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Abstract 24 

The lockdown response to COVID-19 has caused an unprecedented reduction in global economic 25 

activity. We test the hypothesis that this has reduced tropospheric and ground-level air pollution 26 

concentrations using satellite data and a network of >10,000 air quality stations. After accounting 27 

for the effects of meteorological variability, we find remarkable declines in ground-level nitrogen 28 

dioxide (NO2: -29 % with 95% confidence interval -44% to -13%), ozone (O3: -11%; -20% to -2%) 29 

and fine particulate matter (PM2.5: -9%; -28% to 10%) during the first two weeks of lockdown (n = 30 

27 countries). These results are largely mirrored by satellite measures of the troposphere 31 

although long-distance transport of PM2.5 resulted in more heterogeneous changes relative to 32 

NO2. Pollutant anomalies were related to short-term health outcomes using empirical exposure-33 

response functions. We estimate that there was a net total of 7400 (340 to 14600) premature 34 

deaths and 6600 (4900 to 7900) pediatric asthma cases avoided during two weeks post-35 

lockdown. In China and India alone, the PM2.5-related avoided premature mortality was 1400 36 

(1100 to 1700) and 5300 (1000 to 11700), respectively. Assuming that the lockdown-induced 37 

deviations in pollutant concentrations are maintained for the duration of 2020, we estimate 0.78 38 

(0.09 to 1.5) million premature deaths and 1.6 (0.8 to 2) million pediatric asthma cases could be 39 

avoided globally. While the state of global lockdown is not sustainable, these findings illustrate 40 

the potential health benefits gained from reducing “business as usual” air pollutant emissions from 41 

economic activities. Explore trends here: www.covid-19-pollution.zsv.co.za 42 

Significance statement 43 

The global response to the COVID-19 pandemic has resulted in unprecedented reductions in 44 

economic activity. We find that lockdown events have reduced air pollution levels by 45 

approximately 20% across 27 countries. The reduced air pollution levels come with a substantial 46 

health co-benefit in terms of avoided premature deaths and pediatric asthma cases that 47 

accompanied the COVID-19 containment measures. 48 

Introduction: 49 

In many developing nations economic growth has exacerbated air pollutant emissions with severe 50 

consequences for the environment and human health. Long-term exposure to air pollution 51 

including fine particulate matter with a diameter less than 2.5µm (PM2.5) and ozone (O3) are 52 

estimated to cause ~8.8 million excess deaths annually (1, 2), while nitrogen dioxide (NO2) results 53 

in 4 million new paediatric asthma cases annually (3). Despite the apparent global air pollution 54 

“pandemic”, anthropogenic emissions remain on positive trajectories for most developing and 55 

some developed nations (4–6).  56 

 57 

The major ambient (outdoor) air pollution sources include power generation, industry, traffic, and 58 

residential energy use (4, 7). With the rapid emergence of the novel coronavirus (COVID-19), and 59 

in particular the government enforced lockdown measures aimed at containment, economic 60 

activity has come to a near-complete standstill in many countries (8). Lockdown measures have 61 

included partial or complete closure of international borders, schools, non-essential business and 62 

in some cases restricted citizen mobility (9). The associated reduction in traffic and industry has 63 
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both socio-economic and environmental impacts which are yet to be quantified. In parallel to the 64 

societal consequences of the global response to COVID-19, there is an unprecedented 65 

opportunity to estimate the short-term effects of economic activity counterfactual to “business as 66 

usual” on global air pollution and its relation to human health. 67 

 68 

Here we test the hypothesis that reduced air pollution levels during Feb/Mar 2020 were related to 69 

the COVID-19 lockdown events. To test the hypothesis, satellite data are used to provide a global 70 

perspective over Feb/Mar, but to estimate exposure levels relevant to public health, we derive 71 

ground-level measurements from >10,000 air quality stations after accounting for meteorological 72 

variations. The air pollution anomalies during COVID-19 lockdown are then used to quantify 73 

mortality and pediatric asthma incidence that have been potentially avoided (Fig. S1). Finally we 74 

perform a counterfactual projection of the public health burden assuming NO2, O3 and PM2.5 75 

anomalies during lockdown are maintained for the remainder of 2020. In doing this we do not 76 

imply that lockdown economic activity is sustainable or desirable, however, we do intend to use 77 

the current situation as an intuitive means of highlighting the significance of the often-overlooked 78 

global air pollution health crisis.  79 

Results and discussion: 80 

Satellite-derived global trends 81 

Satellite-measured tropospheric NO2 concentrations have decreased by an average of 10.7% 82 

(area-weighted mean with interquartile range; IQR: 32%) over inhabited areas of the globe during 83 

Feb/Mar 2020 relative to 2019 (Fig. 1A; Fig. S2). The percentage changes over areas most 84 

affected by COVID-19, including Europe and China, showed NO2 declines of 20% (38% IQR) and 85 

12% (33% IQR), respectively. In contrast to NO2, O3 concentrations exhibit a net positive anomaly 86 

of +2.4% (8.4% IQR) in 2020 relative to 2019 (Fig. 1C; Fig. S2). This may be related to the 87 

emission decline of NOx (=NO+NO2), mostly as NO, leading to reduced local titration of O3 88 

(reaction of NO with O3). The O3 titration effect is relevant locally and within the planetary 89 

boundary layer, whereas further downwind photochemical O3 formation, with a catalytic role of 90 

NOx, is a more important factor. Note that lockdown impacts on NO2, which has an atmospheric 91 

lifetime of about a day, are clearly discernible locally, whereas those on O3 with a lifetime of 92 

several weeks are affected by long-distance transport associated with specific weather patterns. 93 

