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It is not currently known how long it takes a person infected by the COVID-19

virus to become infectious. Models of the spread of COVID-19 use very dif-

ferent lengths for this latency period, leading to very different estimates of the

replication number R, even when models work from the same underlying data

sets. In this paper we quantify how much varying the length of the latency

period affects estimates of R, and thus the fraction of the population that is

predicted to be infected in the first wave of the pandemic. This variation un-

derscores the uncertainty in our understanding of R and raises the possibility

that R may be considerably greater than has been assumed by those shaping

public policy.

A key step in understanding the spread of the COVID-19 pandemic is estimating the repro-

duction number R, namely the average number of new individuals that each infected individual

goes on to infect. However, published estimates of the basic reproduction numberR0, represent-

ing the initial value of R before actions were taken to reduce spread, have varied tremendously,

from 1.3 (1) to more than 6 (2), and with non-overlapping error bars. The most widely cited
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estimate of R0 = 2.2 is that of Li et al (3), and most modeling of the future course of the

pandemic has used Li’s value or lower.

Initial estimates of R0 were based on the early stages of the epidemic in Wuhan, China,

where Li et al estimated a doubling time of 7.4 days. In situations where efforts have already

been made to contain the spread, the actual reproduction number R should be less than R0;

the goal of social distancing is to bring R below 1. However, despite public health measures,

outbreaks in many places have grown much faster than in Wuhan. For instance, in the United

States between March 8 and March 24, 2020, the number of confirmed COVID-19 cases grew

100-fold, from 541 to 54,856, corresponding to a doubling time of only 2.4 days (7, 8). Over

the same time period, the number of confirmed cases in the entire world, excluding China, grew

from 29,256 to 341,356, with a doubling time of 4.5 days; slower than the United States but

faster than Wuhan.1

This paper addresses another point of confusion. While there is general agreement that some

infected individuals who are not yet symptomatic (or who never develop symptoms) can still

infect others (4), there is no agreement on how long it takes an infected individual to become

infectious. Some researchers treat infected individuals as immediately infectious (1, 5), while

others assume that they only become infectious towards the end of the incubation period (6).

These different assumptions lead to different trajectories for a given R0, with earlier infectivity

usually leading to faster growth. Conversely, when estimating R0 from an actual observed

trajectory, models with earlier infectivity usually give lower estimates than models with a longer

latency period. In this paper we quantify how very different those estimates can be.

To be reliable, estimates ofR must be made for specific places and times and must acknowl-

edge the large effects of the sometimes-arbitrary choices involved in model-building. We know
1These numbers are for confirmed cases. Due to testing inefficiencies, the actual number of cases on March 8

was probably much higher than reported, and likewise on March 24. However, if the number of cases in the United
States only grew 50-fold instead of 100-fold, the resulting doubling time of 2.8 days would still be far smaller than
in Wuhan.
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much less than we think we know, and there is a substantial chance that the true value of R

is much higher than the optimistic 1.3–2.5 range that has been assumed for most public policy

discussions.

Stage models

Most models of disease spread are variants of the SEIR model, which is itself an extension of

the popular SIR model (9). In the SEIR model, people are classified as “Susceptible”, “Ex-

posed”, “Infectious”, and “Removed” (or “Recovered”). Susceptible individuals become Ex-

posed from contact with existing Infectious individuals, Exposed individuals become Infectious

after a latency period, and Infectious individuals eventually recover, die, are quarantined, or are

otherwise Removed from circulation. We let S(t), E(t), I(t) and R(t) denote the number

of Susceptible, Exposed, Infectious and Removed individuals at time t and write equations to

govern the evolution of these quantities.

It is important to acknowledge that even the SEIR model is not a complete description

of disease spread. Now that the whole world is on alert, most symptomatic individuals are

removed from circulation quickly. However, some show mild symptoms and are not noticed or

removed from circulation, while some symptomatic individuals defy isolation orders or require

a degree of home care that makes true isolation impossible. More accurate predictions require

incorporating all of these phenomena (and others) correctly, which requires more complicated

models, such as (5).

However, the limitations of the SEIR model are not the point of this paper. Our purpose

here is to show that, even in the simplest models, results are highly dependent on the length of

the Exposed state. This problem is not fixed by adding additional details to the model. On the

contrary, the more complicated a model is, the more its results depend on the choices made in

constructing that model.
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The basic SEIR model has three continuous parameters.

1. The mean time t1 spent by patients in the uninfectious “exposed” state. We call this time

the latency.

