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Abstract:
This paper provides a model–based method for the forecast of the
total number of currently CoVoD-19 positive individuals and of the
occupancy of the available Intensive Care Units in Italy. The predic-
tions obtained – for a time horizon of 10 days starting from March
29th – will be provided at a national as well as at a more disag-
gregate levels, following a criterion based on the magnitude of the
phenomenon. While the Regions which have been hit the most by
the pandemic have been kept separated, the less affected ones have
been aggregated into homogeneous macro-areas. Results show that
– within the forecast period considered (March 29th - April 7th ) –
all of the Italian regions will show a decreasing number of CoViD-19
positive people. Same for the number of people who will need to be
hospitalized in a Intensive Care Unit (ICU). These estimates are valid
under constancy of the Government’s current containment policies.
In this scenario, Northern Regions will remain the most affected ones
and no significant outbreak are foreseen in the southern regions.

KEYWORDS: Autoregressive Moving Average Models; CoViD–19; Kalman filter, inten-
sive care units, maximum entropy bootstrap.

1. Introduction

On March 19th, the death toll paid by Italy for the spread of the virus CoViD-19
amounted to 3405 deaths, the highest paid by a single country in the World. Despite
an hard and relatively timely lock-down policy implemented by the Government, on
March 26 this figure has risen to 8165 deaths.

In such an emergency situation, a reliable forecast method for the infection’s
development is essential for policy and decision makers to design evidence-based poli-
cies and to implement fast actions to curb the spread of the infection. In particular,
predicting the number of people currently tested positive for CoViD–19 (thereafter
“positive cases”) could be useful to draw the epidemiological curve of the infection
and therefore to predict its peak. Other than for this variable, the forecasting proce-
dure presented in this paper is used to predict the future values of another crucial
variable, i.e. the number of people needing hospitalization in a Intensive Care Unit
(ICU). The Italian ICUs system is at the moment severely stressed due to the spread of
the disease, therefore predictions of future ICUs demand could be fruitfully considered
in the design and the implementation of operational schemes. The forecast horizon for
both the variables is of 10-day starting from March 29th.
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Since the Italian regions are affected in different extents by the CoViD-19, it
has been decided to perform the forecasting exercise for the following geographical
areas: Lombardia, Piedmont, Valle d’Aosta, Veneto, Friuli Venezia Giulia, Trentino Alto
Adige, Lazio and Campania. The remaining Regions have been grouped in the fol-
lowing macro-areas: “Center” (Marche, Umbria and Toscana) and “South” (Abruzzo,
Molise, Puglia Basilicata, Calabria, Sicilia and Sardegna). At least other two reasons
justify such a break down:

1. the different starting times recorded for the lock-downs;

2. the Southern regions have been hit less severely and therefore, especially at the
beginning of the observation period, show several zeroes or low numbers across
the considered time span.

In essence, in this study the available official data have been employed in a
three step procedure, i.e.:

1. data pre-processing, in which data anomalies are identified and corrected accord-
ing to an approach of the type a Kalman filter;

2. univariate forecasting, based on a autoregressive moving average (ARMA) model
for number of positive cases and ICU;

3. bootstrap–based generation of predicted values and confidence intervals.

.

2. The Data

This paper employs the data related to COVID-19, collected and regularly updated
by the Italian National Institute of Health (an agency of the Italian Ministry of Health)
and by the Italian Civil Protection Department. The whole data set is freely and publicly
available in a comprehensive database, accessible on the Internet at the web address
https://www.iss.it/. It collects crucial data related to all the persons tested for COVID-
19 – from the outbreak of the pandemics (February the 24th) – and, in particular, it

1. is a collection of 21 data points – representing 19 Italian Regions plus the two
autonomous provinces of Trento and Bolzano – for each day of infections;

2. considers crucial variables, such as positive cases, recovered cases, deaths, num-
ber of people hospitalized and number of people admitted to Intensive Cure Units
(ICU).

