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ABSTRACT 

 
Background: Population-level estimates of disease prevalence and control are needed to 
assess the effectiveness of prevention and treatment strategies. However, available data are 
often subject to differential missingness. Consider population-level HIV viral suppression: 
proportion of all HIV-positive persons who are suppressing viral replication. Individuals with 
measured HIV status, and, among HIV-positive individuals, those with measured viral 
suppression are likely to differ from those without such measurements. 
 
Methods: We discuss three sets of assumptions sufficient to identify population-level 
suppression over time in the intervention arm of the SEARCH Study (NCT01864603), a 
community randomized trial in rural Kenya and Uganda (2013-2017). Using data on nearly 
100,000 participants, we compare estimates from an unadjusted approach assuming data are 
missing-completely-at-random (MCAR); stratification on age group, sex, and community; and, 
targeted maximum likelihood estimation (TMLE) with Super Learner to adjust for baseline and 
time-updated predictors of measurement.  
 
Results: Despite high annual coverage of testing, estimates of population-level viral suppression 
varied by identification assumption. Unadjusted estimates were most optimistic: 50% of HIV-
positive persons suppressed at baseline, 80% at Year 1, 85% at Year 2, and 85% at Year 3. 
Stratification on baseline predictors yielded slightly lower estimates, and full adjustment reduced 
estimates further: 42% of HIV-positive persons suppressed at baseline, 71% at Year 1, 76% at 
Year 2, and 79% at Year 3.   
 
Conclusions: Estimation of population-level disease burden and treatment coverage require 
appropriate adjustment for missingness. Even in “Big Data” settings, estimates relying on the 
MCAR assumption or baseline stratification should be interpreted with caution. 
 

Key words: causal inference; HIV care cascade; HIV viral suppression; machine learning; 
missing data; SEARCH Study; Super Learner; TMLE 
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INTRODUCTION:  

 
Accurate population-level estimates of disease prevalence and treatment coverage are 

needed to quantify disease burden and evaluate the success of programs for epidemic control. 

The data available to inform such estimates, however, are often susceptible to differential 

measurement. In other words, the missing-completely-at-random (MCAR) assumption rarely, if 

ever, holds.1–4 The field of HIV provides an illustrative example. Consider the UNAIDS 90-90-90 

target: 90% of all HIV-positive persons should know their status; 90% of those who know their 

status should be receiving antiretroviral therapy (ART); and 90% of those receiving ART should 

have suppressed HIV viral replication.5 Multiplying these proportions together yields an overall 

target, referred to here as “population-level suppression” - 73% of all HIV-positive persons 

should be suppressing HIV viral replication (Appendix). This target reflects the HIV care 

“cascade” from diagnosis, through treatment initiation and retention, to viral suppression. 

While population-level suppression is widely used in assessing HIV care strategies, two 

recent systematic reviews noted the variability in both data quality and statistical approaches 

used for assessment.6,7 In particular, Granich et al. remarked on the challenges posed by 

incomplete data and inconsistent methodology, while Sabapathy et al. proposed a template to 

standardize data collection and evaluation. In this manuscript, we provide an in-depth 
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demonstration of the methods used to estimate population-level suppression in the SEARCH 

Study, a cluster randomized trial in rural Kenya and Uganda (NCT01864603).8,9 We approach 

the missing data problem with a causal framework to define target parameters with 

counterfactuals, state identifiability assumptions sufficient to translate these targets into 

statistical quantities, and estimate the resulting statistical parameters.1–4,10–14 We refer the 

reader to companion papers for details on the trial.8,9 

 

METHODS: 

In general, the total number of HIV-positive persons in a population is unknown, and 

individuals for whom HIV status is known are not necessarily representative of the general 

population. If testing (e.g. health-seeking behavior) is related to HIV status, unadjusted 

estimates of prevalence (i.e. the proportion of those with HIV among those with known status) 

are likely to be biased, even in the context of community-wide testing, as was implemented in 

recent Universal-Test-and-Treat trials.9,15–18  

Likewise, measurement of plasma HIV RNA levels (viral loads) among HIV-positive 

individuals is generally incomplete and often depends on factors associated with viral 

suppression status. For example, if viral loads are only measured at HIV clinic visits, then viral 
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suppression among individuals with known status will overestimate suppression among all HIV-

positive persons, including newly diagnosed individuals who have not yet linked to care and 

previously diagnosed individuals who have never linked or have dropped-out of care. These 

familiar missing data challenges can be illustrated with a directed acyclic graph or another 

causal modeling approach (Figure 1).14,19–24 

Overcoming these challenges requires knowledge of the data generating process. 

