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Abstract

The Katanga region in the Democratic Republic of Congo (DRC) has been struck

by repeated epidemics of measles. In many of the affected health zones, reactive

mass vaccination campaigns were conducted in response to the outbreaks. Here, we

attempted to determine how effective campaigns were in curtailing a large outbreak

in 2015. Using a model of measles transmission we compared observed case numbers

to a counterfactual of no campaigns, by first fitting a model to the data including the

campaigns and then re-running this without vaccination. Focusing on eight of the

68 health zones in the Katanga region, we estimated the reactive campaigns to have

reduced the size of the outbreaks by approximately 21,000 (IQR: 16,000–27,000;

95% CI: 8300–38,000), or 21% (IQR: 17%–25%, 95% CI: 9.3%–34%) of possible

measles cases. There was considerable heterogeneity in the impact of campaigns,
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with campaigns startgin earlier after the start of an outbreak being more impactful.

We further sought to establish whether the spatial pattern of the outbreak could

have been determined in advance to help prioritise areas for vaccination campaigns

and speed up the response. The best predictors of outbreak size among all the

health zones were vaccination coverage derived from cluster surveys and outbreak

size in 2010-13. This, combined with the fact that the vast majority of reported

cases were in under-5 year olds, would suggest that there are systematic issues of

undervaccination. If this was to continue, outbreaks would be expected to continue

to occur in the affected health zones at regular intervals, mostly concentrated in

under-5 year olds. Taken together, our findings suggest that while a strong routine

vaccination regime remains the most effective means of measles control, it might be

possible to improve the effectiveness of reactive campaigns by considering predictive

factors to trigger a more targeted vaccination response.
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Introduction1

There have been repeated outbreaks of measles in the Democratic Republic of2

Congo (DRC). The Katanga region (formerly known as Katanga province) is in the3

southeast of the country bordering Zambia and comprises the provinces of Haut-4

Katanga, Haut-Lomami, Lualaba and Tanganyika. It has experienced large periodic5

measles outbreaks, such as in 2006–07, 2010–13 [1, 2]. In response to these, reactive6

mass vaccination campaigns have been conducted to protect those assumed to be at7

risk both within the outbreak area and beyond.8

Standard measles epidemic responses include reinforcing measles surveillance in9

affected areas, providing free care to reduce measles mortality, and reactive vacci-10

nation campaigns in order to control measles transmission. In collaboration with11
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the World Health Organization (WHO) Regional Office for Africa (AFRO) and the12

United Nations Children’s Fund (UNICEF), Médecins Sans Frontières (MSF) sup-13

ported the Ministry of Health to respond to various measles outbreaks including14

two major measles outbreaks in the Katanga region. Firstly, in 2010–13, a measles15

epidemic was reported with over 96,000 suspected cases reported, 77% of which oc-16

curred in children under 5 years of age, and more than 1400 deaths [2]. In 2011, in17

response to the ongoing epidemic, MSF vaccinated more than 1.8 million children 2618

of the 68 health zones in the Katanga region [1]. Secondly, in February 2015, a new19

measles epidemic started in Katanga, DRC, lasting the whole year and resulting in20

over 40,000 cases and more than 400 deaths in 2015 [3]. MSF responded with the21

standard epidemic responses including a reactive vaccination campaign in order to22

stop measles transmission during epidemics, targeting more than 25 health zones.23

The time interval between the outbreak starting in different parts of Katanga24

and the vaccination response implemented varied. Previously, modelling studies in25