As already pointed out, in the present study, the variables of interest are the
number of people who have been:

1. tested positive for SARS-CoV-2 (in what follows denoted by the bold Latin letter
V);

2. hospitalized in a ICU (which will be denoted by the bold Latin letter U).

It is worth to outlining how, according to the regulations issued by the Italian
government, only the people showing moderate to severe symptoms, generally associ-
ated with the infection, or which have been in close proximity with at least one positive
person, are tested. Therefore, the predictions obtained are to be referred to the sam-
ple, as no attempt have been made to carry out inferences procedures for variable
estimation at the population level.
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In order to correctly process the data, all the regions showing no positive cases
at the beginning of the recording period and/or low values along the whole time span
have been aggregated into macro areas. This has been done to i) give more meaningful
results and ii) save degrees of freedom (which are always precious in short time series).

In details, the prediction exercise will be performed on the following Regions/macro
areas:

A) Nothtern Regions

1. Lombardia

2. Piedmont

3. Valle d Aosta

4. Veneto

5. Friuli Venezia Giulia

6. Emilia Romagna

7. Liguria

8. Macro Area “Trentino Alto Adige” (Trento and Bolzano)

B) Center Regions

1. Lazio

2. Macro-area “Center”: Marche, Umbria and Toscana

C) Southern Regions

1. Campania

2. Macro-area “South” Abruzzo, Molise, Puglia, Basilicata, Calabria, Sicilia,
Sardegna.

The north Italy Regions – presently the more severely affected by the pandemic
– have been treated separately along with two other regions, i.e. Lazio and Campania,
since their major cities – Rome and Naples – deserve special attention for the institu-
tional role played and the population density exhibited. On the other hand, the Re-
gions showing less worrying figures have been aggregated into macro areas according
to their geolocation. The only exception is Valle d’Aosta, which has been left separated
as no aggregation options could be found.

To simplify notation, for both the variables of interest V and U , the following
convention is introduced:

KV j.

Here, the upper left superscript (denoted by the upper case Latin letter K)
refers to the geographical areas (i.e. North, Center and South) whereas the subscript
j is associated to the number the different regions or macroareas are codified with,
as above detailed. For example, by the symbols AV6 and BV2 the number of positive
cases for the Emilia Romagna region and the Center macro-area “Marche – Umbria –
Toscana” are respectively identified.
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3. Data Preprocessing

Missing data and other anomalies become the first challenge when designing predictive
models, as statistical methods, in general, are designed and tested under the assump-
tion of no missing observations (Moritz et al. (2015)).

Before delving into the details of the proposed procedure, a word of caution
is needed since, unfortunately, a visual inspection of the database suggests the pres-
ence of a number of anomalous data both at a regional and country level. The de-
tected anomalies might be associated to the biological samples collecting process and
the testing procedures. In fact, the typical lab–workflow is governed by a set of rigid
protocols which might be critically affected by factors such as the availability of man-
power, swabs, reagents and other laboratory materials. In emergency situations, such
a workflow can be disrupted and temporal inconsistency might appear as a result. For
example, a set of samples might be delivered to a laboratory with longer than usual
delays with respect to the time of collection or a given lab can only complete a screen-
ing process for a certain number of samples. In both the cases, one day (or more) shift
in the release of the lab results can be reasonably expected. A further source of anoma-
lies is represented by the data entry and data editing processes, carried out in working
environment necessarily affected by the risk of contagious and under rigid deadlines.

An example of such anomalous data is given in Figure 1, where the series 1V1,t

(Lombardia) is depicted. Here, some data points showing values inconsistent with the
overall pattern are clearly noticeable. Given the (very small) available sample size, the
relative weight of such data is almost surely not negligible and can introduce severe
distortions in the model parameter inference procedures and thus in the predicted
values.