Further, O3 photochemistry in temperate latitudes during the Feb/Mar period is still slow due to 94 

low solar irradiation, whereas at lower latitudes O3 buildup can be significant. 95 

 96 

Similarly, aerosol optical depth (AOD: a proxy for PM2.5) has also increased slightly (+13.2% IQR: 97 

35%), although local declines are evident over parts of China (Fig. 1E; Fig. S2). While the 98 

lockdown impacts on NO2 and on ground-level O3 in inhabited regions are largely due to local 99 

emissions, PM2.5 is less locally controlled as it has an atmospheric lifetime of several days or 100 

longer in the absence of rain. For instance, European AOD levels during March 2020 were 101 

strongly influenced by dry weather with easterly winds, which carried mineral dust from West Asia, 102 

which explains some of the positive anomalies in this period. Since much of the long-distance 103 

dust transport takes place above the boundary layer (10), these AOD anomalies do not 104 

necessarily represent ground-level PM2.5 trends. The same is true for satellite-measured O3, 105 
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which is strongly influenced by its generally increasing abundance above the boundary layer, 106 

especially during winter. 107 

 108 

Ground-level country-specific trends 109 

While satellites provide global data coverage, they do not necessarily reflect pollutant 110 

concentrations at ground-level that are relevant to human exposure and health. Therefore we 111 

supplemented satellite data with ground-level pollutant concentrations collected by over 10,000 112 

air quality stations. In contrast to the satellite data we used, station data allowed us to calculate a 113 

more robust 3-year baseline measure of expected pollution levels for Feb/Mar. These data largely 114 

corroborate the satellite data in that we found the same spatial patterns and net directions of 115 

Feb/Mar 2020 pollutant anomalies (Fig. 1 B, D and F). Specifically, NO2 declined by 22.9% (20% 116 

IQR) which equates to an absolute decline of 7.6 µg m-3 (9 µg m-3 IQR). O3 increased by 5.4% 117 

(18% IQR) whereas particulate matter (PM2.5) declined by 17.2% (30% IQR). The direction and 118 

magnitude of PM2.5 change near the surface is different to the AOD measured by satellites, 119 

highlighting the importance of ground-level measurements to complement satellite-derived global 120 

trends. 121 

 122 

Focusing on the ground-level trends is illustrative of the change at both global (Fig. 2A - C) and 123 

country (Fig. 2 D - F; Fig. S3) scales. Here, the deviation in NO2 and PM2.5 levels from 3-yr average 124 

values increases significantly from mid-Jan onward (Fig. 2). The timing of the initial deviation is 125 

potentially an effect of the dramatic air pollution reductions in China (Fig. 2D; Fig. S4) coincident 126 

with the rapid lockdown response in Wuhan province at the outset of COVID-19. Thereafter, the 127 

spread of COVID-19 led to lockdowns in various countries, associated with a greater negative 128 

deviation in NO2 and PM2.5 from 3-yr baseline values (Fig. 2). Some notable outliers include 129 

Australia and Mexico. Australia exhibited drastic declines in PM2.5 from January onward likely 130 

reflecting the tail-end of the recent wildfires (11). The rapid decline in NO2 over Mexican stations 131 

is more difficult to explain, particularly given that Mexico, along with Taiwan, Slovakia and 132 

Sweden, was one of the few countries not to enforce any national lockdown measures. 133 

 134 

The trends for O3 and PM2.5 are more heterogeneous over space (Fig. 1D, F) and time (Fig. 2E, 135 

F) relative to the ubiquitous declines in NO2. For instance, increases in O3 over southern China 136 

differ significantly from the decreases observed over the Wuhan province, the epicenter of 137 

COVID-19 (Fig. 1D). We expect this to be a consequence of synoptic redistribution of O3 by 138 

atmospheric circulations. Similarly, the local decreases over parts of Spain are in contrast to 139 

increases observed over eastern Europe. This is not surprising given that O3 is affected by long-140 

distance transport as well as non-linear chemical interactions with volatile organic compounds 141 

(VOCs) and NOx, mediated by mesoscale and urban canopy weather patterns (12).  142 

 143 

Direct links to COVID-19 lockdown and health outcomes 144 

To test our primary hypothesis that pollution anomalies were directly associated with COVID-19 145 

lockdown events, we calculated average ground-level concentrations for each country separately. 146 

Instead of averaging over Feb/Mar, we focus on the two weeks after lockdowns were announced 147 

in each country. We first corrected for the effects of local and meso-scale weather patterns 148 

(temperature, humidity, precipitation and wind speed) which can significantly affect ground-level 149 
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pollutant concentrations (13, 14) and thereby compromise any observable effect of COVID-19 150 

lockdowns. Using regression models, we estimated the lockdown-attributable anomaly (Fig. S1) 151 

as the difference between observed and expected pollutant concentrations given weather during 152 

lockdown.  153 

 154 

We found a net decline of about 20% (5% to 35% - 95% confidence interval) across all three 155 

pollutants in countries where significant anomalies were detected. There were significant declines 156 

in NO2 (29 %; 13% to 44%) and O3 (11%; 2% to 20%), however our model estimates were not 157 

able to control for the confounding effects of weather enough to detect significant declines in PM2.5 158 

(9% decline; -10 to 28%; Fig. S5). Indeed, our meteorological-control models were able to explain 159 

less of the variance in PM2.5 (R2 = 0.45) compared to NO2 (R2 = 0.54) and O3 (R2 = 0.72; Table 160 