Niger have demonstrated that even late vaccination intervention in response to an26

outbreak could prevent a large number of cases, though early intervention will al-27

ways have a larger impact [4, 5, 6, 7]. However, this may be context-specific and28

vary with local epidemiology and outbreak patterns. The response to the Katanga29

outbreak provides an opportunity to retrospectively study the effectiveness of the30

campaigns conducted in mitigating excess morbidity. More generally, important31

lessons could be learned about the relationship between response times and effec-32

tiveness of campaigns, and how campaign targets could be selected in the future to33

ensure greatest impact.34

We studied the 2015 measles outbreak and responsive mass vaccination cam-35

paigns conducted as part of the standard epidemic response to assess whether the36

most-affected areas could have been predicted from information on previous out-37

breaks and administrative or otherwise estimated vaccination coverage. We further38

investigated the outbreak in several health zones using a mathematical model of39

measles transmission, to quantify the impact of vaccination campaigns that were40
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conducted in those areas.41

Methods42

Data sources and cleaning43

Suspected measles cases (WHO definition) from 2010–16 were collated from the44

integrated disease surveillance (IDS) system, described previously in [2]. These45

data are split into age groups 1-4 years and 5 years and over, at the level of health46

zones. The database did not contain any information on cases under the age of 147

year.48

Administrative coverage data from 2009-16 collected by the Ministry of Health49

was available as the number of doses administered per week was collected at the50

level of health zones, separated into age groups 9-11 months and 12-23 months.51

Population denominators were extracted from the coverage data. Since the last52

census in DRC prior to this study had been done in 1981, these numbers are subject53

to considerable uncertainty.54

We further used vaccination coverage estimates from a previous study [8]. These55

used data collected as part of the Demographic and Health Survey (DHS) in 2013–56

14, extrapolated from geo-located information on children’s vaccination status from57

vaccine cards and parental recall. We averaged the estimates by month of age to58

arrive at the proportion of under-5 year olds that were unvaccinated, that is had59

received no dose of measles-containing vaccine.60

Information on reactive mass vaccination campaigns conducted in 2015 was ex-61

tracted from MSF reports. The total number of vaccine doses administered was62

collated at the level of health zones, and at various temporal resolutions from days63

to a single number of doses delivered for a whole campaign.64
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Factors that could predict outbreak size65

We tested the predictability of outbreaks from demographic factors and outbreak66

and vaccination history in a negative binomial Generalized Linear Model with log-67

arithmic link. Robust standard errors and p-values were calculated using the sand-68

wich R package [9, 10]. The number of suspected cases reported during the 201569

outbreak at the health zone level was modelled as a function of health zone popu-70

lation size, the number of cases in the 2010–13 outbreak, MoH administrative and71

estimated vaccination coverage.72

Modelling measles with mass vaccination campaigns73

We modelled measles transmission at the level of health zones using a stochastic74

transmission model with a fixed time step of 2 weeks, corresponding to the generation75

time of measles [11]. At each time step t, the number of new infections in health76

zone i, Iit was drawn from a negative binomial distribution with mean λitSi(t−1)77

and shape m, allowing for overdispersion of transmission, or superspreading [12]:78

Iit ∼ NB(λitSi(t−1),m)

where Si(t−1) and Ii(t−1) are the number of people susceptible and infected,79

respectively, at time t−1, and λit is the force of infection experienced by susceptibles80

in health zone i at time t:81

λit = R0

Ii(t−1)

Ni

where Ni is the population size of health zone i, R0 is the basic reproduction82

number.83

When a mass vaccination campaign was conducted, the number of susceptible84

people immunised was calculated by multiplying the number of doses administered85

5
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with the proportion of the population still susceptible Sit/Ni, and a campaign effi-86

ciency factor ei, estimated as part of the inference procedure described below. This87

factor comprises both vaccine efficacy and the efficiency in targeting susceptible88

children, which were not identifiable separately. With a perfect vaccine and random89

distribution, this would take a value of 1. If vaccines were preferentially given to90

susceptibles, it would take values of greater than 1 (subject to vaccine efficacy). If91

vaccines were preferentially given to already immune children, it would take values92

of less than 1.93

During a two-week span, half of vaccinations were modelled to be administered94

before transmission occurred and half afterwards. While the measles vaccine takes95

2 weeks to come into effect, it provides potentially high level of protection from96

