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Predictions on the time-evolution of the number of severe and critical cases of COVID-19 patients in Guadeloupe are presented. A
stochastic model is purposely developed to explicitly account for the entire population (' 400000 inhabitants) of Guadeloupe. The
available data for Guadeloupe are analysed and combined with general characteristics of the COVID-19 to constrain the parameters
of the model. The time-evolution of the number of cases follows the well-known exponential-like model observed at the very beginning
of a pandemic outbreak. The exponential growth of the number of infected individuals is controlled by the so-called basic reproductive
number, R0, defined as the likely number of additional cases generated by a single infectious case during its infectious period TI .
Because of the rather long duration of infectious period (' 14 days) a high rate of contamination is sustained during several weeks
after the beginning of the containment period. This may constitute a source of discouragement for people restrained to respect strict
containment rules. It is then unlikely that, during the containment period, R0 falls to zero. Fortunately, our models shows that the
containment effects are not much sensitive to the exact value of R0 provided we have R0 < 0.6. For such conditions, we show that the
number of severe and critical cases is highly tempered about 4 to 6 weeks after the beginning of the containment. Also, the maximum
number of critical cases (i.e. the cases that may exceed the hospital’s intensive care capacity) remains near 30 when R0 < 0.6. For a
larger R0 = 0.8 a slower decrease of the number of critical cases occurs, leading to a larger number of deceased patients. This last
example illustrates the great importance to maintain an as low as possible R0 during and after the containment period. The rather
long delay between the beginning of the containment and the appearance of the slowing-down of the rate of contamination puts a
particular strength on the communication and sanitary education of people. To be mostly efficient, this communication must be done
by a locally recognised medical staff. We believe that this point is a crucial matter of success.
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Introduction
The most recent evolution of the pandemic COVID-19 disease in Western Europe indicates that this region is, together with the
United States, the new centre of the pandemic spread (e.g. (1) and other reports issued by the World Health Organization). Italy
and Spain are confronted with large outbreaks of SARS-CoV-2 infection. In France, the rate of new infections daily increases
and measures have already been taken to increase the intensive care capacity of the main hospitals of the country. Also, in order
to face with the strong heterogeneity of case number among the different regions in France, medevacs (either by air or railway)
have been undertaken to optimally redistribute the most critical patients in the country’s intensive care facilities. In this context,
the situation of remote French territories like Guadeloupe is particularly critical since, although possible, medevacs should be
anticipated with a longer delay because of the distance and the duration of the travels.
Numerical models of the spread of epidemic diseases may be of some help to anticipate the evolution of the situation in a
near-future of several weeks and, eventually, may reveal a likely disruption of the local intensive care capacity. In short,
mathematical models may be ranked in two main categories, namely semi-analytical models and numerical stochastic and
Monte Carlo models (see (2) for a review). In the former category, the spread of the disease is modelled by a set of coupled
differential equations that account for the most important characteristics of the disease. This approach is largely followed (3–5).
The second category of models is, in some sense, more straightforward and relies on network models to explicitly considers
the individuals constituting the population. Such an approach offers a great versatility to tackle with complicated features,
like social interaction matrices, that are difficult to introduce in semi-analytical models. The main drawback of numerical
stochastic models is their computer-intensive demand that, for large populations, necessitates the use of multi-scale or coarse-
grained algorithms. Thanks to the moderate size of the population of Guadeloupe, no such difficulties are encountered and a
straightforward approach is possible.

