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ABSTRACT		

Background.	Efficient	prevention	and	control	of	healthcare	associated	infections	(HAIs)	is	still	
an	open	problem.	

Objective.	To	design	efficient	hospital	infection	control	strategies	by	reorganizing	nurse	
scheduling.		

Design,	setting,	and	participants.	Proof-of-concept	modeling	study	based	on	high-resolution	
contact	data	from	wearable	sensors	between	patients,	nurses,	doctors,	and	administrative	staff	
at	a	short-stay	geriatric	ward	of	a	University	hospital.	

Methods.	We	considered	isolation	and	contact	removal	to	identify	the	most	important	class	of	
individuals	for	HAI	dissemination.	We	introduced	a	novel	intervention	based	on	the	
reorganization	of	nurse	scheduling.	This	strategy	switches	and	reassigns	nurses’	tasks	through	
the	optimization	of	shift	timelines,	while	respecting	feasibility	constraints	and	satisfying	patient-
care	requirements.	We	evaluated	the	impact	of	interventions	through	a	Susceptible-Colonized-
Susceptible	transmission	model	on	the	empirical	and	reorganized	contacts.		

Results.	Isolation	and	contact	removal	produced	the	largest	risk	reduction	when	acting	on	
nurses.	Reorganizing	their	schedules	reduced	HAI	risk	by	27%	(95%	confidence	interval	
[24,29]%)	while	preserving	the	timeliness,	number,	and	duration	of	contacts.	More	than	30%	
nurse-nurse	contacts	should	be	avoided	to	achieve	an	equivalent	reduction	through	simple	
contact	removal.	No	overall	change	in	the	number	of	nurses	per	patient	resulted	from	the	
intervention.		

Conclusions.	Reorganization	of	nurse	scheduling	offers	an	alternative	change	of	practice	that	
substantially	limits	HAI	risk	in	the	ward	while	ensuring	the	timeliness	and	quality	of	healthcare	
services.	This	calls	for	including	optimization	of	nurse	scheduling	practices	in	programs	for	
better	infection	control	in	hospitals.		
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Healthcare	associated	infections	(HAIs)	are	increasingly	widespread,	with	an	estimated	4	million	
individuals	affected	each	year	in	Europe,	representing	approximately	6%	of	all	hospitalized	
patients	(1).	These	infections	have	a	substantial	impact	on	morbidity	and	associated	costs	for	
the	healthcare	system,	potentially	leading	to	failure	of	treatment,	longer	illnesses	and	
hospitalizations,	and	deaths.	Rising	antimicrobial	resistance	in	hospitals	has	also	increased	the	
threat	to	human	health,	as	resistant	pathogens	may	cause	serious	infections	that	cannot	be	
treated	with	available	drugs	(2).			

Common	HAIs	spread	through	close-range	proximity	or	physical	contacts	between	individuals.	
Several	studies	highlighted	the	importance	of	contacts	for	HAI	diffusion	(3–9),	showing	how	
larger	variety	and	duration	of	contacts	are	associated	to	an	increase	in	HAI	risk	(10,11).	These	
factors	lead	to	the	well-known	paradox	that	healthcare	workers	play	a	key	role	in	pathogen	
dissemination	because	of	their	frequent	and	persistent	contacts	with	individuals	of	different	
categories	(12).	Being	at	higher	risk	for	HAI	colonization,	healthcare	workers	may	act	as	
transient	superspreaders	and	transmit	the	infection	to	the	large	number	of	individuals	they	get	
in	contact	with,	especially	in	the	vulnerable	population	of	patients	(12–14).		

Infection	control	strategies	targeting	healthcare	workers	require	careful	design,	to	avoid	
interfering	with	their	ability	to	carry	out	their	core	healthcare	responsibilities.		Hygienic	
measures	such	as	hand	sanitizing	are	the	primary	strategy	to	prevent	HAI	diffusion,	aiming	to	
reduce	the	per-contact	risk	of	transmission	(15).	The	efficacy	of	these	measures	is	however	
limited	by	low	compliance	rates,	as	reported	by	several	studies	especially	under	conditions	of	
emergency	or	understaffing	(12,16–18).	Even	low	compliance	by	a	few	individuals	can	have	a	
disproportionate	impact	on	the	risk	of	HAI	diffusion	in	the	hospital,	given	the	presence	of	
potential	superspreaders	(11,12,19,20).	Other	approaches	for	infection	control	have	therefore	
considered	the	use	of	personal	protective	equipment	(e.g.	face	masks	and	gloves)	(21),	
vaccination	(22),	isolation,	or	nurse	cohorting	(i.e.	assigning	nurses	to	a	limited	number	of	
patients	during	a	given	working	period)	(23).	Their	effectiveness,	however,	is	still	matter	of	
debate	(23,24).	Most	importantly,	some	of	these	measures	may	only	be	applicable	in	reaction	to	
outbreaks,	as	they	are	rather	costly	and	disruptive.	It	may	thus	prove	difficult	to	integrate	them	
into	day-to-day	hospital	activities.			

