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Key Points 

Question: What are key factors that define the vulnerability of counties in the US to cases of 

the COVID-19 virus? 

 

Findings: In this epidemiological study based on publicly available data, we develop a model 

that predicts vulnerability to COVID-19 for each US county in terms of likelihood of going from 

no documented cases to at least one case within five days and in terms of number of 

occurrences of the virus. 

 

Meaning: Predicting county vulnerability to COVID-19 can assist health organizations to better 

plan for resource and workforce needs. 
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Abstract 

Importance: The rapid spread of COVID-19 means that government and health services 

providers have little time to plan and design effective response policies. It is therefore important 

to rapidly provide accurate predictions of how vulnerable geographic regions such as counties 

are to the spread. 

Objective: Developing county level prediction around near future disease movement for 

COVID-19 occurrences using publicly available data. 

Design: Original Investigation; Decision Analytical Model Study for County Level COVID-19 

occurrences using data from March 14-31, 2020. 

Setting: Disease spread prediction for US counties. 

Participants: All US county level granularity based on data fused from multiple publicly 

available sources inclusive of health statistics, demographics, and geographical features. 

Exposure(s) (for observational studies): Daily county level reported COVID-19 occurrences 

from March 14-31, 2020. 

Main Outcome(s) and Measure(s):  We developed a 3-stage model to quantify, firstly the 

probability of COVID-19 occurrence for unaffected counties using XGBoost classifier and 

secondly, the number of potential occurrences of a county via XGBoost regression.  Thirdly, 

these results are combined to compute the county level risk. This risk is then used as an 

estimated after-five-day-vulnerability of the county. 

Results: Using data from March 14-31, 2020, the model shows a sensitivity over 71.5% and 

specificity over 94%.  

Conclusions and Relevance: We found that population, population density, percentage of 

people aged 70 or greater and prevalence of comorbidities play an important role in predicting 

COVID-19 occurrences. We found a positive association between affected and urban counties 

as well as less vulnerable and rural counties. The developed model can be used for 
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identification of vulnerable counties and potential data discrepancies. Limited testing facilities 

and delayed results introduces significant variation in reported cases and produces a bias in the 

model. 

Trial Registration: Not Applicable 
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Introduction 

The continued spread of confirmed cases of COVID-19, absence of a vaccine, limited resources 

for testing and assisting people with confirmed cases have presented a great challenge for our 

public health and healthcare provider systems. To this point, nonpharmaceutical interventions 

such as social distancing are the only effective mitigation measures. The rapid spread of the 

disease means that government and health services have very little time to plan and design 

effective response policies such as resource and workforce planning. Accurately predicting the 

near future COVID-19 spread at sufficient granularity would provide these organization with 

better information and time to appropriately plan and respond.  

 

We have developed a three-stage machine learning model to estimate COVID-19 spread 

outcomes at the US county level. In the first stage, we estimate the probability that a county has 

at least one confirmed COVID-19 case. In the second stage, we estimate the number of COVID-

19 occurrences given that county has at least one case. Finally, we combine the results from 

the two stages to estimate those counties that have the greatest and least vulnerability for 

changes in disease prevalence for the next five-day period.    

 

There has been significant epidemiological work for previous coronavirus pandemics such as 

MERS and SARS.1 For example, Badawi et al.2 performed systematic analysis of prevalence of 

comorbidities in MERS using data from 12 studies and found that diabetes and hypertension 

were present in 50% of the cases. Matsuyama et al.3 systematically reviewed studies involving 

laboratory confirmed MERS cases to measure both the risk of admission to the Intensive Care 

Unit (ICU) and death. They compared risks by age, gender and underlying comorbidities. Park 

et al.4 reviewed characteristics and associated risks factors of MERS. Bauch et al.5 surveyed 

SARS modeling literature focused on understanding the basic epidemiology of the disease and 
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evaluating control strategies. Surveyed SARS models varied in the terms of population studied 

and geographical characteristics.6,7 Different designs were used for SARS modeling consisting 

of deterministic compartmental models7, stochastic compartmental models6, a combination of 

stochastic and deterministic compartmental models8, discrete-time models9, logistics curve 

fitting models10, contact network models11 and likelihood-based models.12 Studies associated 

with risk factors for SARS13 and MERS3,14–20 have found an association between comorbidities 

and infected cases.  