Method
The technical details of the model are explained in the appendix Stochastic Monte Carlo model, and we here recall its main
characteristics. A flowchart of the model is shown in Figure 1. As stated above, all individuals forming the population are
considered as nodes in a fully connected network where everyone is able to meat anyone. By using social contact matrices,
this full connection could be modified to account for demographic and social heterogeneity. Also, we have not considered the
age-dependence of the COVID-19 effects.
Each individual of the network may, temporarily or definitely, be in the following state (Fig. 1): non-infected, infected with
minor symptoms ("infectious"), infected with severe symptoms ("severe"), infected critical ("critical"), dead or recovered. In the
vocabulary of epidemic modelling, non-infected correspond to the so-called "Susceptibles" and minor infected are "Infectious".
In our model, both the severe and critical infected are not considered as infectious because they are isolated in hospital facilities
and unable to significantly contaminate others. Although this is statistically justified in our model, actually this assumption is
contradicted by the sad death of several French medics.
According to the classical nomenclature, our model is a SIscRd model where the lowercase "sc" indicate the transient and
non-contaminating nature of these states. To the best of our knowledge at the time of writing this paper, it does not seem that
recovered "R" patients are able to again become infectious "I" (6). The deceased "d" patients may remain infectious several
days (7) and we assume that they are safely isolated to prevent any contamination.
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Fig. 1. Flowchart of the stochastic modelling procedure. In the general case, a susceptible non-infected person S1 becomes infected. This new infected I may contaminate a
numberR0 of other susceptibles (here S2 and S3) during his infected period TI (red line) which may run beyond the recovery period ∆TI (in yellow). During the sub-period
δTs (shaded rectangle), the infectious "I" may switch to state "severe" with a probability ps. If the patient remains in state "I" until the end of the recovery period ∆TI , he
becomes definitively recovered "R". Instead, if the patient switches to state "s", he may either recover at the end of the recovery period ∆Ts or switch with a probability pc to
state critical "c" during the switching period δTc. The same procedure applies to state critical "c".

Each individual may switch from one state to another with given probabilities. For instance, a "susceptible" may become
"infectious", then "severe" and finally "recovered". This example corresponds to the sequence:

S −→ I −→ s−→R. (1)

The duration of stay in a given class is variable, depending on the initial health status of each patient. Clinical data collected
world-wide put constrains on the possible range of each parameter.
The model is based on an evolutionary scheme where the initial conditions correspond to a non-infected population excepted
a small (typically several tens) number of "infectious". Once initialised, the algorithm proceeds by time-steps and, for each
time-step, the sequence of evolutionary operations is applied. For instance, for the time-step corresponding to day k of the
simulation process:

1. All infectious, severe and critical patients that reached their respective recovery duration (i.e. ∆TI , ∆Ts, ∆Tc) are
definitely switched to the state recovered "R" (Fig. 1).

2. The ensemble of infectious at day k may contaminate susceptibles "S" with a probability given by the R0 value at day k.
By this way, the model is able to account for rapid time-changes of R0.

3. All infectious, severe and critical patients that are in their switching period (i.e. δts, δtc and δtd in Fig. 1) may switch to
the next stage with a given probability. This corresponds to the following possible transitions: I −→ s, s−→ c, c−→ d.

Allali et al. | Guadeloupe Covid-19 evolutionary model medRχiv | 3

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2020. .https://doi.org/10.1101/2020.04.12.20063008doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.12.20063008
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Model 1 results. A) semi-logarithmic (Natural logarithm) plot of the cumulative number ΣNs of severe cases. Green bars = data and red bars = model. B)
Instantaneous numberNI of infectious. C) same as (A) in linear axis. D) Instantaneous numberNc of critical cases. Green bars = data and red bars = model. E) Cumulative
number ΣNd of deceased patients. Green bars = data and red bars = model. The parameter values used in the model are shown in the upper-right part of the figure together
with the time-variation of the basic reproductive number R0. The red rectangles represent the 80% confidence interval centred on the median.

Data
The data used in the present study, are daily communicated by the University Hospital to the local authorities, i.e. the Regional
Health Agency (Agence Régionale de Santé in French). They correspond to the cumulative number of persons with COVID-
19, the cumulative number of deceased patients and the number of patients presently in intensive care units. Detailed data for
France are made available by Santé Publique France (8).
Both the cumulative number of deceased patients and the number of patients presently in intensive care units respectively
correspond to ΣNd and Nc in the model. The cumulative number of persons with COVID-19 could be something between
ΣNI and ΣNs, depending on the screening procedure. In France, a majority of the persons tested for COVID-19 are patients
with severe symptoms and admitted in specialised COVID-19 units. Such is the case in Guadeloupe and, consequently, the
cumulative number of persons with COVID-19 as announced by ARS correspond to the ΣNs of the model.
In the present study, we use the data going from March 13 2020 to April 11 2020 shown in Figure 8 of appendix Bootstrapping
method of data analysis.