Routine	operations	in	a	hospital	are	ensured	by	adequate	healthcare	workers	staffing	and	
scheduling.	Their	organization	has	been	extensively	studied	for	several	decades	in	operations	
research,	management,	and	computer	science	(25,26)	and	is	generally	known	as	the	‘nurse	
scheduling	problem’.	It	typically	involves	the	optimization	of	single	or	multiple	goals	while	
satisfying	a	set	of	hard	constraints	–	i.e.	features	that	need	to	be	respected	at	all	costs,	e.g.	
feasibility,	workload,	length	of	shifts,	required	personnel	or	skills	–	and	a	set	of	soft	constraints	–	
i.e.	aspects	that	are	desirable	but	may	not	be	met	in	order	to	achieve	a	solution,	e.g.	preferences	
for	a	day	off.	Mathematically	described	by	the	constrained	minimization	of	a	potential	function,	
the	solution	to	the	scheduling	problem	aims	to	optimize	human	resources’	efficiency,	patient	
safety,	quality	of	medical	services,	costs,	and	staff	satisfaction.	Despite	the	great	interest	in	the	
topic,	research	has	so	far	addressed	it	exclusively	from	the	management	and	computational	
perspectives	(25,26),	with	no	regards	to	its	potential	role	in	infection	control.	

Here	we	propose	a	proof-of-concept	modeling	study	for	hospital	infection	control	based	on	the	
reorganization	of	care	in	a	hospital	ward	through	changes	in	the	schedule	of	work	shifts	of	
nurses.	Using	high-resolution	temporal	records	on	contacts	in	a	hospital	ward	(3),	our	approach	
switches	tasks	between	nurses	by	altering	their	work	schedules	through	the	optimization	of	a	
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potential	function,	similarly	to	models	for	nurse	scheduling.	The	reorganized	schedule	maintains	
full	staff	capacity	at	any	given	time,	preserves	all	time-referenced	contacts	recorded	in	the	
dataset	without	affecting	quality	standards	of	medical	services,	and	respects	basic	occupational	
constraints	(weekly	workload,	length	of	a	work	shift).	The	study	is	applied	to	a	short-stay	
geriatric	hospital	ward	in	Lyon,	France,	where	contact	data	were	collected	through	automated	
sensors	(3).	We	model	the	circulation	dynamics	of	hand-transmitted	pathogens	such	as	
methicillin-resistant	Staphylococcus	aureus	(MRSA)	or	vancomycin-resistant	Enterococci	(VRE)	
in	the	ward,	and	evaluate	the	effectiveness	of	the	intervention	by	measuring	the	risk	for	HAI	
diffusion.		

	

METHODS	

Contact	data	

We	used	publicly	available	anonymized	data	collected	during	4	days	and	4	nights	(December	6	
to	10,	2010)	at	a	short-stay	geriatric	ward	of	a	hospital	in	Lyon,	France	(3,27).	Using	wearable	
RFID	sensors,	the	system	tracked	face-to-face	proximity	contacts	over	time	between	75	
participating	individuals,	including	27	nurses	(N),	11	doctors	(D),	8	administrative	staff	(A),	and	
29	patients	(P).	The	dataset	was	first	analyzed	in	Ref.	(3);	Figure	1	reports	its	basic	properties.	
Nurses	and	doctors	had	the	largest	cumulative	duration	of	contacts,	and	most	frequent	contacts	
were	observed	between	nurses	(NN),	and	between	patients	and	nurses	(PN).		