In order to correct those data, a Kalman–smoother state–space model (Simon
(2001)) has been applied. In particular, the Kalman smoother adopted is of the type
fixed point smoothing. This algorithm is designed to obtain the estimate of a realization
ŵN (the time tN is fixed N < K) of a given random variable Wt, given a set of
observations Zk = {zk|0 ≤ N ≤ k} Sage and Melsa (1971).

In figure 2 the corrected version of the series 1V1,t – resulting by applying the
Kalman smoother – is depicted. Not only this series lends itself to a better visual inspec-
tion but, more importantly, is more suitable to be processed by the adopted prediction
model.

4. Theoretical framework

The approach used in this paper relies on i) the theory of stochastic process and ii)
a resampling method. While the former is necessary to generate the input (predicted
values) of the bootstrap algorithm, as well as to justify the employment of the outlier
correction method, the latter serves the purpose of

1. generating the final predictions, which are affected by a reduced amount of un-
certainty (with respect to those generated by the stochastic model)

2. yielding the related confidence intervals.

4.1. The stochastic processes paradigm
The approach proposed in the present paper relies on the assumption that the (trans-
formed) time series KV j, t and KV j, t are approximately a realization of a process of
the type ARMA (Autoregressive Moving Average) (Makridakis and Hibon (1997)).
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Fig. 1. Number of people tested positive (Lombardia): original data
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Let X = (Xt)t∈Z be a real 2nd order stationary process, it is said to admit a
ARMA(p,q) representation (p,q ∈ Z ) if, for some constant a1....ap,b1...bq, will be:

p∑
j=0

ajX(t− j) =
q∑

j=0

bjε(t− j) (t ∈ Z), a0 = b0 = 1 (1)

under the following conditions:

E {ε(t)|Ft−1} = 0 , E
{
ε2(t)|Ft−1

}
= σ2

Eε4(t) <∞

p∑
j=0

ajZ
j 6= 0 ,

p∑
j=0

bjZ
j 6= 0 , |Z| ≤ 1

Here Ft denotes the sigma algebra induced by ε(j), j ≤ t and
∑p

j=0 ajZ
j and∑p

j=0 bjZ
j are assumed not to have common zero.

The above conditions assure that Xt can be represented as:

X(t) =
∑∞

j=0 βjε(t− j) ,
∑∞

j=0 βjZ
j = (

∑
ajZ

j)−1
∑
bjZ

j

with βj decreasing to 0 at geometric rate.
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Fig. 2. Number of people tested positive (Lombardia): data adjusted via
Kalman filter
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The dynamics of the series under investigations are not suitable for this the-
oretical framework which requires 2nd – order stationarity; this is achieved by pre-
processing the series according to the following filter: log(∇d), being the symbol ∇
the difference operator and the exponent d indicating the order of the difference. To
fully understand the role played by ∇, the backward operator B is now introduced.
In essence, B moves the time index of an observation back by p time intervals, i.e.
Bpxt = Xt−p, and thus we have that

∇d log(Xt) = (1−B)d log(Xt). (2)

4.2. The Resampling Method
In order to extract valuable information from our data and, at the same time, decrease
the total amount of uncertainty associated to the outcomes of the ARMA model, a re-
sampling procedure has been employed. Among the several resampling methods for
dependent data available – many of which freely and publicly available in the form
of powerful routines working under software packages such as Python® or R® – the
adopted resampling method is of the type Maximum Entropy Bootstrap (MEB). Pro-
posed by Vinod (2006) and subsequently improved (see, e.g., Vinod (2016)), it is
based on basic assumptions which are different from those usually followed by stan-
dard schemes. In more details, while in the classic bootstrap an ensemble Ω represents
the population of reference the observed time series is drawn from, in MEB a large
number of ensembles (subsets), say {ω1, . . . ,ωN} becomes the elements belonging to
Ω, each of them containing a large number of replicates {x1, . . . , xJ}.
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Unlike standard bootstrap schemes, in the MEB case the resample set Ω mimics
the observed realization of the underlying stochastic process, in MEB a large number
of subsets, say {ω1, . . . ,ωN} becomes the elements belonging to Ω, each of them con-
taining a large number of replicates {x1, . . . , xJ}. Among the important features of the
MEB scheme, it is worth mentioning the consistency of its bootstrap samples with the
ergodic theorem (see, e.g., Birkhoff (1931)) and with the probabilistic structure of the
observed time series. In Figure 3 an example of the application of MEB for the variable
1Vt,1 is given.