S1). This suggests PM2.5 has a weaker coupling to land-transportation and small business activity 161 

declines during lockdown compared to NO2 and O3. In Many countries PM2.5 is more strongly 162 

linked to residential energy use, power generation and agriculture (7). In addition, PM2.5 is 163 

significantly influenced by long-distance atmospheric transport of mineral dust and therefore the 164 

local effects of economic activity may be diluted or even overwhelmed (15). 165 

 166 

Using the two week post-lockdown anomalies in combination with published exposure-response 167 

functions for NO2 (16, 17), O3 (17, 18) and PM2.5 (17, 19), we estimated changes in daily all-cause 168 

mortality burden and pediatric asthma incidence. During the two weeks post-lockdown, there were 169 

a total of 7400 (340 to 14600) deaths and 6600 (4900 to 7900) pediatric asthma cases avoided 170 

across 27 countries with recorded COVID-19 mitigation measures (Fig. 3; Table S2). The number 171 

of PM2.5-related deaths avoided (6800; 60 to 13700) exceeded those related to NO2 (540; 300 to 172 

800) and O3 (50; 10 to 80). While for pediatric asthma incidence, NO2 reductions contributed to 173 

more avoided cases (5700; 4500 to 6800) compared to O3 (50; 40 to 60) and PM2.5 (850; 300 to 174 

1000). In China and India alone, the PM2.5-related reductions in mortality burden were 1400 (1100 175 

to 1700) and 5300 (1000 to 11700), respectively (Fig. 3C). These are countries with both the 176 

highest baseline pollution levels and population densities, and therefore have the most to gain 177 

from pollutant declines. 178 

 179 

Furthermore, we performed a counterfactual projection of reduced health burden assuming 180 

ground-level air pollution deviations experienced during lockdown (Fig. S5) are maintained for the 181 

remainder of 2020 (Apr-Dec). The cumulative effect of the reduction in NO2, O3 and PM2.5 over 182 

the remainder of 2020 is that 0.78 (0.09 to 1.5) million deaths and 1.6 (0.8 to 2) million pediatric 183 

asthma cases could be avoided (Fig. 4; Table S3). Our findings suggest that, in spite of the 184 

modest response of PM2.5, countries would have much to gain in maintaining PM2.5 lockdown 185 

levels because that would prevent 0.6 (0.01 to 1.3) million deaths and 1.1 (0.4 to 1.4) million 186 

pediatric asthma cases which is 3- and 5-fold higher than those from NO2 and 5- and 30-fold 187 

higher than those from O3 (Fig. 4). The bulk of the benefit gained would take place during the 188 

latter half of the year when air pollution levels are at their highest over countries with the largest 189 

air pollution health burden (i.e. India and China). 190 

 191 

Limitations and perspectives 192 
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Making explicit links between ambient air pollution and human health burden relies on several 193 

assumptions that are difficult to verify apriori. First, using relative risk rates from select meta-194 

analysis (17) and multi-city (n>406) short-term time-series association studies (18, 19) to make 195 

inference over entire countries rests on the assumption that city- or cohort-specific response rates 196 

are generalizable to broader populations. While this is likely to introduce uncertainty, the dearth 197 

of representative data necessities these generalizations, and this approach has been used by 198 

numerous studies at the global scale (2, 3). Further, we acknowledge that our results are affected 199 

by harvesting effects, where premature deaths attributed to air pollution might have occurred in 200 

the immediate future (20). Note that this also applies to death counts attributed to COVID-19. We 201 

also acknowledge that we do not account for indoor sources of PM2.5 pollution which are unlikely 202 

to be reduced by lockdown measures. As smoke from household stoves add substantially to 203 

population exposure for people dependent on solid fuels, accounting for ambient air pollution only 204 

could imply a misclassification of exposure and biased health burden estimates (21). Finally, the 205 

baseline mortality rates we use are from 2017 (22) and therefore may be prone to ignoring before 206 

and after COVID-19 onset differences in baseline mortality incidence.  207 

 208 

Despite these assumptions and the associated uncertainty, the analysis and results presented 209 

here can provide useful insights to raise awareness and orientate interventions regarding the 210 

global effects of air pollution on human health. They should be interpreted as preliminary lessons 211 

from the Corona crisis. As the science evolves, and the COVID-19 pandemic plays out, empirical 212 

data will emerge to fill in the knowledge gaps and uncertainties associated with air pollution health 213 

burden attribution. It is expected that the two-week lockdown effects calculated here will be an 214 

underestimate of the full effect because most lockdowns will likely last much longer than two 215 

weeks. Further, we were not able to calculate the extent to which air pollution reductions have 216 

mitigated COVID-19 deaths. For instance, positive associations have been reported between air 217 

pollution and SARS case fatalities in China during 2003 (23) and preliminary analysis has 218 

revealed similar patterns for COVID-19 (24, 25). Therefore our estimates may represent lower 219 

limits after considering the air pollution reductions as a cofactor in COVID-19 case recoveries. 220 

Conclusions: 221 

Reducing economic activity to levels equivalent to a lockdown state are impractical, yet 222 

maintaining “business as usual” clearly exacerbates global pollutant emissions and associated 223 

deaths. Our study documents the dramatic short-term effect of global reductions in transport and 224 

economic activity on reducing ground-level NO2, with mixed effects on O3 and PM2.5 225 

concentrations. Maintaining reductions in pollutant emissions corresponding to lockdown 226 

conditions can substantially reduce the global burden of disease. We by no means imply that 227 

global pandemics such as the COVID-19, nor lockdown actions, are beneficial for public health. 228 

However, we suggest the current situation is a useful lens through which to view the global air 229 

pollution “pandemic”. Time will tell how significant the change in health burden has actually been. 230 