Results
The model derived in the present study is highly non-linear with respect to most parameters, and it is expected that non-unique
and significantly different solutions fitting the data might be obtained. This could be performed by the means of non-linear
inverse methods like simulated annealing (9, 10) and will be presented in a forthcoming study. In the present study, the ZI and
time-varyingR0 parameters are adjusted with the Nelder-Mead downhill simplex (11, 12). The other parameters are determined
with clinical observations in the Guadeloupe hospital and data published in the abundant literature concerning COVID-19.
Figure 2 shows the results for model 1. The time variations of R0 have been adjusted to reproduce the flattening visible in
the ΣNs data from day 21. The corresponding values of the parameters are recalled in the upper-right panel of the Figure.
This model provides a good fit to all data ΣNs, Nc and ΣNd. In order to reproduce the initial rapid exponential increase
observed before day 10, quite large values of R0 = [4.2 4.2 4.2 4.5 4.5 4.5] are found for the first 6 days of the simulation (day
1 corresponds to March 11, 2020). These high R0 are obtained during the week before municipal elections when meetings
occurred and were probably places of high contamination rates (13, 14). This could explain the high R0 values found with the
model.
Interestingly, the large R0 from days 1 to 6 must be combined with a large ZI = 80 to fit the sharp a onset of the ΣNs curve
(Fig. 2A). The reasons for such a large number of initial infectious remain unknown, but we may suspect either a massive
arrival of infected aircraft or ship passengers or the existence of several infectious spots like funeral wakes or election meetings
as mentioned above.
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Fig. 3. Results for model 2 with the same parameters as model 1 (Fig. 2) excepted for the containment R0 = 0.6 from day 19 (March 29).

Fig. 4. Results for model 3 with the same parameters as model 1 (Fig. 2) excepted for the containment R0 = 0.8 from day 19 (March 29).

In order to fit the strong inverse curvature of the log(ΣNs) curve between days 10 to 20, R0 must be gradually decreased
from day 7 (March 17) to day 18 (March 28): R0 = [3.2 2.3 1.4 1.2 1.1 1.0 1.0 0.9 0.8 0.6 0.5 0.45]. The starting date of the
decrease corresponds to the beginning of the containment following the second speech of the President of the French Republic,
Mr Macron, on March 16. To reproduce the flat almost horizontal end of the data from day 21 (March 31), it is necessary to
reduce R0 = 0.35 from day 19 (March 29) until the end of the process (i.e. day 80).
With this model, the maximum Nc = 25±3 is reached near day 28 (April 7) about 3 weeks after the beginning of the contain-
ment. After this date, the number of critical cases sharply decreases to reach a low base level about 4 weeks later, i.e. during
the first week of May.
To illustrate the role played by R0 during the containment period, we present the results for 2 models with the same parameter
values as for model 1 excepted during the containment. We set R0 = 0.6 in model 2 (Fig. 3) and R0 = 0.8 for model 3 (Fig.
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Fig. 5. Effects of uncontrolled end of containment. Same model as in Figure 2 but with an uncontrolled end of containment at day 70 with a sudden resetting of R0 = 4.0.
The model indicates that, after approximately one month of low-level infectious spread, the number of cases again dramatically increases after day 90.