Consider the 16 communities in the intervention arm of the SEARCH Study. After a door-to-door 

census, community-wide testing was conducted annually through multidisease health fairs, 

followed by out-of-facility testing for residents who did not attend the fair.25,26 Participants were 

linked over successive years with a fingerprint biometric. Prior diagnosis of HIV and ART use 

were ascertained through linkage to clinic records.8,27 A re-census was conducted three years 

after follow-up to determine interim deaths, out-migrations, and in-migrations.9  

With this measurement scheme in mind, we describe the methods used in Petersen et 

al.8 and Havlir et al.9 to characterize viral suppression in the intervention arm at the time of 

community-wide testing: study baseline t=0, and annually thereafter t={1,2,3}. These cross-

sectional analyses provide snapshots of population-level suppression among an open cohort of 

adult (³15years) residents (allowing for entry due to age and in-migration, and exit due to death 
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or outmigration). We note estimating viral suppression among a closed cohort of baseline HIV-

positive residents is a distinct goal, resulting in a different causal parameter, identifiability 

assumption, and estimation approach.8,9   

Causal parameters 

Let 𝐻𝐼𝑉$∗ be an indicator that an individual is HIV-positive at time t, irrespective of 

whether serostatus is measured. Likewise, let 𝑆𝑢𝑝𝑝$∗ be a possibly unmeasured indicator of HIV 

viral suppression (<500cps/mL) at time t. Population-level suppression is the conditional 

probability of viral suppression given HIV-positive status: ℙ(𝑆𝑢𝑝𝑝$∗ = 1	|	𝐻𝐼𝑉$∗ = 1), or 

equivalently, the joint probability of being HIV-positive with suppression, divided by the 

probability of being HIV-positive (i.e. HIV prevalence): ℙ(𝑆𝑢𝑝𝑝$
∗ = 1	, 𝐻𝐼𝑉$∗ = 1)	

ℙ(𝐻𝐼𝑉$∗ = 1)	1 .  

Ideally, anyone not already known to be HIV-positive (i.e. previously HIV-negative or 

HIV-unknown) would be tested at time t. Of course, this is never the case; further, missingness 

inherently depends on underlying HIV status - the status of an HIV-negative individual who does 

not test at t is unknown, whereas the status of an HIV-positive individual not seen at t might be 

known from prior testing. The problem is intensified after multiple rounds of community-wide 

testing, which provide multiple opportunities for prevalent HIV-positive persons to be diagnosed. 

To avoid this inherent dependence, we define 𝑇𝑠𝑡𝐻𝐼𝑉$ as an indicator that an individual was 
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seen at community-wide testing and had “known” HIV status at time t - due to a negative test 

result at time t, or a positive result at or before time t. We define observed HIV status as 𝐻𝐼𝑉$ =

𝑇𝑠𝑡𝐻𝐼𝑉$ × 𝐻𝐼𝑉$∗.  

As with HIV testing, viral load measurement is incomplete; HIV-positive persons on 

whom a viral load is measured may differ systematically from HIV-positive persons who are 

missing a viral load. Define 𝑇𝑠𝑡𝑉𝐿$ as an indicator of viral load measurement at time t, and 

define observed viral suppression as 𝑆𝑢𝑝𝑝$ = 𝑇𝑠𝑡𝑉𝐿$ × 𝑆𝑢𝑝𝑝$∗.  

 

Three sets of identifiability assumptions 

In the above, population-level suppression was expressed in terms of underlying 

indicators of HIV seropositivity and viral suppression: ℙ(𝑆𝑢𝑝𝑝$
∗ = 1	, 𝐻𝐼𝑉$∗ = 1)	

ℙ(𝐻𝐼𝑉$∗ = 1)	1 . 