Nevertheless, the early evidence presented here suggests it is likely significant. Reduced 231 

premature mortality from air pollution thus appears as a co-benefit of the minimized number of 232 

deaths from the lockdown measures, although more accurate, quantitative assessments must 233 

await termination of the crisis. Finding economically and socially sustainable alternatives to fossil 234 
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fuel based transport and industry are another means of reaching the pollutant declines we have 235 

observed during the global response to COVID-19.  236 

Materials and methods: 237 

In brief, the methodological workflow (Fig. S1) described below involves collecting satellite and 238 

in-situ air pollution time series data to estimate anomalies during the 2020 COVD-19 period 239 

relative to different baseline levels. Regression models are used to correct for the potential effects 240 

of weather-related variations on pollutant levels during lockdown. The resulting estimates of 241 

pollutant anomalies are related to established health burden estimates for short-term premature 242 

mortality and pediatric asthma incidence attributable to air pollution. The sample of countries used 243 

in each step varies dependent on the data availability. Results for satellite data contain all 244 

countries (n = 196). For ground-station anomalies there were 30 countries in total, however 245 

lockdown anomalies and health burden statistics are only reported for those with recorded 246 

lockdown measures (n = 27).  247 

 248 

Satellite data 249 

All remote sensing data analyses were conducted in the Google Earth Engine platform for 250 

geospatial analysis and cloud computing (26). All data was extracted at a global scale and 251 

aggregated to the mean for each country. Data outside of inhabited areas (ocean, freshwater, 252 

desert etc.) were excluded from the analysis using the Global Human Settlement Layer produced 253 

by the European Joint Research Centre which defines inhabited rural and urban terrestrial areas 254 

(27). We did this because our main hypothesis was linked to human exposure and therefore we 255 

aimed at pollution measures that were relevant to inhabited land surfaces. 256 

 257 

We collected nitrogen dioxide (NO2) and ozone (O3) data from the TROPOspheric Monitoring 258 

Instrument (TROPOMI), on‐board the Sentinel‐5 Precursor satellite (28). TROPOMI has delivered 259 

calibrated data since July 2018 from its nadir‐viewing spectrometer measuring reflected sunlight 260 

in the visible, near‐infrared, ultraviolet, and shortwave infrared. Recent work has shown that 261 

TROPOMI measurements are well correlated to ground measures of NO2 (29, 30) and O3 (31). 262 

We filtered out pixels that are fully or partially covered by clouds using 0.3 as a cutoff for the 263 

radiative cloud fraction. As a proxy for atmospheric fine particulate matter (PM2.5), we collected 264 

aerosol optical depth (AOD) data from the cloud-masked MCD19A2.006 Terra and Aqua MAIAC 265 

collection (32). This dataset has been successfully used to map ground-level PM2.5 concentrations 266 

(33, 34). Global median composite images for NO2, O3 and AOD were then calculated for the 267 

months of February and March 2019 and 2020. 268 

 269 

In-situ data 270 

Although satellite data have the advantage of wall-to-wall global coverage, there are some 271 

drawbacks: (1) TROPOMI does not extend back far enough to obtain an adequate baseline 272 

measure with which to compare 2020 concentrations; (2) MODIS and TROPOMI collect 273 

information within either the total (O3 and AOD) or tropospheric (NO2) column which do not 274 

necessarily reflect pollutant levels experienced on the ground. Therefore, we also collected NO2, 275 

O3 and PM2.5 data from >10,000 in-situ air quality monitoring stations to supplement the satellite 276 
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data. These data were accessed from the OpenAQ Platform and originate from government- and 277 

research-grade sources. See www.openaq.org for a list of sources. Despite the reliability of the 278 

sources, we inspected pollutant time series for each country and removed spurious outliers in the 279 

data with z-scores exceeding an absolute value of 3. Following quality control, we were left with 280 

data representing 30 countries. 281 

 282 

Quantifying air pollution anomalies 283 

We used two approaches to quantify air pollution anomalies coincident with COVID-19 during 284 

Feb/Mar 2020. We refer to these as (1) the Feb/Mar differential, and (2) the lockdown differential 285 

(Fig. S1). For the Feb/Mar differential we calculated average pollutant levels for Feb/Mar each 286 

year between 2017 and 2020. The differential was defined as the difference between 2020 values 287 

and the average of those for a 3-year baseline (2017-2019). For satellite data the baseline was 288 

the 2019 Feb/Mar average due to limited temporal extent of TROPOMI data, however for ground-289 

stations we considered a 3-year (2017-2019) average for the Feb/Mar period. 290 

 291 

Air pollution anomalies measured with the Feb/Mar differential approach may smooth over the 292 

effect of COVID-19 given that country-specific lockdowns or mitigation actions occurred at 293 

different times. For instance China went into lockdown in Jan/Feb whereas the majority of 294 

lockdowns in other countries occured in March. Therefore we attempted to isolate the effect of 295 

COVID-19 mitigation measures by calculating lockdown pollutant levels for each country 296 

separately. We searched online media and news articles to identify the starting date of lockdown 297 

for each country. Sources were cross-referenced to account for erroneous reporting. We defined 298 

two levels of lockdown intensity including moderate and severe lockdowns. Moderate lockdowns 299 

involved partial or full closure of borders and flights, government advisories for citizens to work 300 

from home, closure of schools, and limiting gathering sizes. Severe lockdowns included 301 

government-enforced movement restrictions or curfews and closure of all non-essential 302 

businesses. This resulted in a sample of 27 countries that reported lockdown measures and which 303 

we had ground-level air pollution data for. 304 

 305 

Air pollution anomalies measured during two weeks post-lockdown are not necessarily 306 

attributable to reduced economic activity, but may be an artifact of meteorological variability 307 

coincident with the onset of COVID-19. Therefore we adopted a modelled differential approach to 308 

correct for the effect of meteorological parameters on air pollution trends. This involved 309 

developing a model based on historical data to estimate what the expected air pollution levels for 310 