4). Both models 2 and 3 fit the data as well as model 1 excepted for the flattening part of the ΣNs data after day 21 (March
31). This indicates that the determination of R0 during the containment is constrained only by the most recent data values. The
quality and reliability of these data is then of a great importance to derive models able to predict an eventual decrease of critical
cases.
Model 2 (Fig. 3) corresponds to the containmentR0 = 0.6 and gives a maximum number of critical cases of the same order and
at the same date as the one obtained with model 1 (Fig. 2). However, the decrease following the maximum is less steep and low
values are reached about 3 weeks later with respect to what is observed with model 1. This translates into a larger cumulative
number of critical case and, consequently, in a larger number of deceased patients (compare Fig. 2E and Fig. 3E).
Model 3 (Fig. 4) corresponds to R0 = 0.8. As can be verified in Figure 4A,C, the flattening of the data after day 21 (March 31)
is poorly reproduced making this model less likely than models 1 and 2. However, owing that the flattening of the ΣNs curve
relies on a small part of the most recent data,this pessimistic model cannot be totally excluded at the time of writing this article.
The maximum values of critical cases may reach a maximum of 30 critical patient followed by a plateau with a small slope
during which the instantaneous number Nc remains around 15-20 one month after the date of the maximum. This correspond
to a situation where the treatment of numerous critical patients must be sustained during a long period, implying the disposal of
a sufficiently large medical staff and amount of equipment. As can be observed in Figure 4E the number of deceased patients
increases steadily.

Concluding remarks
A common characteristic to all 3 models presented above, is the need of a quite large number ZI = 80 of initial infectious
persons coupled with a large R0 ' 4 at the beginning of the epidemic spread. This large ZI could be explained either by the
importation of a large number of infected persons or the presence of several super contaminators able to contaminate tens of
persons during meetings in a short period of time (see (13, 14) for the effects of mass gathering). Let us remark that large
R0 are reported by others; for instance, Tang et al. report values as high as 6.47 for data from China. These authors mention
that this high R0 corresponds to data collected during a period of intensive social contacts (i.e. before the Chinese New Year).
Mizumoto and Chowell report R0 values as high as 10 for the case of Diamond Princess, and for the same data Rocklöv et al.
find a maximum R0 = 14.8 and a 8-fold reduction to R0 = 1.78 during isolation and quarantine.
Another characteristic of the model is the need to significantly reduceR0 to fit the decelerating curvature of the ΣNI data curve
(e.g. Fig. 2A). This reduction is delayed by about 3 days with respect to the beginning of the containment and confirms an
overall good respect of the social distancing rules by the population of Guadeloupe. Several French national media published
articles stating that Guadeloupe was relativity spared from the disease (18). Such a claim could have triggered a common sense
reflex of protection applied through social distancing and usage of rules of hygiene. To fit the most recent ΣNI data, a low
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R0 = 0.35 must be applied. If true, this would indicate that people of Guadeloupe continued to improve their social behaviour
during the 3 weeks after the beginning of the containment.
The models allows to get an estimate of the number of instantaneous infectious NI and cumulative recovered patients ΣNR.
In absence of systematic detection of COVID-19 among the population, no NI data are available and the NI curve is actually
indirectly constrained by the fit to the ΣNs andNc data and by the switching probabilities ps and pc. However, the values given
to these probabilities fall in ranges widely recognised by the medical community and we may safely consider them sufficiently
reliable to give credit to the modelledNI and ΣNR curves. A simple assessment may be done by dividing ΣNd by the observed
number of deceased patients. On day 28 (April 7), this ratio equals 0.7%, a value slightly lower than the generally recognised
ratio of 1−2% (19).
For the models discussed above, several thousands of persons have been infected and a large fraction of them have recovered
and are supposed protected against another infection. However, these supposedly protected persons represent a relatively small
part of the total population and the number of susceptible persons remains sufficiently large to ensure a restart of a second
epidemic spread of the disease. This is shown in Figure 5 which represents a long-term simulation with model 1 as in Figure
2 but with an abrupt resetting of R0 = 4.0 at day 70 (mid-May), about 2 months after the beginning of the containment. This
corresponds to a situation of uncontrolled end of containment. Because of the existence of only several infectious cases, the
spread of the virus proceed at a low-level during approximately 3 weeks (i.e. until day 90) before exponentially exploding again
into a second epidemic crisis. These results illustrate the future difficulty to control such a restart of the virus propagation and
the necessity to maintain a low R0 for a long period of time. The simulation shown in Figure 5 assumes that the patient who
recovered during the first epidemic crisis cannot be infected during the second crisis, a medical assumption that remains to be
confirmed.
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Supplementary Note 1: Stochastic Monte Carlo model