We now present three sets of identifiability assumptions to write the numerator and denominator 

in this expression as parameters of the observed data distribution. 

Unadjusted:  

Suppose we are willing to assume that HIV prevalence among those seen at time t is 

representative of HIV prevalence among those not seen, and that viral suppression among HIV-

positive persons with viral load measurement at time t is representative of suppression among 
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HIV-positive persons without viral load measurement at that time. More formally, we are making 

the following randomization assumptions as applied to missing data:1–4,10–14 𝐻𝐼𝑉$∗ ⊥ 𝑇𝑠𝑡𝐻𝐼𝑉$ and 

𝑆𝑢𝑝𝑝$∗ ⊥ 𝑇𝑠𝑡𝑉𝐿$|𝐻𝐼𝑉$ = 1. If these assumptions hold, the numerator of population-level 

suppression is identified as  

ℙ(𝑆𝑢𝑝𝑝$∗ = 1,𝐻𝐼𝑉$∗ = 1) = ℙ(𝑆𝑢𝑝𝑝$ = 1|𝑇𝑠𝑡𝑉𝐿$ = 1,𝐻𝐼𝑉$ = 1) × ℙ(𝐻𝐼𝑉$ = 1|𝑇𝑠𝑡𝐻𝐼𝑉$ = 1),  

and denominator as ℙ(𝐻𝐼𝑉$∗ = 1) = ℙ(𝐻𝐼𝑉$ = 1|𝑇𝑠𝑡𝐻𝐼𝑉$ = 1).27 Taking the ratio of these yields 

the unadjusted statistical parameter:  

ℙ(𝑆𝑢𝑝𝑝$ = 1|𝑇𝑠𝑡𝑉𝐿$ = 1,𝐻𝐼𝑉$ = 1).                                (Eq1) 

Baseline adjustment:  

We can weaken the above assumptions by conditioning on baseline covariates. 

Specifically, let B denote mutually exclusive and exhaustive strata defined by age group, sex, 

and community of residence. Now suppose within each strata b, HIV prevalence among those 

seen at t is representative of prevalence among those not seen, and within each strata b, 

suppression among HIV-positive persons with viral loads measured at t is representative of 

suppression among HIV-positive persons without measured viral loads. More formally, we 

assume 𝐻𝐼𝑉$∗ ⊥ 𝑇𝑠𝑡𝐻𝐼𝑉$|𝐵 and 𝑆𝑢𝑝𝑝$∗ ⊥ 𝑇𝑠𝑡𝑉𝐿$|𝐻𝐼𝑉$ = 1, 𝐵. 
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Under these assumptions on missingness, we obtain the G-computation identifiability 

result,28	corresponding to a hypothetical, dynamic intervention to first ensure knowledge of HIV 

status and then to ensure measurement of viral loads among HIV-positive persons.29–31 

Specifically, the proportion of the population that is HIV-positive and suppressed is identified as 

ℙ(𝑆𝑢𝑝𝑝$∗ = 1,𝐻𝐼𝑉$∗ = 1) = ∑ ℙ(𝑆𝑢𝑝𝑝$ = 1|𝑇𝑠𝑡𝑉𝐿$ = 1,𝐻𝐼𝑉$ = 1, 𝐵 = 𝑏) ×
ℙ(𝐻𝐼𝑉$ = 1|𝑇𝑠𝑡𝐻𝐼𝑉$ = 1, 𝐵 = 𝑏) × ℙ(𝐵 = 𝑏)	;      (Eq2) 

In words, this is the strata-specific probability of viral suppression, given measurement and HIV-

positive status; multiplied by the strata-specific probability of being HIV-positive, given 

measurement; and then standardized with respect to the distribution of strata. Identification of 

the denominator, population-level prevalence, follows from the above:  

ℙ(𝐻𝐼𝑉$∗ = 1) = ∑ ℙ(𝐻𝐼𝑉$ = 1|𝑇𝑠𝑡𝐻𝐼𝑉$ = 1, 𝐵 = 𝑏) × ℙ(𝐵 = 𝑏);              (Eq3) 

By taking the ratio of the numerator (Eq2) to the denominator (Eq3), we obtain a baseline-

adjusted statistical parameter corresponding to population-level suppression under the above 

assumptions. 