HAI	risk	estimate		

The	time-resolved	contacts	are	represented	in	the	form	of	a	temporal	contact	network	(28),	
where	nodes	correspond	to	individuals	and	links	to	proximity	encounters.	Time	evolution	
occurs	at	an	hourly	timescale.	We	model	HAI	diffusion	in	the	hospital	ward	through	a	
Susceptible	–	Colonized	–	Susceptible	transmission	dynamics	on	the	temporal	contact	network	
(6,8,19,29,30).	Colonized	individuals	transmit	the	pathogen	with	probability	𝜆	per	contact.	Their	
average	colonization	duration	is	fixed	at	10	hours	for	healthcare	workers,	assuming	a	
spontaneously	clearing	transient	colonization	at	the	end	of	a	work	shift.	The	duration	is	longer	
for	patients	and	corresponds	to	10	days,	hypothesizing	a	weekly	bacterial	screening,	followed	by	
3	days	to	obtain	test	results	and	implement	a	decolonization	therapy,	as	in	(6,19).		

To	assess	the	risk	of	transmission	of	the	infection	in	the	ward,	we	estimate	the	condition	for	
circulation	of	MRSA	or	VRE	on	measured	contacts	through	the	infection	propagator	approach	
(31–33).	This	theoretical	framework	was	introduced	to	study	epidemics	spreading	on	temporal	
networks	and	identify	the	critical	value	𝜆" 	of	the	transmissibility	above	which	the	pathogen	
spreads	in	the	host	population	(i.e.	if	𝜆 > 𝜆" 	an	outbreak	is	predicted	to	occur).		The	Appendix	
reports	a	full	description	of	this	approach,	and	the	available	software	tool.	

Intervention	through	isolation	or	contact	removal	

To	assess	the	role	that	each	class	of	individuals	has	on	HAI	risk,	we	simulate	two	interventions	
based	(i)	on	the	isolation	of	individuals	belonging	to	a	given	class,	and	(ii)	on	the	removal	of	
contacts	established	between	two	classes	(e.g.	contacts	between	patients	and	nurses).	Each	
intervention	is	made	comparable	across	classes	or	pairs	of	classes,	through	the	isolation	of	8	
individuals	(i.e.	the	smallest	size	class)	or	the	removal	of	5%	of	the	total	duration	of	contacts	in	
the	dataset,	respectively.	Interventions	are	repeated	to	account	for	the	stochasticity	in	the	choice	
of	the	node	to	isolate	or	of	the	contacts	to	remove.	
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Intervention	based	on	reorganization	of	nurse	scheduling		

We	introduce	an	activity	variable	𝑎%(𝑡)	associated	to	nurse	𝑖	during	hour	𝑡,	so	that	𝑎%(𝑡)=1	if	the	
nurse	is	at	work	and	establishes	contacts	in	that	hour	and	𝑎%(𝑡) = 0	otherwise	(Figure	2a).	For	
each	nurse,	we	compute	the	shift	duration	𝑠	defined	as	the	number	of	consecutive	work	hours,	
and	the	workload	𝑤	corresponding	to	the	total	number	of	hours	worked	in	the	dataset.		

The	proposed	intervention	switches	and	reassigns	the	tasks	performed	by	two	nurses	in	a	given	
hour	𝑡.	Tasks	consist	in	contacts	that	nurses	establish,	as	they	perform	their	duties	in	interaction	
with	other	individuals	(e.g.	caring	for	a	patient).	They	correspond	to	possible	transmission	
events.	The	reorganization	is	driven	by	the	minimization	of	the	following	potential	function:		

𝑉 = −0
1
∑ ∑ ∑ 𝑎%(𝑡3)𝑎%(𝑡1)(𝑡3 − 𝑡1)14546% .																																																				(2)	

𝑖	runs	on	all	nurses,	𝑡3	and	𝑡1	run	on	the	whole	timeline,	and	𝑘	determines	the	tendency	of	the	
potential	(𝑘 = ±1).	𝑘 = −1	shows	a	tendency	to	create	regular	individual	schedules	(periodic	
activity	patterns),	and	𝑘 = 1	a	tendency	for	irregular	individual	schedules	(erratic	activity	
patterns)	(Fig.2b).	

This	strategy	preserves	the	number,	type,	and	exact	timeline	of	contacts,	differently	from	the	
intervention	through	contact	removals.	The	minimization	of	the	potential	is	additionally	subject	
to	feasibility	constraints	on	shift	duration	and	workload	of	nurses:	

• Model	𝑆:	the	exchange	is	allowed	as	long	as	each	working	shift	lasts	at	most	s=10	hours,	
as	measured	empirically.		