2. The mean time t2 spent by patients in the infectious state.

3. The reproduction number R, which is the mean number of people that each infected

person infects in turn.

The sum ttot = t1 + t2 is the total average time from exposure to the appearance of symptoms

severe enough to cause an individual to isolate. We call this the extended incubation period.

ttot is relatively easy to measure, and for COVID-19 is believed to be about one week (10).

The individual numbers t1 and t2 are much harder to determine. In this paper we will compare

different values of the latency t1, while holding the sum ttot fixed.

In addition to these three parameters, we consider several ways to treat the distribution of

incubation times for individuals. The most common choice is to assume that the time each indi-

vidual spends in the exposed state and the infectious state are independent exponential random

variables with means t1 and t2, respectively. This choice leads to a simple system of differential

equations. However, in this approach some exposed individuals move to the infectious stage al-

most immediately, which is not realistic. Alternatively, we can assume that the time spent in the

exposed state is always exactly t1, and the time spent in the infectious state is exactly t2, but that

ignores the fact that some people get sick much faster than others, while some people stay un-

detected and infectious for much longer than others. A promising approach is a hybrid, keeping

the time in the exposed state constant and making the time in the infectious state random.

In the early stages of an outbreak, when almost all individuals are susceptible, these models

(and more complicated extensions of these models) are all linear. Linearity implies that the total

number of infected individuals grows exponentially as et/τ , where τ is the doubling time of the
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growth divided by ln(2) ≈ 0.69. Since all models lead to the same qualitative behavior, τ is

the only quantity that can be directly deduced from the data. The subsequent step of inferring

R from τ then depends on which model we choose and which parameters we choose for that

model.

Results

We will concentrate on understanding the rapid growth of COVID-19 in the United States in

March 2020, when τ was approximately 3.5 days. We apply each of the three models (exponen-

tial distribution of latency and the time spent infective, fixed times, and the hybrid) to compute

R assuming that τ = 3.5 days and that the average t2 of the time spent infective is 7 days minus

the average t1 of the latency.

The results are shown in Figure 1, which gives the computed value ofR, for all three models,

as a function of the latency t1. The relevant formulas are as follows: When both incubation times

are treated as exponential random variables,

R = 1 +
t1
τ
+
t2
τ
+
t1t2
τ 2

. (1)

When both incubation times are fixed,

R =
(t2/τ)e

t1/τ

1− e−t2/τ
. (2)

Finally, in the hybrid model

R =
(
1 +

t2
τ

)
et1/τ . (3)

These formulas are derived in the Supplementary Materials.

It is worth noting, not only how the inferred value of R depends on the average latency t1,

but also how it depends on the seemingly innocuous choice of whether to make the lengths of

the Exposed and Infectious stages fixed or random. While none of the models fit what is known
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Figure 1: Estimated values of R for all three models as a function of the average latency t1.
While increased latency greatly increases R in the fixed length and hybrid models, the expo-
nential model behaves differently. The exponential model allows a few exposed individuals
to reinfect others very quickly and these rapid transmitters drive much of the growth of the
outbreak.
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about virology exactly, it is easy to make a good case for each of them. Yet they give vastly

different results, especially for larger values of t1! Without a clear scientific justification for

choosing one model over the other two, we must acknowledge that all of our estimates of R are

extremely uncertain.

The exponential model behaves differently from the other models because it involves some

individuals becoming infectious very quickly, even when the average latency is large, and in-

volves some of those individuals infecting others very quickly as well. These rapid transmitters

do not account for the majority of the transmissions, which still take a total of 7 days on average,

but they have an oversized effect on the growth rate. The number of these rapid transmitters is

maximized when either t1 is small or t2 is small, which explains why R reaches its peak when

t1 = t2 = 3.5 days.

The lesson is that when the minimum time from infection to reinfection goes up, so does R.

There is a simple explanation for this. If τ = 3.5, then the outbreak doubles every 2.4 days,

quadruples every 4.8 days, and multiplies by 8 every 7.2 days. If it takes at least 4.8 days for

an exposed individual to infect somebody else, then R must be at least 4 to account for the

quadrupling in that time; if the time interval is always at least 7.2 days, then R must be at least

8.

The value of R has profound effects on public policy decisions. Suppose that a social

distancing policy can reduce transmission by a factor of 3. If we start at R = 2, dividing R by

3 is enough to contain and eventually suppress the outbreak. If we start at R = 4, dividing by 3

will only slow the growth. In that case, more extreme measures are needed to get the outbreak

under control.