 

MERS and SARS epidemiological modeling has been done at different granularities such as the 

country21,22, specific region23, and case clusters.6 Given the much broader reach of COVID-19 

compared to MERS and SARS, it is very important to predict at a sufficiently high level of 

granularity.  This is particularly important since previous studies have shown that there is 

considerable heterogeneity in space, transmissibility and susceptibility.5 Our approach is 

developed at county level with inclusion of a variety of health statistics, demographics and 

geographical features of counties. Further, we use publicly available data so that any 

organization could use the model. To the best of our knowledge, no work has been done to 

predict near future infection risk at the county level using the combination of health statistics, 

demographics and geographical features of counties. 
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Methods 

Study Design and Population 

 

We performed an epidemiological study at the US county level using publicly available data to 

develop a machine learning predictive model.  Data analysis was performed from February 15, 

2020, to April 3, 2020. The study was reviewed by the Penn State Integrated Research Ethics 

Board and deemed exempt because it was a deidentified, secondary data analysis. This study 

followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

reporting guideline.24 

 

Data Sources 

 

We used US Census data to obtain county level population statistics for age, gender and 

density . 25,26 We obtained county level data for diagnosed adult diabetics percentage and 

cancer crude rate statistics from the Center for Disease Control and Prevention (CDC).27,28 We 

used county level hypertension estimates and chronic respiratory disease mortality rates from 

the Global Heath Data Exchange (GHDx)29,30 , provided by the Institute for Health Metrics and 

Evaluation. We obtained the centroids for each county from ArcGIS.31 Finally, we obtained US 

Census Cartographic Boundary files for each county in JSON format32 and county level COVID-

19 daily occurrences data (confirmed cases) from NYTimes GitHub page.33,34  

 

Outcomes 

 

There are three primary outcomes for our predictive model: i) the probability that a county has at 

least one confirmed case of COVID-19, which we define as a positive instance, ii) the number of  
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confirmed COVID-19 cases within a county, which we define as occurrences, and iii) 

vulnerability of the county. 

 

Covariates 

 

Previous studies have shown angiotensin-converting enzyme 2 (ACE2) facilitates the infection 

of COVID-1935–37, and that patients with diabetes, hypertension and cardiovascular diseases 

have an increased expression of ACE2.35  County population factors such as density, age, and 

sex have a significant impact on the spread of an epidemic.38 Cancer and chronic respiratory 

diseases have also been shown to increase mortality risk for COVID-19.39 

 

The dataset used for our three-stage model contains correlated variables.  For example, 

diabetes and hypertension prevalence, cancer crude rate and old population. Additionally, the 

underlying relationship between variables was assumed to be non-linear. For such cases the 

literature supports 40–47 using gradient tree boosting and deep learning methods for better 

prediction results. 
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Statistical Analysis 

Developing the Prediction Model 

 

In order to predict COVID-19 outcomes, we divided the problem into three stages. In the first 

stage, we formulated a binary classification problem that included both positive and negative 

instances. We developed an XGBoost48 classifier model to learn from the data. We divided the 

dataset into training and testing in 80-20 proportions for each class. We tuned the 

hyperparameters of the model using the Hyopt package.  

 

In the second stage, we formulated an XGBoost regression model that included data only for 

positive instances with number of occurrences as the response. As in the case for the first 

stage, we divided data into training and testing sets in 80-20 proportions and used the Hyopt 

package for hyperparameter tuning.  

 

In the last stage, we combined results from the first two stages and calculated the expected 

occurrences for counties as a measure of county vulnerability. For the calculation of expected 

occurrences, we multiplied the probability of county belonging to the positive instances derived 

using the classification model, with potential occurrences the same county will have if it 

becomes a positive instance derived using the regression model.  

 

 

Evaluating the Prediction Model 

 

Area under the receiver operating characteristic curve (AUC)  and accuracy are used as the 

criteria to evaluate the classification model (the first stage of the model).  The root mean 
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squared error (RMSE) is used as the criteria to evaluate the regression model (the second 

stage of the model). The final stage of the model- vulnerability was assessed by examining the 

sensitivity and specificity of the prediction.  
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Results 

The variable importance for the overlapping predictors between the final classification and 

regression models for March 16th is shown in Figure 1. Total population (TOT_POP) was the 

most important variable for both the classification and regression models.  Other important 

variables included population density, longitude, hypertension prevalence, chronic respiratory 

mortality rate, cancer crude rate, and diabetes prevalence. Latitude (we use this to identify 

neighboring counties and the presence or absence of positive class in the neighborhood) and 

percentage of populations older than 70 years  were found to be the least important features of 

those considered, though still played a role. 

 

Figure 2 shows a map of the USA with the predicted probability of being a positive instance for 

each county in the USA as a color gradient. County level statistics can be viewed by moving the 

cursor of the county of interest.  The example of New York County as of March 14th  is shown in 

the Figure 2. 

 

Accuracy and AUC for the first stage model is shown in Table 1. Predictions of the model for all 

US counties are consistent over the 18 days with little variation in AUC and accuracy values. 