5. The forecasting method

In what follows, the proposed procedure is presented in a step-by-step fashion.

1. Eqn. 1 is estimated for both Vt and Ut so that the model orders (Eqn. 1) M1 and
M2 become available;

2. for each time series Vt and Ut the MEB procedure is applied so that the sets V
and U – each containing B = 500 “bona fide” replications – are available, i.e.
V ≡ [V ∗1 , V

∗
2 , . . . , V

∗
B ] and U ≡ [U∗1 , U

∗
2 , . . . , U

∗
B ] (in Figure 4 the set V for the

variable 1Vt,1 is given);

3. for each of the replications stored in V, Eqn. 1 is estimated according to the
model order selected, i.e. M1, and the 1 to 10–step–ahead predictions – as well
as the 5% and 95% bootstrap confidence interval – are generated;

4. the B predictions and the confidence intervals obtained in the previous step are
stored in the B × 3 matrix [FV(h); h = 1, 2, . . . , 10], whose columns are: lower
bootstrap confidence interval, bootstrap prediction and upper bootstrap confi-
dence interval, respectively denoted by the symbols CI∗L,b(h), V

∗
t,b, CI

∗
U,b(h) b =

1, . . . , B.

5. the median value V̂ ∗ = M(V ∗t,b) is then extracted along with the ≈ 95% con-
fidence intervals CI∗L,b(h = 1) and CI∗U,b(h = 1), computed according to the
t–percentile method. The explanation of this procedure goes beyond the scope
of this paper, therefore the interested reader is referred to the excellent paper by
Berkowitz and Kilian (2000).

6. CI∗L(h = 2, . . . , 10) and CI∗U (h = 2, . . . , 10) (the subscript b is omitted for brevity)
are computed conditional to a subset of V, say Ṽ, made up of the bootstrap
replications whose range falls between the minimum and maximum values of
the values of the confidence intervals computed for h = 1. In symbols:

min(CI∗U (h = 1)) ≤ [Ṽ ⊂ V] ≤ max(CI∗U (h = 1)); (3)

7. steps 1–6 are repeated for Ut, so that a new matrix of prediction of dimension
B × 3 is built, i.e. [FV(h) h = 1, 2, . . . , 10], whose columns are as in FU (h) and
denoted by the symbols CI∗U (h), Û

∗
t , CI∗U (h).

Unfortunately, the whole procedure cannot be considered fully automatic since
the estimation of Eqn. 1 (step 1) is required.

Page 7 of 19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 1, 2020. .https://doi.org/10.1101/2020.03.30.20047894doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.30.20047894
http://creativecommons.org/licenses/by-nc-nd/4.0/


L. Fenga COVID-19 Estimation

Fig. 3. Lombardia: B= 500 Bootstrap replications performed via the MEB algo-
rithm on the adjusted, log–transformed, data (in red the original time series is
dpicted)
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5.1. The adopted models
The stochastic model structures identified for both Vt and Ut are almost always of the
type ARMA (1,0), with the exception of Campania (ARMA(0,1), for both the variables
Vt and Ut)) and Emilia Romagna, for which the best model for the variable Ut is of
the type ARMA(1,1). The most suitable prefilter (Eqn. 2) has been always of the type
d=3 difference of the natural log of the variables of interest.

6. Empirical evidences

At the national level (data have been plotted in Figure 4) the peak in the number of
CoViD-19–positives will be reached on 2 April, with a number of predicted positive
close to 77,000. The maximum forecasted value for the occupied ICU – expected for
April 4 – will be 4280. These values have been calculated using an indirect methodol-
ogy, i.e. by summing up the estimates obtained at a disaggregated level. Regarding the
results obtained at a disaggregated level, the models outcomes are now commented.

