parameters. For example, Wu et al.
[18] consider a model with İ = rIp(1 − (I/κ)α), where
r, p, κ, α are free parameters. Thus, both models and
data analysis are useful for the epidemic forecast.

In epidemic study, it is customary to present I(t) in

I(t)
,A

(t)
· I(I

)

t
eβt

tn
t

βI

I1−1/n Const

Flat

I(t)

A(t)

S1 S3S2 S4
I

S1

S2 S3 S4

(a)

(b)

FIG. 3. (color online) For COVID-19 epidemic: (a)
Schematic plots for the count of infected individuals, I(t),
and the count of active cases, A(t), vs. time. (b) Schematic

plot of the derivative İ vs. I. S1, S2, S3, S4 represent four
stages of the epidemic: exponential growth in count (exp(βt)),
power law growth (tn), linear growth (t), and flat. In stages
S2, S3, S4, A(t) < I(t) due to recovery or death.

a semi-logy plot. Since Atn = A exp(n log t), the power
law regime translates to a logarithmic curve in a semi-
logy plot. Therefore, in a semi-logy plot, I(t) curve of
Fig. 3 would exhibit a linear curve and then successive
logarithmic curves with different prefactors (n). In Fig. 1,
the semi-logy plots for Germany and France may exhibit
such logarithmic region, but it is somewhat early to de-
tect. Thus, the evolution of such logarithmic curves can
valuable forecast.

Most of the COVID-19 infected individuals recover,
while some unfortunate ones die. Hence, the number of
active cases, A(t), is less than I(t) as illustrated by the
black curve in Fig. 3(a). We also remark that the above
features of Fig. 3 appear in all epidemic models, though
the power law regime is typically shrunk.

Simple analysis shows that the spread of earlier epi-
demics, such as SARS and EBOLA, did not exhibit
power-law growth phase [19, 20]. COVID-19 appears to
be a unique epidemic to exhibit a power law regime. We
believe that this feature is related to the super spread-
ing of this extremely infectious disease by asymptomatic
carriers. As is evident from the data, such carriers have
unwittingly traveled far and wide, and formed clusters of
infections in the new areas. Modeling such cases is diffi-
cult, but it may be reasonable to assume that İ ∼ Iζ with
ζ < 1, rather than İ ∼ βI (see next paragraph). Con-
sidering strong similarities between the rumor spreading
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and epidemics [6], the aforementioned long-distance trav-
els and power-law regimes may also play a major role in
rumor spreading. Note that the social media and internet
provide means for fast transmission of rumor.

The aforementioned power-law growth of epidemic ap-
pears to have similarities with turbulent diffusion or Tay-
lor diffusion, which is faster than molecular diffusion [21–
25]. In turbulent diffusion, the separation between two

particles, D(t), increases as t3/2, and Ḋ ∼ D1/3. The

relative velocity between the particles, Ḋ, increases with
time because larger eddies have larger speeds. This fea-
ture has a qualitative resemblance with aforementioned
long-distance travels by asymptotic carriers.

There is possibly another connection of COVID-19
epidemic with turbulence and critical phenomena. In
early stages, the epidemic spreads via contacts be-
tween infected and susceptible individuals. However,
once the epidemic has spread widely, then indirect
transmissions—contacts with infected surfaces, public
transport, air—begin to play an important role in the
epidemic growth. Such transmissions are referred to as
community spread or transmission. This is analogous to
interactions among clusters of molecules in phase transi-
tion, and those among large fluid vortices in turbulence.

Such interactions are responsible for dynamic scaling in
phase transition, and for the aforementioned turbulence
diffusion [21–27]. Super spreading of COVID-19 and the
power-law regime of I(t) may be connected to the above
phenomena. Note however that community spread could
also contribute in the exponential growth phase; the two
exponential regimes in Fig. 1 may be due to this reason.
These issues needs further exploration.

Now we summarize our findings. Using the COVID-19
real-time data we report that the count of infected indi-
viduals, I(t), in China and South Korea exhibit power-
law growth before flattening of the curve. We conjecture
that the power law growth of I(t) may be due to the epi-
demic transmission by asymptomatic carriers traveling
long distances, and due to community spread. In addi-
tion, İ(t) ∝ I(t) in the exponential growth regime, but
not in the power law regime. Thus, the COVID-19 epi-
demic data contains valuable insights that may help in
forecasting the epidemic spread.
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