A. Description of the model structure. The stochastic model used in the present study falls in the class of exact stochastic
Monte Carlo models (2). In such models, the entire population exposed to an infection is represented by a network where each
node represents a person. This type of models offers very large possibilities to design epidemic processes that agree with the
medical knowledge of the virus dissemination and its possible pathological issues.
A set of stochastic rules determines the evolution of each node at each time iteration. The infection simulation process begins
by choosing a given number of nodes initialised as "infected" to put the pathogen in the network. Other initial conditions can be
imposed to fix the state of the population. For instance, we may fix the number of vaccinated persons. In the case of COVID-19
for which no vaccine exists at the present time, the main initial condition is to fix the number ZI of initially infected individuals.
The nest phase of the modelling is a loop over the time steps covering the period to simulate. For each time-step, the state of
each node is eventually modified depending on its present stage and according to the set of stochastic rules that define the way
by which the infectious disease propagates (a flowchart of the stochastic process is shown in Figure 1).
In our model, we define 6 different possible states for the nodes (Fig. 1):

1. state "S" for susceptible corresponds to non-infected people and likely to become infected. In this sense, state "S" is
also equivalent to the commonly defined "exposed" state. We note NS instantaneous number of "S" persons.

2. state "I" for infectious is for people infected by COVID-19 and presenting either no or only minor symptoms. These
persons are likely to remain undetected by the medical services and expected to pursue their daily activities and maintain
contacts with other people. By this way, they are the primary cause of infection diffusion among the set of "S" nodes.
The basic reproductive number, R0, defined as the likely number of "S" infected by a single "I" case during his infectious
period TI . We note NI the instantaneous number of "I" patients.

3. state "s" for severe is for people with enough severe symptoms to either see an urban doctor or be admitted in a hospital.
These patients are considered to be isolated either at home or at the hospital and are no more able to infect other people.
We note Ns the instantaneous number of "s" patients and ΣNs the corresponding cumulative number.

4. state "c" for critical is for patients in a critical state and necessitating intensive care in hospitals. As for "c", these
patients are considered isolated from the "S" population and unable to infect others. We note Nc the instantaneous
number of "c" patients.

5. state "R" for recovered is for patients "I", "s" or "c" that recovered after a period of time that depends on the considered
state. The recovery periods will be respectively written ∆TI , ∆Ts and ∆Tc for states "I", "s" and "c". In the specific
case of COVID-19, the main medical opinion is that "R" persons are protected against a new infection by the virus. We
note ΣNR the cumulative number of "R" patients.

6. state "d" for deceased patients. We note ΣNd the cumulative number of "d" patients.

A stochastic set of rules determines the probability to switch from one state to another. In our model, these rules are (Fig. 1):

1. rule S −→ I determines the condition to switch from non-infected to infected. The main parameters of this rule are
the infectious period TI and the basic reproductive number R0. In our model, this rule is applied to each new "I" node,
i.e. nodes that were "S" one day before. For such new "I", an average number of R0 are randomly taken among the "S"
persons and are randomly set in state "I" in the next TI days.

2. rule I −→ s determines the conditions to switch from infectious to state severe. This is controlled by a probability
level ps.

3. rule s −→ c determines the conditions for a patient with severe symptoms to become critical and will be admitted
in a critical care unit. This is controlled by a probability level pc.

4. rule c−→ d determines the conditions for a critical patient to die. This is controlled by a probability level pd.

5. rule ∗ −→ R represents the switch to state "recovered". This transition applies to "I", "s" and "c" states with proba-
bility 1 as long as the patients respectively remained in their state for a duration of ∆TI , ∆Ts and ∆Tc.