For the conditioning sets to be well-defined, we also require the positivity 

assumption.11,32 Irrespective of age, sex, and community, there must be a positive probability of 

being seen with known HIV status ℙ(𝑇𝑠𝑡𝐻𝐼𝑉$ = 1	|𝐵) > 0, and for every strata in which some 
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proportion of HIV-positive persons are seen, there must be a positive probability of viral load 

measurement, regardless of the stratification factors: ℙ(𝑇𝑠𝑡𝑉𝐿$ = 1	|𝐻𝐼𝑉$ = 1, 𝐵) > 0. 

Time-varying adjustment:  

While stratifying on certain baseline characteristics weakens our assumptions on 

missingness, there may be many other variables potentially impacting the probability of being 

tested, underlying HIV status, and viral suppression among HIV-positive persons. In particular, 

ART use is a key determinant of viral suppression and may also be predictive of viral load 

measurement.  

Define 𝐴𝑅𝑇$ as an indicator of ART initiation prior to time t, and let 𝑋$ denote the 

remaining observed variables that are potentially predictive of both viral suppression and 

measurement: the full set of baseline demographics (e.g. age, sex, marital status, education, 

occupation, alcohol use, mobility, wealth index, and community) and prior HIV testing and 

suppression. While viral suppression without ART is possible, the UNAIDS target is focused on 

ART-induced suppression.5 Therefore, we set 𝑆𝑢𝑝𝑝$∗ to zero for persons not on ART - 

acknowledging that incomplete capture of ART use will lead to underestimation of suppression. 

For HIV-positive persons who have initiated ART, we assume that conditional on the baseline 

and time-updated covariates 𝑋$, suppression among those with a viral load measured during 
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annual testing is representative of suppression among those with a missing viral load. More 

formally, we assume 𝑆𝑢𝑝𝑝$∗ ⊥ 𝑇𝑠𝑡𝑉𝐿$|	𝐴𝑅𝑇$ = 1, 𝑋$. 

We also require the positivity assumption; all HIV-positive individuals who have initiated 

ART have a positive probability of having their viral load measured, regardless of their baseline 

and time-updated covariates: ℙ(𝑇𝑠𝑡𝑉𝐿$ = 1	|𝐴𝑅𝑇$ = 1, 𝑋$) > 0 a.e.. Under these assumptions, 

we have the G-computation identifiability result corresponding to a hypothetical intervention to 

ensure viral load measurement among ART initiators:28 

ℙ(𝑆𝑢𝑝𝑝$∗ = 1, 𝐻𝐼𝑉$∗ = 1)

= 	ℙ(𝐴𝑅𝑇$ = 1)

×A[ℙ(𝑆𝑢𝑝𝑝$ = 1|𝑇𝑠𝑡𝑉𝐿$ = 1, 𝐴𝑅𝑇$ = 1, 𝑋$ = 𝑥$) × ℙ(𝑋$ = 𝑥$|𝐴𝑅𝑇$ = 1)]
EF

 

(Eq4) 

where the summation generalizes to an integral for continuous covariates. In words, this is the 

proportion of individuals who have started ART (and are, by implication, HIV-positive) in the total 

population (including both HIV-positive and HIV-negative persons) multiplied by the adjusted 

probability of being suppressed and measured, given prior ART initiation. 