2020 lockdown dates should have been given the prevailing weather conditions and time of year. 311 

We performed multiple linear regression of weekly pollutant concentrations on temperature, 312 

humidity, precipitation and wind speed derived from the Global Forecast System (GFS) of the 313 

National Centers for Environmental Prediction (NCEP) between Jan 2017 and Apr 2020. We 314 

accounted for the effect of seasonal fluctuations and long-term trends by including month and 315 

year as fixed effects in the model. We calculated the sin and cos component of the month variable 316 

to account for its cyclical nature. Using models trained on historical data, we predicted the 317 

expected pollutant levels for the two lockdown weeks. The modelled differential is then the 318 

difference between this predicted value and the observed pollutant concentrations during 319 
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lockdown (Fig. S1). This differential has been attributed to COVID-19 mitigation measures with 320 

greater confidence than simple comparisons with 3-yr baseline values.  321 

 322 

Linking air pollution anomalies to public health burden 323 

To relate COVID-19 lockdown air pollution anomalies to all-cause mortality and pediatric asthma 324 

incidence we applied short-term (daily) exposure-response relationships reported in recent 325 

literature. We obtained relative risks from recent studies on the relationship between daily 326 

mortality and O3 (18) and PM2.5 (19) resulting from the Multi-City Multi- Country (MCC) 327 

Collaborative Research Network (35). For NO2-mortality responses, we used relative risks 328 

reported in a meta-analysis which controlled for the effect of particulate matter to extract excess 329 

mortality solely attributable to NO2 (16). Pediatric (< 18 years) short-term relative risks for asthma 330 

incidence in response to NO2, O3 and PM2.5 were derived from a global meta-analysis of 87 331 

studies (17). These data are not country-specific and we therefore applied the same relative risk 332 

rate to all countries in our study. 333 

Daily health burden (premature mortality and asthma incidence) for each country was derived 334 

with the formula: 335 

 336 

Where Inc is the baseline mortality or asthma incidence rate and Pop is the total population. Inc 337 

for mortality and asthma were obtained from the Institute for Health Metrics and Evaluation (IHME) 338 

for the 27 countries in our study (22), downloadable at the GDBx platform 339 

(http://ghdx.healthdata.org/). Population estimates for 2020 were calculated using the Gridded 340 

Population of the World (GPWv14) dataset (36). RR is the relative risk derived from the literature 341 

after log-linear transformation. We used log-linear transformation as adopted by many others (3, 342 

37) to prevent assumptions of linearity in the relationship between pollutant concentrations and 343 

health outcome. We derive the transformed RR using: 344 

  345 

where 𝞪 is the pollutant concentration and 𝛾 is the low concentration threshold below which there 346 

is no risk of mortality or asthma incidence. Low concentration thresholds were derived from the 347 

associated literature for O3 at 70 µg m-3
 (18); PM2.5 at  4.1 µg m-3 (19) and NO2 at 2 ppb (3). Here 348 

𝜷  is defined by the function: 349 

 350 

where ƛ is the relative risk reported in the literature and ẟ is the concentration increment used. All 351 

three studies reported results relative to a  of 10 µg m-3. 352 

The air pollution health burden anomaly coincident with COVID-19 lockdown was defined as: 353 
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 354 

Where DOY is the days-of-year equivalent for each country’s two weeks lockdown dates. We use 355 

95% confidence intervals reported in the literature to derive error margins around our change 356 

estimates. Health burden estimates are made for each day during lockdown events during 2020 357 

and the past three years for comparison. We also perform a counterfactual forecasting 358 

assessment for 2020 where we assume the lockdown reductions in NO2, O3, PM2.5 are sustained 359 

for the remainder of the year. Using the resulting daily forecasts we calculated the total avoidable 360 

air pollution related mortalities and new asthma incidence. 361 

 362 
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 459 
 460 

Fig. 1: Global distribution of 2020 air pollution anomalies. Satellite and ground station 461 

measures of NO2 (A,B), O3 (C, D), aerosol optical depth (E) and PM2.5 (F) anomalies are mapped. 462 

Anomalies are defined as 2020 deviations from Feb/Mar 2019 average for satellite data and from 463 

Feb/Mar 3-yr averages for ground stations. Inset plots show data density distributions for 464 

anomalies over inhabited land areas. 465 

 466 
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 469 
Fig. 2: Ground-level air pollution time series. Weekly time series for ground station pollutant 470 

concentrations are plotted for Feb/Mar 2020 and the 3-yr average for the equivalent weeks (A, B, 471 

C). Loess regression lines and 95% confidence interval ribbons show globally averaged trends (n 472 

= 30 countries). Country-specific time series showing percentage deviation from long-term means 473 

are plotted in D, E and F. For country code reference refer to: www.iso.org/obp/ui/ 474 

 475 
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 477 
Fig. 3: Post-lockdown health burden changes attributable to air pollution. Air pollution 478 

anomalies during two weeks post-lockdown are converted to mortality and asthma responses (n 479 

= 27 countries). Total health burden avoided (-ve) and incurred (+ve) values are presented with 480 

bars along a log-transformed x-axis. 95% uncertainty intervals are marked with error bars. Hollow 481 

bars represent estimates where the change in pollutant concentrations were not significant (p > 482 