The explicit definition of the rules and the fact that they apply to each node of the network provides a great flexibility to account
for more or less sophisticated conditions. For instance, the switching probabilities may easily account for the age of each
person. Also, and indeed the model does it, we may consider that a switch from one state to another takes place in a given time
interval whose duration is constrained by clinical data. The model is also able to use a time-varying basic reproductive number
R0(tk) in order to account for the effects of containment and social isolation. The nodes may be assigned to different subsets
in order to define regions with given populations. Rules may be defined to account for interactions between regions. In the
present study, this possibility has not been implemented due to the lack of data to constrain the process.
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B Model parameters

Fig. 6. Stochastic simulation for a period of 80 days. B) time variations of NI . C) time variations of ΣNs and Ns (D) . A) The same
curves together with Nc displayed in a semi-logarithmic graph (Natural logarithm). The upper right panel of the figure shows the
parameters β obtained for the 8 linear segments identified in the curves shown in (A). The R0 values have been derived from β using
equation 2 with TI = 14 days. The model started with ZI = 500 initial infectious "I" and R0 = 2.0. At day 40, the basic reproduction
number changed to R0 = 1.2. During all the process, the other parameters remained unchanged: ps = 0.14, pc = 0.25, pd = 0.20,
∆TI = 20 days, ∆Ts = 14 days, ∆Tc = 21 days, and the switch periods δTs = [4−10] days, δTc = [3−9] days, δTd = [3−8] days.

B. Model parameters. The model is totally determined by the following parameters:

1. the total number N of nodes, i.e. of persons forming the population. For Guadeloupe, we set N = 399847 from the age
distribution (20).

2. the number ZI of initial "I".

3. the basic reproductive number, R0. This parameter may be time-varying in order to account for different social be-
haviours. It is generally assumed that R0 is large for COVID-19, and the range of possible values is large (21). In the
present study, we experimentally determine the value of R0 that best reproduces the observed data. This point will be
discussed in details in section Bootstrapping method of data analysis.

4. the infectious period TI is typically assumed to be of the order of 20 days with possible values as large as 37 days in
some exceptional circumstances. In the present study, we determine a value for TI that best matches with both the data
and the prior assumptions taken other studies. This point is considered in section Bootstrapping method of data analysis.

5. the recovery periods ∆TI , ∆Ts and ∆Tc are constrained by clinical data.

6. the switching probabilities ps, pc, and pd are constrained by clinical data. These probabilities are completed by switch
periods, δTs, δTc and δTd during which a given state "I", "s" and "c" may respectively switch to "s", "c" and "d".

C. Simulation examples. In this section we present several simulations to illustrate the effects of the key parameters of the
model. This will help the reader to understand where information able to put constrains on the parameters can be obtained from
the data processed in section Bootstrapping method of data analysis. In order to quantify the random fluctuations due to the
stochastic nature of the model, each simulation is performed 20 times to compute the median and the confidence intervals of
the results.
The first simulation corresponds to a duration of 80 days with a basic reproduction number R0 = 2.0 from day 1 to day 39,
and R0 = 1.2 afterwards. The model started with ZI = 500 initial infected "I" and the duration of the infectious period is fixed
to TI = 14 days. All other parameters are kept fixed during the process: ps = 0.14, pc = 0.25, pd = 0.20, ∆TI = 20 days,
∆Ts = 14 days, ∆Tc = 21 days, and the switch periods δTs = [4−10] days, δTc = [3−9] days, δTd = [3−8] days.
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Figure 6 shows the results of the simulation for the time variations of NI (Fig. 6B), and of ΣNs and Ns (Fig. 6C). The three
curves together with Nc are represented in a common semi-logarithmic graph in Figure 6A. The Natural logarithm is used
throughout the present paper.
As a starting point for the discussion, it can first be observed that the time variations of NI and Ns significantly depart from
a pure exponential pattern, particularly because of the presence of smooth bumps in the curves around day 55. These bumps
can be better understood in the semi-logarithmic plot of Figure 6A where the NI and Ns curves appear partly linear in two
segments. The same linear segments are also visible in the Nc curve. The presence of linear segment in the curves indicates an
exponential time variation. In the NI curve (orange symbols), a first linear segment goes from day 1 until day 39 with slope
β = 0.108. A second linear segment with slope β = 0.035 starts at day 50. A curved segment locates in between the two linear
segments, from day 40 to day 50.
The slopes β of the linear segments are related to the basic reproductive number through,