Similarly, RMSE for the second stage model for all US counties is presented in Table e1.  

 

The sensitivities and specificities for the vulnerability predictions for the three-stage model 

trained on data from March 14th to March 26th are shown in Tables 2 and 3. The values are 

given for each day.  The sensitivity (Table 2) is given by percentage of counties that had no 

confirmed cases but were identified as being among the 5% most vulnerable had at least one 

confirmed COVID-19 case five days later.  The specificity (Table 3) is given by the percentage 
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of counties identified as being among the 10% least vulnerable with no confirmed cases that still 

had no confirmed cases five days later.    

 

The dataset is comprised of 37% urban and 63% rural counties based on the urban and rural 

county definition for year 2013.49  In order to determine if there is an association between 

urbanicity and vulnerability, we performed a set of one-sided t-tests. The null hypothesis - the 

10% least vulnerable counties would have the same proportion of rural counties as the actual 

proportion of rural counties in the dataset - was rejected for every day from March 14th to March 

26th. Additionally, the null hypothesis - the actual positive instances counties would the same 

proportion of urban counties as the actual proportion of urban counties in the dataset - was also 

rejected for every day over the analysis period. It can therefore be concluded that there is a 

positive association between urban and most vulnerable counties as well as rural and least 

vulnerable counties. The continuous decreasing trend in the confidence interval of the urban 

counties proportion estimate within actual positive instance counties can be used to infer that 

COVID-19 is propagating from urban counties to rural counties.  
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Discussion 

We developed a three-stage machine learning model using publicly available data to predict the 

five-day vulnerability of a US county.  The model estimates the likelihood and impact that a 

county with no documented COVID-19 cases will have within a five-day period and using them, 

vulnerability prediction for a county is made. Using data from March 14th to Marth 31st, 2020, the 

model showed a sensitivity over 71.5% and specificity over 94%. We found a positive 

association between affected counties and urban counties as well as top 10% least vulnerable 

counties and rural counties. Further, counties with higher population density, a greater 

percentage of 70 years of above age people, higher diabetes, cardiac illness and respiratory 

diseases prevalence are more vulnerable to COVID-19 than their counterparts. 

 

Our model serves multiple purposes. First, it can help in identifying potentially vulnerable 

counties. This prediction would be a vital component in managing COVID-19 spread by 

providing vulnerability information based on the likelihood and magnitude of change within five 

days.  That can help health organizations to plan effectively for management of hospital 

resources and workforce, rapid response teams, and COVID testing kits and testing locations. 

In addition, there are multiple counties with limited testing facilities, and with current swab-based 

testing, it takes multiple days to get the results. Thus, occurrences associated with each county 

fluctuate rapidly daily.  

 

There are multiple limitations to our work.  First, there are several predictors that we did not 

include in the model that have known associations with COVID-19.  However, one of our goals 

was to make sure that any organization could use our model by only including data that is 

publicly available.  Second, our analysis (Table e2) found that there is an increasing trend for 

the coefficient of variation (CV) for occurrences associated with positive instances counties. 
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Note that CV is a proxy for economic inequality.50–53 Hence, there is a bias in the response 

variable, which can reduce the accuracy of the prediction. As testing facilities improve in terms 

of numbers and efficiency, this bias would be minimized and would be reflected in the model. 

Given this point, it would useful to look at top riskiest and top safest counties predicted by MJK 

model and examine for potential data discrepancies. Finally, additional feature engineering and 

stacking methods can be utilized to enhance the prediction capabilities of existing models.  

 

Our work uses open source programming and publicly available data. We will make the full 

dataset, sample modeling and result outputs available with instructions for use soon on: 

https://github.com/mihirpsu/covid_19 
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Figure 1: Variable Importance for the Classification and Regression Models 

 
 
Abbreviations: 
TOT_POP: total population 
Pop_den_pernile: population density 
Hyper_per: hypertension percentage  
CRD_MR: chronic respirator mortality rate 
diab_perc: diabetes percentage 
CRUDE_RATE: cancer crude rate 
old_per: percentage of population aged 70 and above 
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Figure 2: County Level COVID-19 Vulnerability Map for the US 
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Table 1: XGBoost Classification Training and Testing Details 
 

Dataset Metrics Mean Min Max Standard 
Deviation 

Number 
of Days 

Test 
Accuracy 83% 77% 92% 5% 18 

AUC 78% 71% 83% 3% 18 

Train 
Accuracy 94% 82% 100% 5% 18 

AUC 91% 80% 100% 6% 18 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 11, 2020. .https://doi.org/10.1101/2020.04.06.20055285doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.06.20055285
http://creativecommons.org/licenses/by-nd/4.0/