0.05) after accounting for weather variations (Fig. S5). 483 

 484 
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 487 
Fig. 4: Projected daily health outcomes over 2020. Potential daily premature deaths (solid 488 

lines) and asthma incidence (dashed lines) that might be avoided assuming pollutant levels 489 

remain at lockdown levels (NO2: -29%; O3: -11%; PM2.5: -9%). Lines reflect global averages (n = 490 

27 countries) with 95% confidence interval ribbons. 491 

 492 

 493 
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Supplementary tables and figures 495 

 496 

 497 
 498 

Fig. S1: Methodological workflow for paper. Two types of air pollution (P) anomaly are 499 

calculated including Feb/Mar differential and Lockdown differential. The first is the difference 500 

between the Feb/Mar 2020 and the average for the same days during the previous three years 501 

(2017-2019; ground-station data) or one year (satellite data). The Lockdown differential is the 502 

difference between observed and predicted pollutant levels for two weeks post-lockdown. 503 

Predictions are made to account for the confounding effects of weather variability using a 504 

regression model. These differentials are used to calculate the change in mortality or asthma 505 

burden (HB) as a result of COVID-19 induced pollution anomalies. Relative risk rate functions 506 

are extracted from the literature outlined with dashed lines (refer to reference list in main 507 

manuscript for full references). 508 

 509 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 14, 2020. .https://doi.org/10.1101/2020.04.10.20060673doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.10.20060673
http://creativecommons.org/licenses/by-nc-nd/4.0/


 510 
Fig. S2: Satellite-derived air pollution Feb/Mar anomalies. Percentage temporal differentials 511 

(Feb/Mar 2020 vs Feb/Mar 2019) in atmospheric NO2, O3 and aerosol optical depth (AOD) per 512 

country. Box and whisker plots show the spread of the data (each data point is a satellite pixel 513 

within a country) around the median value. 514 

 515 
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 516 
Fig. S3. Ground-level air pollution Feb/Mar anomalies. Percentage Feb/Mar differentials 517 

(Feb/Mar 2020 vs 3-yr average for Feb/Mar) in atmospheric NO2, O3 and PM2.5 per country with 518 

air quality station data. Anomalies are expressed as percentage differences with bars. 519 

 520 
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 522 
Fig. S4. Pollutant time series and lockdown dates. Daily time series of ground-level NO2, O3 523 

and PM2.5 per country with dates of lockdown indicated by vertical lines. Smoothed loess 524 

regression lines are fitted to indicate moving averages. For country code reference refer to: 525 

www.iso.org/obp/ui/ 526 

 527 
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 529 
 530 

Fig. S5. Ground-level air pollution lockdown anomalies corrected for weather variations. 531 

Percentage lockdown differentials (observed vs predicted concentrations for lockdown dates) in 532 

atmospheric NO2, O3 and PM2.5 per country with air quality station data. Anomalies are 533 

expressed as percentage differences with points and 95% confidence intervals with error bars. 534 

Predicted values are based on regression models that account for the effects of weather 535 

variations during lockdown. Points are sized relative to the R2 of the model ranging from 0.2 to 536 

0.9. 537 

 538 
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Table S1. Regression model performance. Air pollutant concentrations were regressed on 540 

meteorological variables (temperature, humidity, precipitation and wind speed) to predict what 541 

air pollutant concentrations were expected to be during lockdown dates. Separate models were 542 

built for each country and the resulting R2 and p-values are presented. 543 

 544 

 545 

  NO2   O3   PM2.5   

  R2 p-value R2 p-value R2 p-value 

Australia 0.432 7.4E-13 0.598 6.0E-26 0.412 1.5E-13 

Belgium 0.279 3.1E-05 0.583 4.9E-21 0.452 2.4E-13 

Canada 0.775 8.4E-40 0.869 1.0E-60 0.278 5.3E-06 

Chile 0.835 7.9E-50 0.601 1.1E-24 0.786 9.5E-45 

China 0.682 3.9E-21 0.620 4.5E-19 0.730 7.4E-34 

Croatia 0.372 3.7E-09 0.815 8.7E-49 0.453 1.4E-14 

Czechia 0.472 4.5E-14 0.799 1.9E-46 0.332 8.4E-09 

Denmark 0.376 2.1E-08 0.714 1.7E-29 0.446 5.2E-05 

Finland 0.515 1.1E-16 0.696 2.0E-33 0.209 2.4E-04 

France 0.547 3.2E-18 0.799 9.8E-46 0.437 1.1E-13 

Germany 0.338 1.6E-07 0.672 7.6E-30 0.468 3.6E-15 

Hungary 0.527 6.0E-17 0.822 1.1E-49 0.385 5.1E-11 

India 0.737 5.5E-25 0.367 2.8E-07 0.725 2.4E-35 
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  NO2   O3   PM2.5   

  R2 p-value R2 p-value R2 p-value 

Ireland 0.394 2.1E-09 0.519 2.1E-17 0.245 4.1E-04 

Italy 0.829 3.5E-40 0.897 1.8E-57 0.505 2.8E-14 

Lithuania 0.301 3.7E-05 0.640 2.0E-23 0.325 4.1E-07 

Macedonia 0.522 5.6E-17 0.781 1.2E-43 0.464 3.7E-10 

Norway 0.668 6.0E-29 0.686 2.6E-33 0.455 1.6E-15 

Peru 0.450 2.2E-03 0.820 2.9E-17 0.406 6.7E-10 

Poland 0.549 7.5E-07 0.870 1.9E-25 0.653 1.1E-11 

Portugal 0.266 3.6E-04 0.513 2.3E-15 0.223 6.6E-04 

Slovakia 0.648 6.7E-22 0.866 4.8E-51 0.626 1.3E-22 

Spain 0.503 8.4E-16 0.693 7.8E-33 0.416 7.5E-13 

Switzerland 0.605 4.4E-16 0.829 2.4E-38 0.446 2.3E-10 

Thailand 0.670 1.0E-28 0.757 3.6E-41 0.453 5.7E-05 

United Kingdom 0.569 8.4E-21 0.750 7.5E-41 0.360 1.8E-10 

United States 0.795 1.2E-42 0.865 3.4E-59 0.368 1.2E-09 

 546 
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Table S2. Lockdown health burden response. Pollutant-related mortality and pediatric 549 

asthma cases avoided for each country during two weeks of lockdown. Country averages and 550 