For the denominator of HIV prevalence, we also consider an expanded adjustment set 

𝐿$, consisting of all baseline demographics and prior HIV testing (e.g. number and location). For 

the subgroup without a prior HIV diagnosis, we assume that conditional on 𝐿$, HIV prevalence 

among those tested at t is representative of HIV prevalence among those not tested, or more 
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formally, 𝐻𝐼𝑉$∗ ⊥ 𝑇𝑠𝑡𝐻𝐼𝑉$	|	𝐿$, 𝐻𝐼𝑉$GH = 0. We further assume positivity; previously undiagnosed 

persons have some chance of being tested regardless of their 𝐿$ values: 

ℙ(𝑇𝑠𝑡𝐻𝐼𝑉$ = 1	|𝐻𝐼𝑉$GH = 0, 𝐿$) > 0 a.e.. Under these assumptions, we have the G-computation 

identifiability result corresponding to a hypothetical intervention to ensure HIV status is known:28 

ℙ(𝐻𝐼𝑉$∗ = 1) = ℙ(𝐻𝐼𝑉$GH = 1)

+ ℙ(𝐻𝐼𝑉$GH = 0)A Jℙ
(𝐻𝐼𝑉$ = 1	|	𝑇𝑠𝑡𝐻𝐼𝑉$ = 1, 𝐿$ = 𝑙$, 	𝐻𝐼𝑉$GH = 0) ×

ℙ(𝐿$ = 𝑙$|𝐻𝐼𝑉$GH = 0) L
MF

 

(Eq5) 

where the summation generalizes to an integral for continuous covariates. In words, this is the 

proportion of the population previously known to be HIV-positive plus the adjusted proportion of 

the population newly known to be HIV-positive. 

 Taking the ratio of the numerator (Eq4) to the denominator (Eq5) yields a fully-adjusted 

statistical parameter for population-level suppression under the above assumptions. 

Estimation approaches 

The unadjusted parameter (Eq1) can be estimated with the empirical proportion of the 

population with measured viral suppression. The baseline-adjusted parameter (Eq2÷Eq3) can 

also be estimated with empirical proportions. Specifically, we would generate covariate strata-

specific estimates by taking empirical means, and then combine by standardizing across strata. 
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A similar approach was used in the PopART Universal-Test-and-Treat trial with stratification 

factors including sex, age group and community.17,33,34 This approach corresponds to G-

computation when fully-saturated regressions are used to estimate the conditional probability of 

the outcome, given measurement and the adjustment set (i.e. the “outcome regression”).28,35,36 It 

is further equivalent to inverse-weighting when fully-saturated regressions are used to estimate 

the conditional probability of measurement, given the adjustment set (i.e. the “propensity 

score”).37–39 

When the adjustment set is higher dimensional, such as for our fully-adjusted parameter 

(Eq4÷Eq5), alternative approaches are needed to smooth over values of the covariates with 

weak support. We could, for example, use logistic regression with two-way interactions to 

estimate the propensity scores for inverse-weighting. This approach was used in a sensitivity 

analysis in the Ya Tsie Universal-Test-and-Treat trial.18,40 

Another approach is targeted maximum likelihood estimation (TMLE), which offers 

efficiency gains over inverse-weighting and allows for flexible adjustment for a large set of 

covariates through machine learning.24,41 TMLE combines estimates of outcome regression with 

an estimate of the propensity score. (We refer the reader to 42 and 43 for an introduction.) TMLE 

is double robust - it is consistent if either the outcome regression is consistently estimated or the 
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propensity score is consistently estimated. TMLE is also a substitution estimator, potentially 

improving robustness under strong confounding or rare outcomes.44–47 

Implementation 

In SEARCH, the primary approach used TMLE to estimate the fully-adjusted parameter 

(Eq4÷Eq5). Within TMLE, Super Learner was implemented to estimate the outcome regressions 

and propensity scores.48 Super Learner is an ensemble, machine learning method using cross-

validation to build the optimal combination of predictions from a library of candidate algorithms. 

We implemented TMLE fully stratified on community, allowing the outcome regressions and 

propensity scores to vary by community. 

For comparison, we also present the use of empirical proportions to estimate the 

unadjusted parameter (Eq1), and the baseline-adjusted parameters (Eq2÷Eq3) controlling for 

sex, age group (15-19 years, 20-29 years, 30-39 years, 40-49 years, 50-59 years, and 60+ 

years), and community. 