Table 2: Sensitivity of the three-stage Model 
 

Date Number of Highest 5% Most 
Vulnerable Counties on the  

Given Date 
(0 confirmed case) 

Number of Infected Counties 
after 5 Days 

 (5% Most Vulnerable 
Counties)  

Sensitivity 

3/14/2020 92 61 66.30% 
3/15/2020 119 90 75.63% 
3/16/2020 151 99 65.56% 
3/17/2020 199 144 72.36% 
3/18/2020 144 110 76.39% 
3/19/2020 176 115 65.34% 
3/20/2020 198 146 73.74% 
3/21/2020 166 125 75.30% 
3/22/2020 158 120 75.95% 
3/23/2020 84 66 78.57% 
3/24/2020 89 65 73.03% 
3/25/2020 336 208 61.90% 
3/26/2020 104 72 69.23% 
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Table 3: Specificity of the three-stage Model 
 

Date Number of Top 10% Least 
Vulnerable Counties on the Date 

(0 confirmed case) 

Number of Counties with 0 
case after 5 Days  

(Top 10% Least Vulnerable 
Counties)  

Specificity 

3/14/2020 276 274 99.28% 
3/15/2020 282 276 97.87% 
3/16/2020 46 44 95.65% 
3/17/2020 313 304 97.12% 
3/18/2020 297 281 94.61% 
3/19/2020 214 198 92.52% 
3/20/2020 295 266 90.17% 
3/21/2020 312 291 93.27% 
3/22/2020 15 14 93.33% 
3/23/2020 310 289 93.23% 
3/24/2020 303 270 89.11% 
3/25/2020 214 197 92.06% 
3/26/2020 231 218 94.37% 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 11, 2020. .https://doi.org/10.1101/2020.04.06.20055285doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.06.20055285
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Materials: 

Table e1: XGBoost Regression Training and Testing Details 
Table e2: Table e2: COVID-19 Daily Positive Occurences Descriptive Statistics 
Supplementary Results: 
Table e3: Samples of Counties from the Top 5% Riskiest Counties with Negative Instances 
Table e4: Samples of Counties from the Top 10% Safest Counties 

 
Table e1: XGBoost Regression Training and Testing Details 

Dataset Metrics Mean Min Max Standard 
Deviation 

Number 
of Days 

Test RMSE 117.10 7.13 372.97 105.00 18 

Train RMSE 14.02 1.19 48.59 14.28 18 

 
 
Table e2: COVID-19 Daily Positive Occurences Descriptive Statistics 

Date Mean Standard 
Deviation Coefficient of Variation 

3/14/2020 7.01 25.25 3.60 
3/15/2020 7.63 26.44 3.46 
3/16/2020 8.53 29.39 3.44 
3/17/2020 9.66 33.76 3.49 
3/18/2020 10.96 38.91 3.55 
3/19/2020 12.98 49.54 3.81 
3/20/2020 14.85 61.98 4.17 
3/21/2020 17.56 78.73 4.48 
3/22/2020 20.93 103.22 4.93 
3/23/2020 24.96 135.00 5.41 
3/24/2020 28.21 162.05 5.74 
3/25/2020 30.82 181.81 5.90 
3/26/2020 36.29 218.46 6.02 
3/27/2020 41.86 255.72 6.11 
3/28/2020 47.43 288.14 6.07 
3/29/2020 52.69 322.05 6.11 
3/30/2020 58.01 354.68 6.11 
3/31/2020 64.93 395.28 6.09 
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Supplementary Results: 
Table e3 shows a sample list of negative instance counties as of March 14th. The 3-stage model predicted them in the 
top 5% riskiest counties additional to infected counties. All these sample counties were identified as positive 
instances on March 19th. Similarly, Table e4 shows a sample list of negative instance counties as of March 14th. The 
3-stage model predicted them as top 10% safest counties. All these sample counties continued to be negative 
instances on March 19th as shown in the table. 

 
Table e3: Samples of Counties from the Top 5% Riskiest Counties with Negative 
Instances 

State County Number of cases on 
March 14th 

Number of cases on 
March 19th 

Florida Leon  0 3 
Illinois Will  0 11 
Maine York 0 3 

Massachusetts Plymouth  0 5 
Minnesota Washington  0 3 
New York Erie  0 27 

Texas Denton  0 9 
Wisconsin Kenosha  0 4 

 
 
Table e4: Samples of Counties from the Top 10% Safest Counties 

State County Number of cases on 
March 14th 

Number of cases on 
March 19th 

Georgia Glascock 0 0 
Kansas Smith  0 0 

Kentucky Hickman  0 0 
Mississippi Issaquena 0 0 

New Mexico Catron 0 0 
North Dakota Emmons  0 0 

Texas Jack  0 0 
Texas Sutton  0 0 
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