R0 = exp
(
β× TI2

)
. (2)

In the present example, taking TI = 14 days, we haveR0 ' 2.1 for the first segment ofNI ,Ns andNc. For the second segment,
R0 ' 1.3 for curves NI , Ns and Nc. These values agree very well with the input values used in the model. The linear segment
of NI is slightly biased by the presence of a small jump at day 20 that corresponds to the recovery time ∆TI = 20 days of
the initially infected patients (i.e. 500 persons in this simulation). This cohort of initial infectious massively contaminates
ZI ×R0 = 1000 persons, some of these initials switched to state "s" but most of them (i.e. ' ZI × (1−ps) = 430) recovered
and suddenly switched to state "R" at day 20. This produces a sharp decrease of the instantaneous number of infectious patients
in the NI curve. This jump is transmitted in the other curves but highly blurred by the switching process (through stochastic
causal convolutions).
The parameter β is a primary quantum of information that can be obtained from the data, and equation 2 shows that the
parameters R0 and TI are linked:

log(R0)× 2
TI

= β. (3)

This equation shows that, if β is the only information available, the pairs of parameters [R0,TI ] cannot be determined uniquely
unless additional information is available through the knowledge of either R0 or TI .
Information about TI can be obtained by recognising that this period of time corresponds to the duration of the smooth curved
segment that separates the two linear segments discussed above. In curve NI , the curved segment starts at day 40 when
the change of R0 occurs. However, because new infectious patients do not immediately contaminate others but instead do
that during the period of time TI , an abrupt change of R0 appears smoothed. Consequently, this is only after day 50, that a
linear segment corresponding to the new value of R0 appears in the NI curve. This phenomena is of a considerable practical
importance because it represents a latency (or an inertia) of the control measures taken by the authorities to reduce and extinct
the epidemic process. Such a latency has to be clearly explained to the population in order to encourage people to maintain
they efforts to remain in containment.
The two linear segments of the Ns curve (Fig. 6A) are delayed by 9 days with respect to the segments of the NI curve. This
duration of 9 days corresponds to the onset period of the Ns curve during days 1 to 9 of the process (filled blue dots in Fig.
6A). The delay of 9 days is caused by existence of the time period δTs = [ts1, ts2] during which a "I" patient is able to become
"s" (in this simulation, δTs runs from day 4 to day 10). Consequently, the first "s" patients begin to appear after a delay of ts1
days (i.e. 4 days in this example) and all "s" patients are created at day t2s10. This explains the duration and the shape of the
onset period visible at the beginning of the Ns curve. Consequently, the onset period of the Ns curve may provide information
about the switch period δTs. The same onset phenomena is observed in the Nc curve but with a delay equals to the sum of
ts1 + tc1 = 7 days. The end of the onset period falls at day ts2 + tc2 = 19.
We now turn to the case of the ΣNs curve (green circles in Fig. 6A) which is particularly important because it generally
corresponds to the available data. Contrarily to the instantaneous quantities NI and Ns which give the number of either "I"
or "s" patient at a given time, ΣNs is a cumulative quantity which gives the total number of patients who passed by stage "s"
anytime before present. We emphasise that this quantity is NOT the integral of Ns and, as a consequence, the slopes of the
linear segments present in the ΣNs curve are not simply related to those of the Ns curve. Indeed, a careful examination of the
ΣNs reveals that the segments are not strictly linear. At the beginning of the process, we have ΣNs = Ns until the end of the
time periods where first "s" patients begin to switch either to the state "R" or "c". At that time, the two curves begin to diverge.
The slopes of the linear segments in ΣNs are always slightly larger than the slopes of Ns and the formula 2 and 3 are no more
exact for the ΣNs case. Indeed, the R0 values derived for ΣNs in the example (upper right part of Fig. 6) are significantly
biased, and to obtain reliable R0 estimates, it is necessary to use data at the very end of the process, in the narrow time-window
comprised between the end of the onset period and the beginning of the switching from "s" to "c".
The size of the confidence intervals appears constant in the semi-logarithmic plots (Fig. 6A). This is typical of a multiplicative
noise where the amplitude of the statistical fluctuations is proportional to the data amplitude as can be checked in Figure 6B,D.
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C Simulation examples

Fig. 7. Stochastic simulations obtained for 6 different values of the initial number of infectious. The value of ZI is indicated on each
subplot.