Statistical inference was obtained with influence curve standard errors, treating the 

community as the unit of independence. Analyses were conducted in R_v.3.6.1 with the 

ltmle_v1.1-0 and SuperLearner_v2.0-25 packages.49–51  

RESULTS 
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The baseline characteristics of the study participants have been described 

elsewhere.8,9,25 In brief, approximately one-third of the 79,818 residents enumerated in the 

baseline census were from each study region, and nearly half of participants were aged 15-30 

years; men comprised 45% (Supplementary Table 1). HIV status was determined on 89% 

(71,402) of residents at baseline (Table 1). After baseline, knowledge of HIV serostatus 

remained high with 77% of residents (69,175/90,047) seen at population-level testing at Year 1, 

75% (71,577/95,599) at Year 2, and 81% (80,390/99,186) at Year 3. There were no obvious 

demographic differences between the enumerated population and those with known HIV 

serostatus (Supplementary Table 1).  

Viral loads were measured for 76% of baseline HIV-positive residents (Table 1). Missing 

viral loads were more common at baseline due to early assay failures.26 Despite ~95% coverage 

of viral load measurement for the remaining years, baseline and time-varying characteristics 

differed for HIV-positive persons with measured versus missed HIV RNA levels (Table 2). In 

particular, HIV-positive women were more likely to have their viral load measured than HIV-

positive men. After baseline, adolescents (15-24years) were more likely to be missed than older 

adults (25+years). Viral load measurement also differed notably by the time-varying 

characteristics; HIV-positive persons who were previously aware of their status, had evidence of 
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starting ART, or had a history of suppressing viral replication were more likely to have their viral 

load measured than their counterparts.  

Estimates of population-level suppression did vary meaningfully by identifiability 

assumption (Figure 2). At baseline, the unadjusted approach suggested that half of all HIV-

positive residents had suppressed viral replication (50%; 95%CI: 46-54%). Stratifying on age 

group, sex, and community slightly reduced the estimate to 49% (95%CI: 45-54%), and the 

most conservative estimate of 42% (95%CI: 38-46%) was obtained after adjusting for the full set 

of baseline and time-varying characteristics.  

Deviations between estimates of population-level suppression were pronounced in 

subsequent years (Figure 2). The unadjusted approach suggested that 80% (95%CI: 78-82%) 

of all HIV-positive residents were suppressed at Year 1, 85% (95%CI: 83-86%) at Year 2, and 

85% (95%CI: 83-87%) at Year 3. Estimates adjusted for baseline covariate-strata were similar: 

79% (95%CI: 77-81%) at Year 1, 84% (95%CI: 82-86%) at Year 2, and 84% (95%CI: 83-86%) 

at Year 3. Fully adjusted estimates were the most conservative: 71% (95%CI: 69-73%) at Year 

1, 76% (95%CI: 74-78%) at Year 2, and 79% (95%CI: 77-81%) at Year 3.  

 

DISCUSSION: 
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In an open cohort of nearly 100,000 residents in rural Kenya and Uganda, we compared 

three approaches for estimating population-level HIV viral suppression: (i) an unadjusted 

approach, the empirical proportion among those measured; (ii) stratification on age group, sex, 

and community; and (iii) TMLE with Super Learner to adjust for the full set of baseline and time-

varying covariates. Despite high coverage of out-of-facility testing, estimates diverged by 

identifiability assumptions. The unadjusted approach consistently yielded the highest estimates; 

the fully-adjusted approach consistently yielded the lowest estimates.  

In the SEARCH study, HIV serostatus and HIV RNA viral levels were obtained through 

multidisease testing at health fairs with follow-up for non-participants.25 Unlike clinic-based 

ascertainment, this approach reaches HIV-positive persons who are in-care as well as newly 

diagnosed and previously diagnosed but out-of-care.9,16–18 As a result, the MCAR assumption 

may seem reasonable.1–4 However, deviations between the unadjusted estimates and adjusted 

ones suggest there were meaningful differences in the population measured and population 

missed with respect to, among other factors, prior diagnosis, ART use, and viral suppression.  

Both adjusted approaches were built on the missing-at-random (MAR) assumption: 

knowledge of HIV status and viral load measurement were only a function of observed 

characteristics.1–4 When controlling for baseline covariates, we fully stratified on sex, age group, 
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and community; as a result, this was equivalent to a fully non-parametric approach for the 

outcome regression in G-computation and to a fully non-parametric approach for the propensity 

score in inverse-weighting. Beyond age, sex, and community, there were, however, additional 

differences between those with measured versus missing viral loads, including differences in 

post-baseline variables; specifically, persons without prior diagnosis, ART initiation, or viral 

suppression were less likely to have their viral load measured. 