R also determines the fraction of the population that eventually becomes exposed to the
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virus. In all of these models, that fraction x is the non-zero solution to the equation

1− x = e−Rx. (4)

Figure 2: The percentage of the population that eventually becomes infected as a function of
the reproduction number R. Note that this percentage is already over 40% when R = 1.3, and
rapidly approaches 100% as R increases.

The dependence of x on R is shown in Figure 2. When R is as small as 1.15, x is already

at 25%, and when R = 1.7, x is already about 70%. When studies such as (11) say that 25%–

70% of the population would be infected in the absence of control measures, they are implicitly

assuming that R0 is only between 1.15 and 1.7. Under that assumption, moderate efforts should

be enough to bring R below 1 and suppress the outbreak. However, if R0 is actually larger, and

if our social distancing efforts don’t bring R below 2, then the vast majority of the population

would be infected in the first wave of the pandemic. The resulting herd immunity would be

impressive, but almost no vulnerable people would be left to benefit from it.
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Finally, the value of R affects the possibility of having multiple waves of the pandemic.

Suppose that a fraction x of the population is infected in the first wave, after which life returns

to normal and R returns to its pre-lockdown value. Unless

x > 1− 1

R
, (5)

successive outbreaks are extremely likely to occur.

Conclusions

All models for understanding the future trajectory of the COVID-19 pandemic depend on know-

ing how contagious the disease is; that is, on estimating R. This is true both for complicated

models involving many different sorts of people and many different stages of disease progres-

sion, as well as for simple models such as SEIR. Unfortunately, there is no direct way to measure

R. All we can do is measure the time scale τ of the exponential growth of the pandemic and try

to estimate R from τ .

Such estimates depend strongly on the details of the model used. Eventually, the correct

parameters and the most accurate models will be revealed through clinical studies of the actual

distribution of the different stages of infection and especially by tracing individual contacts

to determine when infectivity starts. Until those studies are completed for COVID-19, every

projection will involve a choosing parameters through educated guesswork.

Even in the simple models considered in this paper, changing the parameters of the model

can change the estimated value of R dramatically. In the fixed length model the estimate for R

ranges from 2.3 to 7.4 and the hybrid model is almost as sensitive. In all three models, having a

latency of just one day (t1 = 1) increases R by 0.5 or more compared to having no latency at all

(t1 = 0). Working with more realistic (and more complicated) models only makes the problem

of model dependence worse. The more parameters there are, the more the final answers depend
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on the assumptions.

As of early April 2020, most of the highly cited estimates of R have been based either

on models without latency, on data from Wuhan that shows much slower growth than seen in

Europe and the United States, or both. As such, these estimates are likely to have substantially

underestimated the true value of R in the United States.

The success of any suppression strategy boils down to one thing: getting R below 1. Strate-

gies that could work if R is between 1.3 and 2.5 might well fail if the actual value of R is larger.

Meanwhile, mitigation strategies depend on isolating the most vulnerable members of society

until the first wave of the pandemic has subsided. The amount of herd immunity required to

make that work also depends on R. It won’t be safe for the vulnerable to go out until the first

wave of the pandemic has subsided and a fraction x > 1 − 1
R

of the population has developed

immunity through exposure or vaccine. Higher values of R provide a stronger argument for ac-

celerating the testing of a vaccine and accepting the accompanying risks of adverse side effects

(by rushing Phase I) or settling on a less effective vaccine (by rushing Phase II). Haste may well

be needed.

The world has put enormous effort and expense into confronting COVID-19. To succeed in

the long term, we need a much better understanding of the infectivity of COVID-19. Models

with accurate descriptions of what happens after incubation can help, but only after we have a

much better understanding of the minimum time between infection and infectivity. Without that

understanding, all of our models will remain unreliable and our policies will remain uninformed.
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Supplemental materials: Mathematical derivations

All versions of the SEIR model have the same general structure.

1. Susceptibles turn into Exposed at a rate equal to βS(t)I(t), where β is a transmission co-

efficient. In the early stages of the pandemic, S(t) is approximately the entire population

T , so the number of Susceptibles who become Exposed, per unit time, is approximately

βTI(t).

2. Exposed individuals become Infectious in an average of t1 days. In the exponential

version, the number of Exposed who become Infectious per unit time is αE(t), where

α = 1/t1. In the fixed-length version, the rate at which Exposed become Infectious today

is exactly equal to the rate at which they became Exposed t1 days ago, namely βTI(t−t1).

3. Infectious individuals are Removed in an average of t2 days. In the exponential version,

the number of Infectious who are Removed per unit time is γI(t), where γ = 1/t2. In

the fixed-length version, the rate at which Infectious are Removed today is exactly equal

to the rate at which they became Infectious t2 days ago, which in turn is the rate at which

they were Exposed t1 + t2 days ago, namely βTI(t− t1 − t2).