72 hours after administration [13, 14, 15]. We therefore assumed that vaccination97

starts to fully immunise a child instantaneously.98

For the counterfactual scenarios of how the outbreaks would have evolved with-99

out a reactive mass vaccination, we simulated the model from the time of the mass100

vaccination campaigns, but without reducing the number of susceptibles as a con-101

sequence of vaccination. We then drew samples from the joint distribution of tra-102

jectories and observations, to obtain alternative trajectories of observed cases. To103

evaluate the impact of the campaigns, we calculated the reduction in the number of104

cases observed in each of the trajectories. If this yielded a negative difference (i.e., if105

random sampling yielded alternative trajectories with more cases than the observed106

ones), we treated the impact as 0 (i.e., same number of cases in both scenarios).107

Selection of health zones for fitting and estimating populations108

The health zones selected for the dynamic model were ones that reported more109

than 10 cases in at least one week in 2015 and had a reactive mass vaccination110

campaign with the number of doses delivered and results from a follow-up coverage111

survey available. A total of eight health zones were modelled, including the one112
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that saw most cases (Malemba-Nkulu, 8856 reported cases) and 7 of the 13 health113

zones with most cases in 2015: Ankoro (3910), Kinkondja (2773), Mukanga (2723),114

Bukama (2632), Songa (928) and Kabalo (904).115

Since a large proportion of cases was found in children (77% in 1-to-5 year olds,116

with no further age-breakdown available), and none of the vaccination campaigns117

targeted over-15 year olds, we modelled measles transmission to be occurring ex-118

clusively in under-5 year olds. The relevant population sizes were estimated as the119

number of doses administered in the vaccination campaigns divided by the coverage120

estimated from concurrent vaccination surveys. Where vaccination campaigns were121

limited to under-5 or under-10 year olds, we estimated the total population size122

under 15 as 2.72 or 1.39 times the estimated population size, respectively, based on123

multipliers used for estimating the sizes of age groups in the administrative coverage124

data provided.125

Model fitting and counterfactual scenarios126

The model was fitted simultaneously to the eight selected health zones. The likeli-127

hood of observing bi-weekly incidence Dit in health zone i at time t was taken to128

follow a negative binomial distribution with fixed overdispersion ϕ.129

Dit ∼ NB(ρIit + µ, ϕ)

where ρ is the proportion of cases that is reported, $µ is the rate of background130

reporting of measles, either due to cases that were not part of the epidemic or131

misclassification, for example of rubella cases, and ϕ is the reporting overdispersion.132

The value of the basic reproduction number R0, the efficacy of mass vaccination133

ei, mean reporting rate ρ, background reporting rate m, observation overdispersions,134

the proportion immune ri0 in health zone I and the mean number of individuals135

infectious Ii0 at the first data point with at least 10 cases in health zone i (taken136
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to be the start of the time series), were all estimated as part of the inference proce-137

dure, as well as likely trajectories of the state variables. The reporting rate ρi and138

initial number infectious Ii0 was allowed to vary between health zones. The prior139

distribution on the mean reporting rate was weakly informed by a coverage survey140

that was conducted in Kabalo. The initial proportion immune ri0 was estimated141

with a mean and lower bound given by the vaccination coverage per health zone vi142

estimated in [8]. Informed or regularising prior distributions of the parameters to143

be estimated are shown in Table 1.144

Table 1: Prior distributions of parameters used in the transmission model. The
distribution of the basic reproduction number was truncated at a lower bound of 0.
The propotion initially immune was truncated to be between vi and 1. The mean
and actual proportions reported were truncated to be between 0 and 1. The number
initially infectious were trunctedat a lower bound of 0.