95% confidence intervals are reported with negative (-) signs representing cases where health 551 

burden has increased. Numbers are rounded to the nearest whole number. Values with 552 

significant (p < 0.05) pollutant anomalies after correcting for meteorological parameters are 553 

indicated with *. 554 

 555 

 Mortality   Asthma   

Country NO2 O3 PM2.5 NO2 O3 PM2.5 

Australia 0 [0; 0]* 0 [0; 0]* 7 [-1; 14] 0 [0; 0]* 0 [0; 0]* 0 [0; 0] 

Belgium 1 [1; 2]* 5 [1; 9]* 2 [0; 5] 12 [9; 14]* 3 [2; 4]* 0 [0; 0] 

Canada 0 [0; 0] 0 [0; 0] -6 [-4; -8] 0 [0; 0] 0 [0; 0] 0 [0; 0] 

Chile 1 [1; 2]* -2 [-1; -4]* 9 [-23; 42]* 8 [6; 9]* -1 [-1; -2]* 3 [1; 3]* 

China 427 [235; 

619]* 

247 [35; 

440] 

1444 [1127; 

1761]* 

4992 [3973; 

5962]* 

212 [127; 

265] 

381 [143; 

478]* 

Croatia 2 [1; 2]* 0 [0; -1] -9 [2; -21]* 8 [6; 10]* 0 [0; 0] 0 [0; -1]* 

Czechia 0 [0; 0] 5 [1; 9] -10 [2; -23] 2 [1; 2] 1 [1; 2] -1 [0; -1] 

Denmark 0 [0; 0] -2 [-1; -3] 0 [0; 0] -1 [-1; -1] -1 [0; -1] 0 [0; 0] 

Finland 1 [0; 1]* -1 [0; -1] 0 [1; -1] 3 [2; 3]* 0 [0; 0] 0 [0; 0] 

France 11 [6; 16]* 29 [9; 47]* -44 [8; -97]* 69 [55; 84]* 10 [6; 14]* -3 [-1; -4]* 

Germany 12 [7; 18]* 15 [5; 25] 125 [-23; 

276]* 

88 [70; 106]* 8 [4; 10] 9 [3; 11]* 

Hungary 1 [1; 2]* 5 [1; 8]* 2 [0; 5] 6 [5; 7]* 2 [1; 2]* 0 [0; 0] 
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 Mortality   Asthma   

Country NO2 O3 PM2.5 NO2 O3 PM2.5 

India 52 [29; 76] -300 [-77; 

-522] 

5313 [998; 

11763]* 

259 [207; 

308] 

-197 [-106; 

-273] 

460 [174; 

576]* 

Ireland 0 [0; 1]* 2 [1; 4]* -2 [0; -4] 5 [4; 6]* 2 [1; 2]* 0 [0; 0] 

Italy 12 [7; 17]* 5 [1; 10] 97 [-18; 

214]* 

68 [54; 81]* 2 [1; 2] 5 [2; 6]* 

Lithuania 0 [0; 0] 1 [0; 2] -5 [1; -10] 0 [0; 0] 0 [0; 1] 0 [0; 0] 

Macedonia 0 [0; 0] 0 [0; 0] 7 [-1; 16] 0 [0; 0] 0 [0; 0] 1 [0; 1] 

Norway 1 [0; 1]* 0 [0; 0] 0 [0; -1] 6 [4; 7]* 0 [0; 0] 0 [0; 0] 

Poland 1 [1; 2] 14 [4; 24] -33 [6; -73] 7 [6; 9] 5 [3; 7] -2 [-1; -3] 

Portugal 2 [1; 3]* -1 [0; -2] 0 [-8; 8]* 13 [11; 16]* 0 [0; -1] 0 [0; 0]* 

Slovakia 0 [0; 0]* 2 [1; 4]* 11 [-2; 25]* 1 [1; 2]* 1 [0; 1]* 1 [0; 1]* 

Spain 10 [5; 14]* 1 [-1; 3] -48 [-29; -

68]* 

83 [65; 100]* 1 [1; 2] -2 [-1; -2]* 

Switzerland 1 [0; 1]* 4 [1; 7]* -10 [12; -

33]* 

6 [5; 7]* 2 [1; 3]* -1 [0; -1]* 

Thailand 0 [0; 0]* 0 [0; 0] -14 [3; -32] 0 [0; 0]* 0 [0; 0] -1 [0; -2] 

United 

Kingdom 

9 [5; 13]* 18 [12; 

24] 

0 [0; 0] 73 [58; 88]* 5 [3; 7] 0 [0; 0] 

United 

States 

0 [0; 0]* 0 [0; 0]* 0 [0; 0] 0 [0; 0]* 0 [0; 0]* 0 [0; 0] 