• Model	𝑊𝑆:	in	addition	to	the	constraint	on	shift	duration,	the	exchange	is	allowed	only	if	
it	preserves	the	empirically	measured	workload	w	of	each	nurse.		

Each	model	is	run	with	both	values	of	𝑘,	for	a	total	of	4	reorganization	options	
(𝑆=3, 𝑆?3,𝑊𝑆=3,𝑊𝑆?3).	The	Appendix	reports	a	detailed	description	of	the	minimization	
algorithms.	Despite	being	synthetic,	these	interventions	have	an	increasing	degree	of	realism	to	
show	the	potential	of	this	proof-of-concept	study	for	possible	applications	in	real	situations.	

Evaluation	of	interventions	

We	evaluate	the	effect	of	interventions	by	comparing	the	resulting	HAI	risk	estimate	(𝜆"@AB)	with	
the	one	estimated	on	the	empirical	pattern	of	contacts	(𝜆"CDE).	We	define	the	HAI	risk	reduction	
as	the	relative	variation	of	these	two	quantities	((𝜆"@AB − 𝜆"CDE)/𝜆"CDE),	so	that	a	positive	risk	
reduction	corresponds	to	interventions	improving	the	control	of	potential	HAI	diffusion	in	the	
hospital	ward	(the	opposite	for	negative	values).	Fluctuations	in	the	HAI	risk	reduction	are	
obtained	from	the	variations	resulting	from	the	stochastic	trials.		

Effects	of	the	reorganization	of	nurse	scheduling	on	contact	patterns	

To	test	whether	the	proposed	reorganization	of	nurse	scheduling	leads	to	nurse	cohorting	(23),	
we	measure	the	variation	in	the	number	of	distinct	nurses	assigned	to	each	patient	following	the	
intervention	compared	to	the	empirical	value.	Negative	values	of	this	variation	correspond	to	
nurse	cohorting	(i.e.	an	average	reduction	of	the	number	of	nurses	per	patient).	

We	also	measure	the	variations	in	the	nurses’	degree	(i.e.	number	of	distinct	connections	each	
nurse	establishes)	by	comparing	average	degree	and	associated	fluctuations	before	and	after	the	
reorganization.		
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RESULTS		

Intervention	through	isolation	or	contact	removal		

Complete	isolation	of	8	randomly	chosen	patients	corresponds	to	a	drop	of	8%	in	the	cumulated	
duration	of	contacts,	while	isolating	8	nurses	reduces	it	by	31%	(Figure	3a).	In	the	latter	
situation,	it	leads	to	an	approximate	35%	median	reduction	of	the	HAI	risk	(Fig.	3c),	whereas	the	
same	intervention	applied	to	other	classes	has	negligible	impact.		

When	removing	a	certain	fraction	of	contacts	between	classes,	the	largest	risk	reduction	is	
obtained	by	acting	on	nurse-nurse	contacts	(median	reduction	of	13%),	corresponding	to	
deleting	15%	of	nurse-nurse	contact	duration	(Fig.	3b,	d).	Interventions	on	contacts	between	
nurses	and	doctors	or	administrative	staff,	which	are	proportionally	more	disruptive,	have	
almost	no	impact	on	the	risk.		

Both	theoretical	interventions	highlight	the	central	role	played	by	nurses	in	the	hospital	ward	
under	study,	supporting	the	design	of	a	more	realistic	intervention	that	could	act	on	nurse	
activities	without	disrupting	the	ward	functioning	and	the	provision	of	medical	and	nursing	
services.	

Intervention	based	on	reorganization	of	nurse	scheduling	

Minimizing	the	potential	while	constraining	only	the	maximum	shift	duration	leads	to	two	
different	profiles	of	the	workload	distribution	(Figure	4).	Model	𝑆=3	shows	approximately	half	of	
the	nurses	not	working	(𝑤 = 0),	and	the	rest	distributed	quite	evenly	from	short	to	very	long	
workloads	(Fig.	4a).	Model	𝑆?3	tends	instead	to	homogenize	nurses’	workload	around	the	
average	value	(16	to	23	hours	in	the	4-day	timeframe,	Fig.	4c).		