Parameter Symbol Prior distribution Source
Basic reproduction number R0 Gaussian(15, 5) [16]
Overdispersion of transmission m Gamma(1, 0.1) n/a
Efficacy of campaigns ei Gaussian(1, 1) n/a
Background reporting µ Gamma(1,1) n/a
Proportion initially immune r0i Gaussian(vi, 1) [8]
Mean proportion reported ρ Gaussian(0.059, 0.009) [17]
Proportion reported ρi Gaussian(ρ, 0.1) n/a
Mean initially infectious I0 Gamma(2, 5) n/a
Number initially infectious I0i Gamma

(
I0
r0i

,
√

I0
r0i

)
n/a

Overdispersion of reporting ϕ Gamma(1, 0.1) n/a

The model was fitted to the data using a particle filter in combination with145

Metropolis-Hastings Markov chain Monte Carlo (pMCMC) with the libbi soft-146

ware library [18] as implemented in the RBi package using the statistical software147

R [19, 20]. The number of particles and proposal distribution was adapted using148

the RBi.helpers package [21], before the pMCMC sampler was run to generate 4096149

samples after thinning, with 262,144 particles. The inference pipeline was run on150

an Nvidia Tesla P100 16GB NVLink GPU.151
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Results152

Outbreak size153

In total, 40,562 cases and 485 deaths were reported in the Katanga region over154

the course of the year (case-fatality ratio: 1.2%). The majority of cases were re-155

ported from Haut-Lomami (23,984, 59%) and Tanganyika (12,110, 30%) provinces,156

with the outbreak in Tanganyika peaking significantly later than the one in Haut-157

Lomami (Fig. 2). Of the 68 health zones, 16 reported over 90% of cases (Fig. 1).158

Haut−Katanga

Haut−Lomami

Lualaba

Tanganyika

0
2000
4000
6000
8000

Reported cases

Figure 1: Number of cases by health zone in the Katanga region, 2015.

Predictability of outbreak size159

There was a positive correlation between reported incidence in the 2010–13 outbreak160

and the 2015 outbreak (Pearson’s r=0.31, p=0.01, Fig. 3). All the health zones with161
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Figure 2: Number of cases by age group and province in Katanga, 2015.

more than 10 cases per 1000 in 2015 (Malemba-Nkulu, Kinkondja, Manono, Ankoro,162

Lwamba, Mitwaba, Mukanga, Bukama) had also reported more than 5 cases per163

1000 in 2010–13.164

Further, there was a positive correlation of reported incidence in 2015 and admin-165

istrative vaccination coverage, and a negative correlation with coverage as estimated166

from DHS data (Fig. 4).167

Combining these factors and population size in a regression model confirms these168

correlations, with coefficients corresponding to the number of cases in 2010–13 and169

vaccination coverage estimated by DHS as strongest predictors of the number of170

cases that occurred in 2015 (Table 2). Population size and routine vaccination171

coverage as measured by the EPI programme did not have a strong influence on the172

number of cases in 2015. Correlation between model predictions and true number173

of cases was 0.3 (95% CI 0.1-0.5, p=0.01, Fig. 5).174

To further investigate the relationships underlying the results, we tested an ad-175
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Figure 3: Incidence (number of cases divided by estimated population size) in 2010–
13 vs 2015. Health zones with more than 5 cases per 1000 in 2015 are indicated in
black, and other health zones with more than 10 cases per 1000 in 2010–13 in red.
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Figure 4: Vaccination coverage versus reported incidence (number of cases divided
by estimated population size) in 2015. Linear trends are indicated by blue lines,
with 95% confidence intervals indicated in grey. A) Mean vaccination coverage in
2010–15 as measured by the EPI programme. B) Vaccination coverage estimated
from DHS data.

Table 2: Regression coefficients for model of case numbers in 2015, with lower and
upper 95% confidence interval limits.