 Therefore, our primary approach in SEARCH was to weaken the identifiability 

assumptions by adjusting for a larger set of baseline and time-updated covariates. TMLE with 

Super Learner was used to flexibly estimate the conditional probability of HIV seropositivity, 

conditional probability of suppression, and conditional probabilities of measurement.8,9,27 

In this example, the identification choice has implications for policy-making and targeting 

resources. Both the unadjusted and baseline-adjusted approaches suggested the UNAIDS 90-

90-90 target (73%-suppression) was surpassed within one year of the intervention and the 

UNAIDS 95-95-95 target (86%-suppression) was nearly achieved by the trial’s close.5 In 

contrast, the estimates controlling for time-updated covariates indicated the 90-90-90 target was 

achieved after two years, but there still was a substantial gap to the 95-95-95 target. 
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In summary, estimates of population-level HIV viral suppression continue to be the 

benchmark in assessing programmatic success in epidemic control. In four cross-sectional 

analyses of 79,818-99,186 participants in the intervention arm of SEARCH, we demonstrated 

the impact of assumptions on incomplete measurement that can occur even in “Big Data” 

settings. We recommend adjustment for a large set of baseline and time-varying covariates that 

potentially influence both measurement and underlying status; TMLE with Super Learner is one 

approach to performing such adjustments. 

 

 

Appendix: UNAIDS 90-90-90 target and population-level suppression 

 For the moment assume complete measurement, and let 𝐻𝐼𝑉$ be an indicator of HIV-

positive serostatus at time t; 𝐷𝑥$ be an indicator of having an HIV diagnosis by time t; 𝐴𝑅𝑇$ be 

an indicator of antiretroviral therapy (ART) use at time t, and 𝑆𝑢𝑝𝑝$ be an indicator of 

suppressed viral replication at time t. The UNAIDS 90-90-90 targets are a series of proportions 

or conditional probabilities:5  

% of all HIV-positives who are diagnosed (first-90):  

ℙ(𝐷𝑥$ = 1|𝐻𝐼𝑉$ = 1) =
ℙ(𝐷𝑥$ = 1,𝐻𝐼𝑉$ = 1)

ℙ(𝐻𝐼𝑉$ = 1)
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% of diagnosed who are on ART (second-90): 

ℙ(𝐴𝑅𝑇$ = 1|	𝐷𝑥$ = 1,𝐻𝐼𝑉$ = 1) =
ℙ(𝐴𝑅𝑇$ = 1, 𝐷𝑥$ = 1,𝐻𝐼𝑉$ = 1)	

ℙ(	𝐷𝑥$ = 1,𝐻𝐼𝑉$ = 1)	
 

% on ART who are currently suppressed (third-90): 

ℙ(𝑆𝑢𝑝𝑝$ = 1|𝐴𝑅𝑇$ = 1, 𝐷𝑥$ = 1,𝐻𝐼𝑉$ = 1) =
ℙ(𝑆𝑢𝑝𝑝$ = 1, 𝐴𝑅𝑇$ = 1, 𝐷𝑥$ = 1,𝐻𝐼𝑉$ = 1)

ℙ(𝐴𝑅𝑇$ = 1, 𝐷𝑥$ = 1,𝐻𝐼𝑉$ = 1)
 

Multiplying together the three “90s” yields the proportion of all HIV-positive persons who are 

currently suppressed (i.e. population-level suppression):  

ℙ(𝑆𝑢𝑝𝑝$ = 1|	𝐻𝐼𝑉$ = 1) =
ℙ(𝑆𝑢𝑝𝑝$ = 1, 𝐴𝑅𝑇$ = 1, 𝐷𝑥$ = 1,𝐻𝐼𝑉$ = 1)

ℙ(𝐻𝐼𝑉$ = 1)
 

Since each numerator and denominator is a population-level proportion, we can equivalently 

express the targets as follows: first-90=(number previously diagnosed)/(number HIV-positive), 

second-90=(number on ART)/(number previously diagnosed), third-90=(number virally 

suppressed)/(number on ART), and population-level suppression=(number virally 

suppressed)/(number HIV-positive).  