Shift	duration	distributions	are	rather	similar	in	all	models,	and	qualitatively	comparable	with	
empirical	data	(Fig.	4b,	d,	f,	h).	Small	variations	on	1-hour	shifts	(higher	probability	in	𝑊𝑆	
models)	and	8-9-hour	shifts	(more	marked	increase	in	the	𝑆	models)	are	observed.		

Model	𝑆?3	achieves	the	largest	reduction	of	HAI	risk	(median	27%	reduction,	95%	CI	[24,29]%),	
followed	by	𝑊𝑆=3	(21%,	[20,24]%)	and	𝑊𝑆?3	(19%,	[16,20]%)	(Figure	5a).	Equivalent	risk	
reductions	would	be	obtained	by	contact	removal	if	more	than	30%,	25%,	and	20%	duration	of	
nurse-nurse	contacts	were	to	be	removed,	respectively	(Fig.	5b).	Model	𝑆=3	instead	increases	
HAI	risk	of	5%.		

Models	𝑆?3 ,	𝑊𝑆=3,	and	𝑊𝑆?3,	which	decrease	risk,	show	a	reduction	of	the	fluctuations	in	the	
number	of	distinct	contacts	established	by	nurses,	without	substantially	altering	their	average	
number	of	contacts	or	the	number	of	distinct	nurses	assigned	to	each	patient	(Figure	6).	Model	
𝑆=3 ,	which	increases	risk,	raises	cohorting	levels	with	a	median	of	4	less	nurses	assigned	to	each	
patient	and	strongly	increases	nurses’	degree	fluctuations.		

	

DISCUSSION	

The	key	role	of	healthcare	workers	in	the	transmission	of	healthcare	associated	infections	is	
widely	recognized	(12–15).	Low	compliance	and	limited	sustainability	of	recommended	
strategies	hinder	efficient	infection	control.	Our	study	proposes	an	alternative	change	of	practice	
through	the	reorganization	of	nurse	work	shifts	to	reduce	HAI	risk.	Using	sensed	contact	data	in	
a	hospital	ward,	we	show	that	reassigning	tasks	to	nurses	minimizing	a	potential	function	on	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted October 18, 2019. .https://doi.org/10.1101/19007724doi: medRxiv preprint 

https://doi.org/10.1101/19007724
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

their	timeline	of	activity	can	reduce	the	risk	of	HAI	diffusion	by	about	one	third.	Our	findings	
show	the	potential	of	planning	nurse	schedules	to	improve	infection	prevention	and	control.		

The	key	advantage	of	the	proposed	intervention	is	that	it	preserves	the	number,	type,	and	
duration	of	contacts	at	each	time.	This	ensures	the	timeliness	and	quality	of	medical	and	nursing	
services	provided.	An	equivalent	impact	on	risk	reduction	could	be	achieved	by	limiting	the	
interactions	viable	for	transmission.	Uninformed	removal	of	contacts	would	be	however	rather	
disruptive,	with	one	third	of	contacts	deleted	among	nurses,	at	the	expense	of	standards	of	care.	
Patient	isolation,	staff	cohorting,	and	increase	in	staff	levels	were	shown	in	previous	work	to	be	
effective	in	limiting	transmission,	by	directly	or	indirectly	acting	on	the	interactions	(18,23,29).	
Fully	isolating	about	30%	of	patients	in	the	ward,	however,	had	no	impact	on	the	risk	of	
transmission	in	this	study.	Also,	the	highest	improvement	in	infection	control	(𝑆?3)	was	due	
neither	to	cohorting	nor	to	an	increase	in	staff	levels.	However,	this	intervention	led	to	the	
strongest	reduction	in	the	fluctuations	in	the	number	of	distinct	contacts	per	nurse.	
Homogenizing	nurses’	contact	patterns	around	40-45	contacts	per	nurse	removes	the	presence	
of	potential	superspreaders	(11,12,19,20)	that	could	otherwise	act	as	risk	amplifiers.	The	
reduction	in	the	degree	fluctuations	is	indeed	observed	only	in	the	models	reducing	HAI	risk.	