• Lombardia – the most affected region – will reach the peak of positive cases
(25963) and of the demand of ICUs (1425) respectively on 2 and 4 April;

• Emilia Romagna is the second most affected Region by COVID-19 but still shows
a very high number of victims. The trend of infected people will reach its peak
on April 5th whereas the number of cases in Intensive Care will continue to grow
at a progressively slower rate over the forecasting period;
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• Veneto is the third Region for number of deaths. Here, the number of positive
cases, as well as the number of cases in ICU, will reach the peak on April 3rd;

• for Piedmont – the fourth Region for number of victims – the predicted positive
cases will reach the peak on March 29th (6635) whereas the persons in ICU will
be 431 on 31 March, when the peak is predicted;

• Liguria will begin a process of relative reduction of positive cases as early as
March 29th. The number of cases in Intensive Care, after a period of stability
(lasting until 31 March), will start a slow decreasing path;

• Positive cases in Trentino Alto Adige – which incorporates the cities of Trento and
Bolzano – are projected to be 2158 on March 30th and then a decreasing trend
is expected. The ICU beds occupied in this region will reach its peak on around 3
April;

• The positive cases in Friuli Venezia Giulia show a relatively stable trend in the
first half of the prediction interval with a peak around April 4th, after that the
absolute number of cases will start decreasing. The number of cases in ICU will
reach the peak between 30 March and 1 April;

• Valle D’Aosta is a small region which has been relatively less impacted by the
virus. Here, a downward trend is expected to start on March 31st (for the positive
cases) and around 31 March (cases in ICUs);

• The upward trend in the number of positive cases of Lazio is estimated to stop on
31 March and to reach the minimum at the end of the forecasting people (1821
cases). The number of ICU cases is estimated to reach its peak on the period 1–3
April;

• The Macro-area Center will reach its peak at the very beginning of the month of
April (for the variable V ) whereas for the variable U the estimated peak day is
around 31 March;

• Campania will reach the peak of contagions on April 5 whereas ICU cases will do
on the previous day;

• The remaining southern regions (Abruzzo, Molise, Puglia, Basilicata, Calabria,
Sicily and Sardinia) will show an upward trend in the number of future posi-
tive cases lasting until 6 April, where 6355 cases are predicted. The number of
persons requiring an ICU will reach the peak on 4 April (348 is the estimated
number of cases).
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Fig. 4. Italy, time series data of positive (data corrected via Kalman filter, left
side axis) and of the number of people hospitalized in ICUs (right side axis)
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Table 1. 10–step–ahead predictions for the variable Vt, number of persons tested
positive

Italy

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 66504 71586 76647
30 March 69753 73409 79373
31 March 70760 75696 82773
1 April 70817 76723 86430
2 April 69925 77811 90800
3 April 69309 76952 96806
4 April 68480 75927 102946
5 April 66531 74860 109265
6 April 64940 75006 117550
7 April 60197 74875 126205

Lombardia

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 22538 25214 26384
30 March 23296 25456 26790
31 March 23969 25792 27565
1 April 23864 25842 27634
2 April 23662 25963 28230
3 April 23209 25675 28342
4 April 22709 25717 28781
5 April 21964 25067 29524
6 April 20802 24431 30131
7 April 19619 23752 30628

Piedmont

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 6115 6635 7017
30 March 6264 6610 7193
31 March 6209 6568 7481
1 April 6079 6401 7942
2 April 5837 6152 8271
3 April 5502 5898 8590
4 April 5134 5566 8753
5 April 4666 5135 8995
6 April 4178 4732 9279
7 April 3707 4289 9417
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Liguria

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 2026 2062 2217
30 March 2007 2048 2242
31 March 1955 2019 2361
1 April 1891 1969 2416
2 April 1804 1900 2515
3 April 1701 1805 2580
4 April 1589 1709 2645
5 April 1470 1590 2748
6 April 1344 1440 2917
7 April 1214 1311 3090