Therefore, one could directly estimate population-level suppression, as we demonstrated 

here, or instead estimate each 90-90-90 target and multiply. These two approaches should yield 

identical results, as demonstrated in our previous work.8,9,27 However, deviations between the 

direct estimate and the multiplied-one can occur when making the missing-completely-at-

random (MCAR) assumption.1–4 Specifically, under MCAR, the denominators of the third-90 and 
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population-level suppression become conditional on having a viral load measured, which is 

almost always a subset of the population on ART and a subset of the population who is HIV-

positive. 
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Table 1: Number and coverage of residents contributing to unadjusted estimates of population-level HIV 

viral suppression at the time of annual testing. Each column is a subset of the former.  Changes in annual 

population size are due to additions from in-migrants and aging-in, and due to subtractions from death 

and outmigration. Years refer to time since study baseline, which varied by community (Year 0 ranging 

from June 2013 to June 2014). 

 
 Resident 

(≥15yrs) 
HIV serostatus 
known  

HIV-positive 
serostatus  

Viral load 
measured 

Viral replication 
suppressed 

Year 0 79818 71402 7009 5332 2659 
Year 1 90047 69175 6526 6137 4906 
Year 2 95599 71577 6687 6276 5316 
Year 3 99186 80390 6991 6738 5737 
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Table 2: Select baseline and time-varying characteristics of HIV-positive residents by year and by viral 

load measurement. Metrics in N (%). 

 

 Total Female Male 15-24 
years 

25+ 
years 

Prior 
diagnosisa 

Prior 
ART useb 

Prior 
Supp.c 

Year 0         
Tested 5332 3599 (67) 1733 (33) 687 (13) 4645 (87) 3856 (72) 3149 (59) 

 

Missed 1677 1060 (63) 617 (37) 226 (13) 1451 (87) 1081 (64) 847 (51) 
 

Year 1         
Tested 6137 4100 (67) 2037 (33) 729 (12) 5408 (88) 5917 (96) 5591 (91) 2276 (37) 
Missed 389 238 (61) 151 (39) 54 (14) 335 (86) 310 (80) 225 (58) 92 (24) 
Year 2         
Tested 6276 4168 (66) 2108 (34) 782 (12) 5494 (88) 6153 (98) 5970 (95) 4637 (74) 
Missed 411 247 (60) 164 (40) 89 (22) 322 (78) 333 (81) 230 (56) 141 (34) 
Year 3         
Tested 6738 4603 (68) 2135 (32) 1023 (15) 5715 (85) 6480 (96) 6376 (95) 5108 (76) 
Missed 253 135 (53) 118 (47) 54 (21) 199 (79) 222 (88) 173 (68) 143 (57) 

aPositive HIV test or Ministry of Health record of HIV care before the start of the community-specific health fair at year t. 
bART use, as determined through Ministry of Health records or suppressed HIV RNA, before the start of the community-specific 
health fair at year t. 
cSuppressed HIV RNA before the start of the community-specific health fair at year t. 
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Figure 1: Simplified directed acyclic graph to represent the challenges posed by incomplete HIV testing. 

Demographics and prior testing are common causes of current testing (the hypothetical intervention node) 

and underlying HIV status (possible unobserved), both of which impact observed HIV status. Analogous 

challenges arise due to incomplete measurement of suppression among HIV-positive persons. 
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Figure 2: Estimates of population-level HIV viral suppression at the time of annual testing in the 

intervention arm of the SEARCH trial. Estimates were obtained with the empirical mean among those 

measured (“Unadjusted”), stratifying on sex, age group and community (“Baseline adjusted”), and using 

targeted maximum likelihood estimation (TMLE) with Super Learner to adjust for both baseline and time-

varying characteristics (“Fully adjusted”). Black vertical bars indicate 95% confidence intervals.  
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