Adequate	staffing	levels	and	reasonable	workloads	are	established	factors	promoting	infection	
prevention	in	hospitals	(12,18,34).	Reorganizing	nurses’	shifts	just	respecting	the	maximum	
shift	duration	constraint	(model	𝑆=3)	results	in	our	study	in	approximately	half	of	the	staff	not	
working,	while	nursing	care	is	assigned	to	the	remaining	half,	thus	forcing	unrealistic	work	
schedules	(up	to	80	hours	of	work	per	nurse	in	4	days,	i.e.	an	average	of	20h/day).	Such	
reorganization	of	work	has	a	negative	impact	on	infection	control,	in	line	with	empirical	findings	
that	recognize	high	workloads,	understaffing,	and	the	presence	of	superspreaders	as	key	risk	
factors	for	MRSA	circulation	in	healthcare	settings	(12,34).	In	addition,	poor	infection	control	
would	be	here	associated	to	an	increase	of	cohorting	levels,	which	simply	results	from	lower	
staffing.	All	other	models	lead	instead	to	an	important	reduction	of	HAI	risk,	with	the	
reorganization	being	able	to	break	potential	chains	of	transmission	through	the	swapping	of	
tasks.	Improved	control	is	achieved	by	reducing	the	presence	of	superspreaders	in	the	ward,	
under	both	regular	and	irregular	individual	work	timelines	of	nurses,	and	with	different	shift	
and	workload	distributions.	These	findings	uncover	the	practical	mechanism	for	improved	
control	and	highlights	the	robustness	of	the	proposed	strategy	to	different	requirements	on	the	
organization	of	the	workforce.		

Mathematical	models	have	already	been	used	to	improve	our	understanding	of	hospital	
epidemiology	(35,36).	They	are	nowadays	increasingly	data-driven	thanks	to	remote	sensing,	
allowing	an	automated	collection	of	close-proximity	interactions	between	individuals,	not	
affected	by	reporting	or	observer	biases	inherent	to	other	approaches	(37).	This	type	of	contacts	
was	recently	shown	to	explain	the	diffusion	path	of	several	HAIs	(6,7,10,38).	For	this	reason,	our	
findings	extend	to	pathogens	other	than	MRSA	and	VRE,	spreading	along	the	same	routes,	under	
the	hypothesis	of	relatively	rapid	decolonization	(6,19).	Durations	of	the	order	of	months	that	
are	empirically	observed	in	absence	of	interventions	(39)	were	not	examined	here	because	
considered	inappropriate	in	the	hypothesis	of	decontamination	taking	place.	

Prior	modeling	work	generally	relied	on	numerical	simulations	of	HAI	spread	(35).	We	used	the	
infection	propagator	approach	to	estimate	HAI	risk	reduction	in	a	reliable	and	computationally	
fast	way.	This	approach	was	already	used	to	estimate	the	risk	of	disease	persistence	in	other	
epidemic	contexts	(32,33),	and	has	the	advantage	of	being	flexible	to	the	integration	of	
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heterogeneities	in	the	force	of	infection	that	may	depend,	for	example,	on	class-specific	
transmissibility.		

The	proposed	reorganization	of	staff	schedules	focused	on	the	class	of	nurses,	as	theoretical	
results	on	isolation	or	contact	removal	clearly	identified	nurses	as	the	category	of	healthcare	
workers	who	mostly	contribute	to	the	transmission	risk	in	the	ward.	This	can	be	traced	back	to	
the	larger	number	and	longer	duration	of	contacts	established	by	nurses,	commonly	required	by	
nursing	care,	and	it	is	in	line	with	previous	observations	and	modeling	works	proposing	nurses	
as	target	group	for	prevention	measures	(7,9,22).		

Our	findings	show	the	potential	to	integrate	infection	prevention	into	the	nurse	scheduling	
problem,	originally	designed	to	optimize	hospital	workforce.	However,	some	steps	are	still	
needed	to	carry	this	novel	paradigm	into	practice,	in	the	form	of	a	roadmap	to	a	future	hospital	
protocol.	First,	contact	data	collection	on	a	longer	timeframe	is	required	to	provide	a	
comprehensive	measurement	of	the	functioning	of	the	healthcare	setting	under	study.	Moreover,	
collecting	metadata	on	the	type	of	clinical	interventions	performed	in	the	ward,	the	specific	roles	
of	subclasses	of	personnel	(e.g.	nurse	types),	the	type	of	patients	admitted,	and	the	standard	and	
organization	of	care	(e.g.	scheduling	practices	along	the	24	hours)	is	key	to	improve	the	
parameterization	of	the	epidemic	transmission	model	and	define	the	conditions	for	task’	
reassignments	(e.g.	by	swapping	similar	tasks,	or	tasks	that	can	be	handled	by	the	same	staff	
type).	Most	importantly,	such	additional	data	will	help	constrain	the	potential	function	to	patient	
needs	and	staff	requirements.	We	list,	for	example,	the	length	of	shifts,	the	number	of	weekends	
worked,	the	number	of	on/off	days,	the	role	of	additional	personnel	(e.g.	physical	therapists,	
nutritionists,	with	different	working	patterns),	the	use	of	part-time	and	temporary	nursing	
personnel	(thus	introducing	staff	for	substitute	shifts).	Integrating	these	elements	would	make	
the	re-scheduling	feasible,	without	altering	the	core	of	the	strategy	proposed	here.	