Coefficient Estimate p-value Lower limit Upper limit
(Intercept) 5.7 <0.001 5.4 6.1
Population size 0.1 0.8 -0.4 0.6
Number of cases 2010–13 0.8 <0.001 0.2 1.3
Mean EPI coverage 2010–15 0.3 0.09 -0.1 0.7
DHS coverage estimate -1.3 <0.001 -1.8 -0.9
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ditional model variant, where we distinguished the four provinces comprising the176

Katanga region in the model, to determine whether effects were being identified at177

the fine level of the health zone or the coarser province level. In that case, province178

as a categorical explanatory variable in the regression replaced some of the predictive179

value both of the number of cases in 2010–13 (regression coefficient 0.4, p=0.05) and180

the coverage estimate from DHS data (-1.1, p<0.001), but both retained predictive181

value, the coverage estimate strongly so. This suggests that some predictive value182

of case numbers in 2010–13, and strong predictive value of the coverage estimate183

was retained at the lower level of the health zone.184
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Figure 5: Predictions from the regression model vs. true number of cases. As in
Fig. 3, health zones with more than 5 cases per 1000 in 2015 are indicated in black,
and other health zones with more than 10 cases per 1000 in 2010–13 in red.

The impact of mass vaccination campaigns185

To investigate the impact of the mass vaccination campaign in more detail, we186

fitted a dynamic model to the case trajectories in 8 health zones (Fig. 6). We187

estimated a basic reproduction number of 4.3 (mean; interquartile range, IQR: 4.0–188

4.5) and an average reporting rate of 24% (IQR: 19%-29%), corresponding to a189

total of 77,000 (IQR: 73,000–81,000; 95% CI: 66,000–91,000) estimated cases from190

19,079 reported cases in the 8 health zones. On average, 55% (IQR: 49%-62%) of191
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under-5 year olds were estimated to have been immune before the outbreak. The192

estimated campaign efficacy factor ranged from 0.21 (IQR: 0.09–0.31) in Kinkondja193

to 0.59 (IQR: 0.33–0.83) in Ankoro.194

Table 3: Summary of posterior estimates.

Parameter Symbol Posterior mean (IQR)
Basic reproduction number R0 4.3 (4.0–4.5)
Overdispersion of transmission m 0.17 (0.14–0.2)
Efficacy of campaigns (mean) ei 0.34 (0.14–0.48)
Background reporting µ 1.4 (1.0–1.7)
Proportion initially immune (mean) r0i 0.55 (0.49–0.62)
Number initially infectious (mean) I0i 66 (46–78)
Proportion of cases reported (mean) ρi 0.24 (0.19–0.29)
Overdispersion of reporting ϕ 0.044 (0.022–0.061)

In total, we estimate that 21,000 (IQR: 16,000–27,000; 95% CI: 8300–38,000)195

cases were averted by the vaccination campaigns in the seven health zones analysed,196

corresponding to relative reduction in case load of 21% (IQR: 17%–25%, 95% CI:197

9.3%–34%). Of the approximately 250,000 doses delivered to under-5 year olds198

in the 8 health zones, we estimated 22,000 (IQR: 17,000–26,000, 95% CI: 11,000–199

37,000) or 9.2% (IQR: 7.2%–11%, 95% CI: 4.5%–15%) of administered doses went200

to susceptible children.201

There was heterogeneity in impact between health zones. The greatest abso-202

lute impact achieved by a mass vaccination campaign in the health zones investi-203

gated was in Malemba-Nkulu with 6800 (IQR: 4000–9100; 95% CI: 0–17,000) cases204

averted with 26,208 doses, while the greatest relative impact was in Kabalo with a205