In our case, this multiplicative noise may be explained by the growing Brownian divergence of some random walks in the
network. Practically, this conducts to the appearance of some outlier simulations and justifies the use of the median.
We now address another important characteristic of the epidemic process through the random variations occurring at the very
beginning of the process. The features we want to discuss are illustrated in Figure 7 where the plots have been obtained by
running the model with a different number on initial infected ZI . In the case of rather small values of ZI (i.e. 1, 10 or 20 in
Fig. 7A,B,C), random fluctuations perturb the beginning of the curves, with a longer persistence for the Ns curve. For larger
values of ZI (i.e. 40, 60 or 80 in Fig. 7D,E,F), the random fluctuations almost disappear while the starting sequence becomes
steeper. Consequently, a careful observation of the starting sequence may provide some information about the number ZI of
initial infectious persons. Let us remark that these features can only be obtained with a stochastic model as the one developed
in the present study.
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Fig. 8. Data used in the present study. Number ΣNs of severe cases (A) andNc of critical cases (C) as a function of time. In plots B and
D, the data are presented in a semi-logarithmic graph. The filled symbols represent the data points used in the bootstrap computations
and are assumed to belong to the linear part of the semi-logarithmic curves when an exponential regime is established.

Supplementary Note 2: Bootstrapping method of data analysis

A. Presentation of the data. This section gives details on the method used for the data analysis and presents the results used
to constrain the stochastic model presented in section Stochastic Monte Carlo model.
Figure 8 shows the data used in the present study, namely the numbers Ns and Nc of severe and critical case observed in
Guadeloupe from March 13th until April 2 of year 2020. These data are presented in both linear and semi-logarithmic plots
in order to better emphasise a possible exponential-like pattern. Because of the small number of data available at the time of
writing the present paper, the exponential increase of either Ns or Nc is not as conspicuous as for the synthetic case presented
in Figure 6. However, for the data set Ns, the semi-logarithmic plot (Fig. 8B) is reasonably linear in the [day 7− day 16]
period. The first 6 points are expected to correspond to the δTs onset period of 6 to 7 days. For the Nc data, a linear segment
may be identified in the [day 6−day 19] period.
By comparing the onset period in the data with the simulation results of Figure 7, we may claim that the onset sequence of the
data curve Ns corresponds to a rather large number of at least 80 initial infectious persons. These persons could for instance be
passengers of an aircraft or members of a group infected by a single infectious during a meeting.

B. Data bootstrapping and parameter determination. In order to determine the β parameter and its uncertainty limits
from the small-size data sets of Figure 8, we use a bootstrapping approach (22). Let us recall that this method relies on a
statistical resampling of the data sets in order to reconstitute the statistical variability of the estimated parameter β. In the
present study, we performed 1000 bootstrap resamplings for each data set Ns and Nc, and the so-obtained 1000 estimates of
β may be used to compute the probability density kernels shown in Figure 9A. The two probability distributions are poorly
statistically coherent with a small overlap of the two curves. Equation 2 may be used to compute R0 (using TI = 14 days) from
the β probability curves. The estimate for R0 ' 1.85±0.03 is coherent with the values published by Li et al. (21) who found
R0 = 2.2 with a 95% confidence interval [1.4−3.9].
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B Data bootstrapping and parameter determination

Fig. 9. A) Probability density kernels for the parameters βs and βc obtained by respectively bootstrapping the data ΣNs and Nc.
The data used are represented as filled symbols in Figure 8. B) Kernels for R0 obtained by applying equation 2 to the bootstrapped
parameters βs and βc.
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