We	presented	modeling	evidence	that	reorganizing	nurse	scheduling	while	maintaining	the	
number,	timeliness,	and	quality	of	medical	services	provided	by	nursing	staff	can	strongly	
decrease	the	risk	for	HAI	diffusion	in	the	hospital	ward.	Our	study	provides	the	theoretical	basis	
for	a	new	control	paradigm,	showing	its	potential	for	integration	in	future	nurse	scheduling	
practices	for	the	implementation	of	successful	infection	control	programs	at	the	hospitals.		
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FIGURES	

	

	

	

Figure	1:	Contacts	in	the	hospital	ward.	Percentage	of	participating	individuals	(a),	of	contacts	
(b),	and	of	contact	duration	(c)	by	class	of	individuals	(patients	(P),	nurses	(N),	doctors	(D),	
administrative	personnel	(A)).	(d):	Percentage	of	contact	duration	between	classes	of	

individuals.	(e):	Hourly	timeline	of	the	number	of	individuals	per	class	establishing	contacts.		
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Figure	2:	Intervention	on	nurse	scheduling.	(a)	Schematic	visualization	of	the	intervention,	
with	the	exchange	of	tasks	between	nurse	𝑖	(filled	blue	node)	and	nurse	𝑗	(void	blue	node),	at	
times	𝑡	(while	they	are	both	at	work)	and	𝑡 + 1	(while	nurse	𝑗	is	not	at	work	in	the	empirical	
schedule,	and	would	exchange	her	shift	with	nurse	𝑖	in	the	reorganized	schedule).	Links	

represent	contacts	with	other	individuals	(black	nodes).	The	reorganized	nurse	schedule	(right)	
is	compared	to	the	empirical	one	(left)	obtained	from	the	contact	data.	(b)	Example	of	an	

empirical	nurse	schedule	along	with	the	re-organized	ones	obtained	with	𝑘 = −1	and	𝑘 = −1,	
leading	to	regular	and	irregular	individual	schedules,	respectively.	Grey	blocks	correspond	to	

hours	when	the	nurse	is	at	work.	
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Figure	3:	Impact	of	intervention	through	isolation	or	contact	removals.	(a):	Median	
percentage	of	contact	duration	removed	within	the	class	(red	line)	or	of	the	full	timeline	(grey	
bars)	once	8	individuals	in	each	class	are	isolated,	corresponding	to	28%	of	patients	(P),	30%	of	
nurses	(N),	73%	of	doctors	(D),	and	100%	of	administrative	staff	(A).	(b):	Median	percentage	of	
contact	duration	removed	among	links	established	by	nurses	with	other	classes	(grey	bars,	with	
patients	(PN),	with	nurses	(NN),	with	doctors	(ND),	with	administrative	staff	(NA)),	once	5%	of	
the	total	contact	duration	of	the	full	timeline	is	removed	(red	line).	(c),	(d):	HAI	risk	reduction	in	

the	hospital	ward	achieved	through	isolation	(panel	c)	or	contact	removal	(panel	d)	
corresponding	to	the	results	of	panels	a	and	b,	respectively.	Boxplots	indicate	the	median,	
interquartile	range	and	95%	CI	of	the	risk	reduction,	accounting	for	the	stochasticity	of	the	

interventions	(results	from	20	random	trials).		