 556 

 557 

  558 
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Table S3. Projected health burden response. Potential premature deaths and asthma 559 

incidence that might be avoided between April and December 2020 assuming pollutant levels 560 

remain at lockdown levels (NO2: -29%; O3: -11%; PM2.5: -9%). Country averages and 95% 561 

confidence intervals are reported. Numbers are rounded to the nearest whole number. Values 562 

with significant (p < 0.05) pollutant anomalies after correcting for meteorological parameters are 563 

indicated with *. 564 

 565 

 566 

 Mortality   Asthma   

Country NO2 O3 PM2.5 NO2 O3 PM2.5 

Australi

a 

0 [0; 0]* 0 [0; 0]* 1183 [-100; 

2490] 

271 [212; 

329]* 

1 [0; 1]* 720 [244; 

951] 

Belgium 375 [206; 

544]* 

66 [17; 

115]* 

743 [-140; 

1645] 

412 [323; 

500]* 

554 [303; 

760]* 

985 [336; 

1299] 

Canada 0 [0; 1] 0 [0; 0] 1501 [1033; 

1969] 

187 [147; 

228] 

1 [0; 1] 598 [203; 

790] 

Chile 566 [311; 

820]* 

52 [13; 

90]* 

566 [-1424; 

2577]* 

834 [659; 

1004]* 

402 [213; 

568]* 

2251 [783; 

2940]* 

China 53168 

[29267; 

77028]* 

11900 

[1707; 

21169] 

106239 

[82918; 

129560]* 

184362 

[146185; 

221065]* 

138422 

[84473; 

170702] 

434338 

[152711; 

564220]* 

Croatia 165 [91; 

239]* 

44 [11; 

76] 

429 [-81; 

950]* 

142 [111; 

172]* 

194 [111; 

255] 

321 [110; 

422]* 

Czechia 337 [186; 

489] 

107 [12; 

196] 

1127 [-212; 

2495] 

419 [329; 

508] 

478 [273; 

628] 

893 [306; 

1174] 

Denmar

k 

82 [45; 

118] 

36 [9; 63]  0 [0; 0] 196 [110; 

262] 

 

Finland 104 [57; 

151]* 

42 [11; 

72] 

27 [-104; 

158] 

63 [49; 76]* 204 [114; 

274] 

148 [50; 

195] 

France 2102 

[1157; 

3046]* 

588 [186; 

960]* 

3911 [-735; 

8658]* 

1584 [1240; 

1924]* 

3016 [1700; 

4020]* 

3699 [1259; 

4882]* 

German

y 

3216 

[1770; 

497 [165; 

796] 

6606 [-1241; 

14627]* 

3087 [2418; 

3745]* 

3516 [1933; 

4803] 

6464 [2205; 

8522]* 
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 Mortality   Asthma   

Country NO2 O3 PM2.5 NO2 O3 PM2.5 

4661]* 

Hungary 448 [247; 

650]* 

86 [22; 

149]* 

1115 [-209; 

2469] 

371 [291; 

450]* 

391 [218; 

528]* 

826 [283; 

1086] 

India 61323 

[33762; 

88829] 

5053 

[1299; 

8807] 

464884 [-

87318; 

1029256]* 

136241 

[110166; 

160303] 

46895 

[25231; 

65438] 

580762 

[214905; 

736696]* 

Ireland 96 [53; 

139]* 

27 [7; 

47]* 

162 [-30; 

359] 

116 [91; 

141]* 

308 [172; 

415]* 

302 [103; 

398] 

Italy 2493 

[1372; 

3613]* 

557 [93; 

1052] 

4791 [-900; 

10608]* 

1792 [1405; 

2174]* 

2266 [1282; 

3011] 

3417 [1166; 

4503]* 

Lithuani

a 

85 [47; 

123] 

24 [6; 42] 311 [-58; 

689] 

98 [77; 119] 113 [62; 

155] 

229 [78; 

302] 

Macedo

nia 

62 [34; 90] 13 [3; 22] 339 [-64; 

750] 

144 [114; 

174] 

87 [48; 119] 366 [127; 

477] 

Norway 121 [67; 

175]* 

26 [7; 46] 135 [-25; 

300] 

55 [43; 67]* 196 [110; 

263] 

168 [57; 

222] 

Poland 1147 [631; 

1662] 

307 [79; 

533] 

4440 [-834; 

9830] 

1764 [1388; 

2132] 

1623 [911; 

2173] 

3833 [1321; 

5029] 

Portugal 336 [185; 

487]* 

57 [-16; 

135] 

16 [-612; 

650]* 

197 [154; 

240]* 

420 [236; 

561] 

403 [137; 

532]* 

Slovakia 162 [89; 

234]* 

46 [12; 

79]* 

482 [-91; 

1068]* 

172 [135; 

209]* 

219 [124; 

290]* 

389 [133; 

511]* 

Spain 1207 [664; 

1749]* 

136 [-

181; 430] 

5998 [3611; 

8415]* 

1616 [1265; 

1962]* 

2418 [1360; 

3230] 

3015 [1026; 

3979]* 

Switzerl

and 

241 [133; 

349]* 

63 [10; 

113]* 

342 [-415; 

1116]* 

279 [218; 

339]* 

451 [258; 

595]* 

559 [191; 

738]* 

Thailand 2 [1; 3]* 0 [0; 0]  0 [0; 0] 2 [1; 3]  
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 Mortality   Asthma   

Country NO2 O3 PM2.5 NO2 O3 PM2.5 

United 

Kingdo

m 

2337 

[1286; 

3386]* 

843 [577; 

1109] 

23130 

[18738; 

27522] 

1886 [1476; 

2291]* 

3547 [1960; 

4821] 

10426 

[3541; 

13772] 

United 

States 

8 [5; 12]* 2 [1; 3]* 0 [0; 0] 3506 [2742; 

4261]* 

13 [6; 19]* 0 [0; 0] 

 567 

 568 

 569 
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