4. The reproduction ratio is R = t2βT , so we can replace βT with R/t2 or Rγ.

Exponential incubation times

In the purely exponential model, these considerations yield the following system of differ-

ential equations:

dS

dt
= −βS(t)I(t),

dE

dt
= βS(t)I(t)− αE(t),
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dI

dt
= αE(t)− γI(t). (6)

Making the approximation βS(t) ≈ βT = Rγ, we get

d

dt

(
E(t)
I(t)

)
=
(−α Rγ
α −γ

)(
E(t)
I(t)

)
. (7)

The exponential rate of growth (1/τ) is the positive eigenvalue of the matrix on the right hand

side. Since the sum of the two eigenvalues is the trace, namely −(α + γ), the other eigenvalue

must be −
(
1
τ
+ α + γ

)
. The determinant of the matrix is −(R − 1)αγ. Since the determinant

is the product of the two eigenvalues, we have

−(R− 1)αγ =
−1
τ

(
1

τ
+ α + γ

)

R− 1 =
1

αγτ 2
+

1

τ

(
1

α
+

1

γ

)

=
t1t2
τ 2

+
t1 + t2
τ

, (8)

which is equivalent to equation (1).

Fixed incubation times

In the model with fixed incubation times, Exposed become Infected at rate RI(t − t1)/t2,

while Infected are Removed at rate RI(t− t1 − t2)/t2, so

dI(t)

dt
=
R

t2
(I(t− t1)− I(t− t1 − t2)) . (9)

Plugging in I(t) = Cet/τ , where C is an unknown constant, we obtain

C

τ
et/τ =

CRet/τ

t2

(
e−t1/τ − e−(t1+t2)/τ

)
1

τ
=

R

t2

(
e−t1/τ − e−(t1+t2)/τ

)
14
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R =
t2

τ (e−t1/τ − e−(t1+t2)/τ )

=
(t2/τ)e

t1/τ

1− e−t2/τ
, (10)

which is equation (2).

The hybrid model

Here we treat the length of the exposed stage as fixed and the length of the infectious stage

as random. The rate at which Exposed become Infectious is RγI(t − t1) = RI(t − t1)/t2,

but the rate at which Infectious individuals are removed is γI(t) = I(t)/t2. This gives the

differential equation
dI(t)

dt
=
R

t2
I(t− t1)−

I(t)

t2
. (11)

Plugging in I(t) = Cet/τ as before, and dividing both sides by Cet/τ , gives

1

τ
=

R

t2
e−t1/τ − 1

t2
t2
τ
+ 1 = Re−t1/τ

R =
(
t2
τ
+ 1

)
et1/τ , (12)

which is equation (3).

How many people will eventually get sick?

Finally, we consider what fraction of people will get sick before the pandemic ends. The

pandemic burns itself out when it runs out of Susceptibles to infect, so for this part of the

calculation we do not make the simplifying approximation that S(t) ≈ T . Instead we look at

the exact equation for S, which is the same in all versions of our model.

dS(t)

dt
= −βS(t)I(t). (13)

Dividing both sides by S(t) gives

d ln(S(t))

dt
= −βI(t). (14)
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Integrating then gives

ln

(
S(∞)

S(0)

)
= −β

∫ ∞
0

I(t)dt. (15)

Let x be the fraction of people who eventually get sick. The left hand side of equation (15)

is ln(1 − x), while the right hand side is −βt2S(0)x, since the number of people who get

sick is xS(0), and since each sick person is infectious for an average of t2 days. However,

βt2S(0) = βT/γ = R, so

ln(1− x) = −Rx

1− x = e−Rx, (16)

which is equation (4).

Multiple waves and herd immunity

To understand equation (5), imagine that R = 4, so each infected person has contact, of

the sort that spreads the virus, with an average of 4 other people. If more than 3/4 of the

population has already had the virus, then fewer than one of those four people (on average)

will get infected. Since each infected individual actually infects fewer than one new person (on

average), any local outbreak will quickly peter out.

More generally, if a fraction x of the population is already immune and a fraction 1 − x is

still Susceptible, the average number of new people that each infected individual actually infects

is only R(1− x), not R. As long as R(1− x) < 1, or equivalently x > 1− 1
R

, local outbreaks

cannot get any traction and cannot spread into the population at large. This phenomenon, where

immunity in part of the population protects the rest, is called “herd immunity”.
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