33% (IQR: 17%–54%; 95% CI: 0%–73%) reduction in case load from an estimated206

20,727 doses (Table 4). On the other hand, only 230 (IQR: 0–810; 95% CI: 0–207

2400) or 2.4% (IQR: 0%–11%; 95% CI: 0%–29%) of cases were estimated to have208

been averted in Bukama from an estimate 31,400 doses. Speed of implementation209

of the mass vaccination campaign (or shorter delay to implementation) was highly210

correlated with a greater relative reduction of cases (Pearson’s p = -0.85, p=0.008).211
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Figure 6: Model fits (black) to the 2015 data and counterfactual scenarios without
mass vaccination campaigns (red). The data are shown as black dots, and periods
of mass vaccination campaigns as blue vertical bars. Median fitted trajectories are
shown as lines, 50% (dark grey) and 95% (light grey) credible intervals as shades.
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Table 4: Absolute and relative impact of mass vaccination campaigns in different
health zones. Estimates shown are posterior means. The delay shown in the last
column is the number of weeks between the start of the outbreak (end of the first two-
week period with more than 10 cases) and the beginning of the vaccination campaign.

Doses Cases Relative Delay
Health zone (est.) averted (IQR, 95% CI) reduction (IQR, 95% CI) (weeks)
Ankoro 26,199 4800 (2200–7300, 0–12,000) 24% (13%–37%,0%–55%) 11
Bukama 34,100 230 (0–810, 0–2400) 2.4% (0%–11%,0%–29%) 25
Kabalo 20,727 3000 (1000–4700, 0–9100) 33% (17%–54%,0%–73%) 13
Kinkondja 20,792 510 (0–970, 0–2800) 5.5% (0%–12%,0%–29%) 20
Lwamba 44,148 3400 (870–5400, 0–12,000) 21% (6.7%–35%,0%–61%) 14
Malemba-Nkulu 46,330 6800 (4000–9100, 0–17,000) 23% (16%–31%,0%–47%) 14
Mukanga 30,133 2200 (670–3500, 0–6800) 15% (5.7%–25%,0%–44%) 17
Songa 19,660 970 (240–1500, 0–3300) 19% (6.2%–32%,0%–54%) 11

Discussion212

In spite of repeated strategic and reactive vaccination campaigns, large measles213

outbreaks continue to occur in Katanga, DRC, causing significant morbidity and214

mortality. Strategies to mitigate the burden of measles are urgently needed. Here215

we conducted both predictive and retrospective modelling of the measles outbreaks216

in Katanga in 2015, with the aim to evaluate the impact of the vaccination response217

as well as potential for improvement.218

The predictability of outbreaks is related to the quality of the available data. We219

found little relationship between reported administrative vaccination coverage and220

observed incidence. In fact, there was a small positive correlation, that is more cases221

occur where vaccination uptake as indicated by the EPI programme is higher. This222

could be because high routine vaccination rates might be an indicator of surveillance223

quality and therefore case reporting. At the same time, Strategic Immunisation224

Activities were conducted across Katanga after the 2011 outbreak [22]. We did not225

have access to any details of these campaigns, which may have been targeted at areas226

with low reported vaccination rates, thus raising immunity in those health zones.227

Not all of the suspected cases included in this study may have been measles and228

instead have been misdiagnoses due to rubella or other causes of rash [23]. While we229

included a parameter for misclassification in the modelling analysis, this is difficult230

to identify and may be an underestimate. Lastly, there is uncertainty around the231
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population estimates used as denominator when estimating coverage, as high rates232

of migration and urban growth make existing data quickly outdated.233

Vaccination rates as estimated from cluster surveys as part of the DHS pro-234

gramme, on the other hand, were well correlated with case data, with higher vac-235

cination rates corresponding to lower case burden. These estimates encompass all236

vaccination activities and not just routine immunisation, and they do not suffer237

from denominator issues caused by uncertainty in the population sizes within health238

zones.239

Reconstructing the outbreak with a mathematical model of the case trajectories240

suggested that reactive mass vaccination campaigns reduced the case load substan-241

tially, and more so the earlier it was implemented. We estimated that tens of thou-242

sands of susceptibles were immunised during those campaigns and, consequently,243

tens of thousands of cases averted in under-5 year olds. While the estimated over-244

all proportion of doses that went to susceptibles may appear low at approximately245