Valle D’Aosta

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 404 480 512
30 March 410 491 524
31 March 417 501 546
1 April 420 500 551
2 April 411 494 551
3 April 382 483 542
4 April 359 462 526
5 April 339 443 541
6 April 301 412 530
7 April 267 383 516

Veneto

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 6346 7145 7559
30 March 6569 7213 7749
31 March 6706 7431 8067
1 April 6721 7463 8144
2 April 6535 7539 8415
3 April 6414 7469 8758
4 April 6073 7374 9168
5 April 5703 7182 9214
6 April 5303 6842 9593
7 April 4798 6537 10203
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Friuli Venezia Giulia Infetti

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 1029 1124 1167
30 March 1083 1138 1195
31 March 1100 1169 1226
1 April 1104 1189 1269
2 April 1109 1212 1267
3 April 1097 1209 1272
4 April 1060 1230 1287
5 April 1035 1203 1305
6 April 1005 1202 1333
7 April 976 1208 1343

Emilia Romagna

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 9163 10500 11265
30 March 9464 10975 11717
31 March 9535 11360 12176
1 April 9587 11613 12562
2 April 9476 11815 12954
3 April 9276 11943 13291
4 April 9002 12132 13539
5 April 8528 12244 13720
6 April 8034 12125 13995
7 April 7311 11966 14189.9250136506

Trentino Alto Adige

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 2021 2147 2324
30 March 2076 2158 2488
31 March 2114 2124 2617
1 April 2110 2083 2707
2 April 2097 1988 2787
3 April 2064 1868 2764
4 April 2023 1725 2742
5 April 1944 1548 2751
6 April 1851 1373 2718
7 April 1707 1200 2641
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Lazio

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 2013 2208 2355
30 March 2160 2244 2436
31 March 2182 2298 2553
1 April 2153 2279 2666
2 April 2161 2256 2785
3 April 2140 2222 2991
4 April 2100 2154 3132
5 April 2041 2046 3233
6 April 1908 1956 3485
7 April 1768 1821 3782

Macro Area Center

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 6822 7499 7911
30 March 7104 7671 8087
31 March 7130 7864 8396
1 April 7001 7896 8741
2 April 6758 7889 8987
3 April 6424 7851 9156
4 April 6078 7813 9695
5 April 5512 7718 10081
6 April 4925 7494 10580
7 April 4397 7238 10941

Campania

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 1169 1453 1549
30 March 1267 1494 1662
31 March 1293 1527 1747
1 April 1287 1548 1835
2 April 1280 1582 1898
3 April 1252 1619 1953
4 April 1222 1640 1972
5 April 1160 1649 2020
6 April 1090 1648 2063
7 April 994 1645 2145

Macro Area Sud

CI∗L(h) V̂ ∗t CI∗U (h)
29 March 4380 5226 5662
30 March 4646 5406 5846
31 March 4689 5648 6246
1 April 4705 5791 6528
2 April 4496 5931 6902
3 April 4122 6129 7325
4 April 3841 6169 7695
5 April 3445 6346 8141
6 April 2981 6355 8787
7 April 2512 6345 9397
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Table 2. 10–step–ahead predictions for the variable Ut (people in ICUs)
Italy

CI∗L(h) Û∗t CI∗U (h)
29 March 3681 3960 4086
30 March 3751 4009 4170
31 March 3730 4075 4264
1 April 3732 4141 4350
2 April 3707 4185 4386
3 April 3667 4262 4493
4 April 3608 4280 4610
5 April 3492 4275 4701
6 April 3347 4249 4814
7 April 3143 4243 4899

Lombardia
CI∗L(h) Û∗t CI∗U (h)