10%, this must be seen in the context of conducting vaccination campaigns during246

ongoing outbreaks, where part of the population may already have been infected247

and thus naturally immunised. In all health zones, we estimated that vaccines were248

preferentially given to immune children, who may have been immunised through249

routine vaccination, been targeted in previous campaigns, or infected and acquired250

natural immunity during the ongoing or previous outbreaks. At the same time, the251

estimated 21,000 cases averted correspond to a reduction in burden of over 20%.252

In the health zones modelled, the case-fatality ratio in the reported data was 1.2%,253

suggesting that around a hundred infant lives were probably saved by the campaigns.254

Our transmission model suffered from several limitations. We did not have access255

to an age breakdown of cases older than 5 years, and information on under-1 year olds256

was missing completely. Because of this, we only modelled transmission in under-257

5 year olds. At 77% of reported cases, it seems safe to assume that transmission258

in under-5 year olds was driving the outbreaks. The estimated basic reproduction259

number of 4.3 (IQR: 4.0–4.5) is small in comparison with other settings, possibly260

16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted October 10, 2019. .https://doi.org/10.1101/19003434doi: medRxiv preprint 

https://doi.org/10.1101/19003434
http://creativecommons.org/licenses/by/4.0/


because transmission does not occur in school-like settings with close mixing of261

large numbers of children, but rather households and communities affecting children262

before they reach school age.263

The estimated impact of the campaigns might have been greater if cases averted264

in over 5-year olds had been taken into account. We further ignored any spatial265

progression of the outbreak or connectivity between health zones and modelled each266

area in isolation. In reality, mass vaccination campaigns that reduced cases in one267

area may well have prevented subsequent cases in nearby areas in other health zones.268

Lastly, we assumed constant reporting rates. If, on the other hand, reporting quality269

changes between regions or over time, it would affect our fits which would interpret270

these changes as changes in transmission rather than reporting.271

In spite of enormous efforts, measles is proving difficult to control in Katanga.272

On the 10th June 2019, the DRC Ministry of Health officially declared a new measles273

outbreak in 23 out of the 26 provinces of DRC, with initial cases for this outbreak274

reported in late 2018. This new measles outbreak coincided with an ongoing Ebola275

outbreak in the North Kivu and Ituri provinces of DRC which had begun in August276

2018. There have been suggestions that the diversion of resources and attention277

towards the Ebola response may have reduced the healthcare capacity required to278

respond to a surge in measles cases [24]. Although at the time of writing, the health279

zones most affected by the measles outbreak were outside the area where Ebola was280

mostly concentrated, it has been shown during the 2013–16 outbreak in West Africa281

that reduced vaccination services as a result of an Ebola outbreak can have a severe282

impact on measles circulation [25, 26, 27].283

The ability to partly predict the case load in 2015 from outbreaks in 2010–13 at284

the province level suggests that there might be underlying problems in the provision285

of routine immunisation services that did not change in the intervening time. At286

the end of outbreaks as big as the ones occurring in Katanga, not many children are287

left susceptible, whether a mass vaccination campaign has been conducted or not.288

The fact that another big outbreak could happen so soon after the last suggests a289
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rapid increase in susceptibles that have not been served by the routine vaccination290

programme, and strengthening this should be a priority. At the same time, it is291

clear that the mass vaccination campaigns only prevent part of the observed cases,292

partly because of unavoidable delays in confirming an outbreak and launching a293

campaign. Preventive strategies based on predictive models have a potential to294

have a much greater impact if they can prevent outbreaks altogether, but their use295

is based on the predictive potential of the models used. We found that vaccination296

estimates based on a spatial model applied previously to vaccination survey data was297

a good predictor of outbreak size at the relatively fine level of health zones. There is298

enormous promise in using such estimates to guide strategic immunisation activities299

and close any existing gaps in immunity. As has been proven many times over,300

it is only through strong and comprehensive routine vaccination, supplemented by301

strategic campaigns where necessary, that sustained measles control and, ultimately,302

elimination can be achieved.303
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