29 March 1272 1369 1426
30 March 1286 1389 1458
31 March 1287 1402 1482
1 April 1291 1412 1490
2 April 1289 1420 1509
3 April 1286 1427 1526
4 April 1270 1425 1537
5 April 1252 1421 1558
6 April 1227 1416 1578
7 April 1191 1412 1599

Piedmont
CI∗L(h) Û∗t CI∗U (h)

29 March 422 433 451
30 March 428 436 457
31 March 428 438 470
1 April 427 436 478
2 April 4241 434 491
3 April 419 427 498
4 April 409 417 508
5 April 395 406 512
6 April 373 396 523
7 April 354 383 535

Liguria
CI∗L(h) Û∗t CI∗U (h)

29 March 156 163 168
30 March 159 163 171
31 March 158 163 174
1 April 158 162 178
2 April 158 161 181
3 April 156 159 185
4 April 153 157 187
5 April 148 153 191
6 April 143 151 193
7 April 137 145 195
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Valle Aosta
CI∗L(h) Û∗t CI∗U (h)

29 March 24 25 27
30 March 25 25 29
31 March 24 25 30
1 April 24 24 31
2 April 23 22 32
3 April 22 21 33
4 April 21 19 34
5 April 19 16 36
6 April 18 14 36
7 April 15 12 37

Veneto
CI∗L(h) Û∗t CI∗U (h)

29 March 331 357 367
30 March 335 360 375
31 March 335 365 382
1 April 334 370 391
2 April 332 375 401
3 April 324 378 409
4 April 312 375 424
5 April 298 376 440
6 April 286 370 448
7 April 267 369 461

Friuli Venezia Giulia
CI∗L(h) Û∗t CI∗U (h)

29 March 56 57 60
30 March 56 58 60
31 March 56 58 63
1 April 55 58 63
2 April 54 57 65
3 April 52 56 66
4 April 51 56 67
5 April 49 55 69
6 April 48 53 71
7 April 44 52 72
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Emilia Romagna
CI∗L(h) Û∗t CI∗U (h)

29 March 306 349 379
30 March 309 365 394
31 March 309 369 409
1 April 312 372. 421
2 April 313 379 433
3 April 314 386 439
4 April 311 388 442
5 April 307 392 442
6 April 298 399 447
7 April 288 401 444

Trentino Alto Adige
CI∗L(h) Û∗t CI∗U (h)

29 March 110 124 135
30 March 113 127 144
31 March 114 130 150
1 April 113 132 155
2 April 113 133 158
3 April 111 133 160
4 April 107 131 161
5 April 101 130 164
6 April 94 126 171
7 April 87 123 175

Lazio
CI∗L(h) Û∗t CI∗U (h)

29 March 120 136 146
30 March 125 139 157
31 March 123 141 171
1 April 118 144 179
2 April 111 145 200
3 April 104 145 219
4 April 95 141 235
5 April 84 139 264
6 April 73 134 294
7 April 61 131 343

Macro Area Center
CI∗L(h) Û∗t CI∗U (h)

29 March 476 491 509
30 March 485 492 519
31 March 484 492 534
1 April 482 489 547
2 April 479 484 565
3 April 475 478 586
4 April 468 469 608
5 April 460 460 624
6 April 448 448 649
7 April 438 438 681
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Campania
CI∗L(h) Û∗t CI∗U (h)

29 March 126 142 167
30 March 133 159 197
31 March 138 176 228
1 April 144 189 257
2 April 147 201 293
3 April 148 206 326
4 April 143 211 348
5 April 134 203 382
6 April 120 197 411
7 April 109 192 447

Macro Area Sud
CI∗L(h) Û∗t CI∗U (h)

29 March 296 319 342
30 March 303 326 348
31 March 312 335 367
1 April 306 340 367
2 April 302 343 383
3 April 298 346 394
4 April 289 348 408
5 April 278 342 421
6 April 264 334 441
7 April 244 318 462
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7. Disclaimer

The views and opinions expressed in this article are those of the author and do not nec-
essarily reflect the official policy or position of the Italian National Institute of Statistics.
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