	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted October 18, 2019. .https://doi.org/10.1101/19007724doi: medRxiv preprint 

https://doi.org/10.1101/19007724
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 14	

	

Figure	4:	Workload	and	shift	duration	in	the	reorganized	schedule.	(a)-(b):	Probability	
distribution	of	nurses’	workload	𝑤	(panel	a)	and	shift	duration	𝑠	(panel	b)	following	the	

reorganization	of	shifts,	compared	to	the	empirical	distributions.	The	reorganization	is	based	on	
model	𝑆=3	(i.e.	constraint	on	shift	duration	and	attractive	potential).	(c)-(d),	(e)-(f),	(g)-(h):	As	
panels	(b)	and	(c)	for	model	𝑆?3	(constraint	on	shift	duration	with	repulsive	potential),	model	
𝑊𝑆=3	(constraint	on	workload	and	shift	duration	with	attractive	potential),	model	𝑊𝑆?3	

(constraint	on	workload	and	shift	duration	with	repulsive	potential),	respectively.	

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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Figure	5:	Impact	of	intervention	through	reorganization	of	nurse	scheduling.	(a):	HAI	risk	
reduction	in	the	hospital	ward	achieved	with	the	reorganization	of	nurse	scheduling	in	the	

models	𝑆=3, 𝑆?3,𝑊𝑆=3,𝑊𝑆?3,	compared	to	the	empirical	situation.	Boxplots	indicate	the	median,	
interquartile	range	and	95%	CI	of	the	risk	reduction,	accounting	for	the	stochasticity	of	the	

exchange	(results	from	50	random	trials).	(b):	Percentage	of	contact	duration	to	be	removed	in	
the	nurse-nurse	interactions	so	that	the	intervention	through	contact	removal	would	achieve	the	
same	risk	reductions	of	panel	a	(obtained	through	the	reorganization	of	nurse	scheduling).		𝑆=3	

is	not	shown	as	it	has	a	negative	impact	on	the	risk.		

	

	

	

(a)

(b)

(%
)
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Figure	6:	Effect	of	reorganization	on	contact	patterns.	(a)	Variation	of	the	number	of	distinct	
nurses	assigned	to	each	patient,	in	the	reorganized	vs.	empirical	contact	pattern.	(b)	Average	

number	of	distinct	contacts	per	nurse	(nurses’	degree).	Dashed	line	corresponds	to	the	empirical	
value.	(c)	Fluctuations	(standard	deviation)	of	the	number	of	distinct	contacts	per	nurse.	Dashed	
line	corresponds	to	the	empirical	value.	For	(a),(b),(c),	results	are	obtained	from	500	random	

trials.			

(a)

(b)

(c)
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APPENDIX		
	

1.	Infection	propagator	approach	to	evaluate	the	HAI	risk	

We	represent	the	time-evolution	of	contacts	in	terms	of	a	temporal	network	with	adjacency	
matrices	𝐴4 ,	with	𝑡	running	on	the	1-hour	time	steps.	The	entry	𝑖, 𝑗	of	𝐴4 	is	equal	to	one	if	nodes	
𝑖, 𝑗	establish	a	contact	during	time	step	𝑡,	zero	otherwise.	We	model	the	spread	of	the	pathogen	
using	a	Susceptible	–	Colonized	–	Susceptible	model.	A	colonized	node	in	the	network	transmits	
the	pathogen	to	a	connected	node	with	probability	𝜆	(transmissibility)	at	each	time	step.	It	also	
clears	the	pathogen	with	a	probability	𝜇	at	each	timestep.	𝜇=3	is	then	the	average	carriage	
period.	There	exists	a	critical	value	of	transmissibility	𝜆"	–	called	epidemic	threshold	–	that	
determines	the	global	behavior	of	the	outbreak.	If	transmissibility	is	higher	than	the	epidemic	
threshold	(𝜆 > 𝜆"),	introducing	the	pathogen	into	the	hospital	ward	is	likely	to	cause	a	large-
scale	outbreak.	Instead,	if	transmissibility	is	lower	than	the	epidemic	threshold	(𝜆 < 𝜆"),	the	
outbreak	is	likely	to	affect	few	individuals.	Therefore,	computing	changes	in	the	epidemic	
threshold	is	a	a	synthetic	and	easy-to-interpret	way	to	weigh	the	impact	of	any	policy,	on	the	
vulnerability	of	the	ward	to	the	pathogen	considered.	If	the	epidemic	threshold	increases	
following	intervention,	the	ward	becomes	more	resilient	to	pathogen	introduction.	Oppositely,	if	
the	epidemic	threshold	goes	down,	the	ward	becomes	more	prone	to	large-scale	outbreaks.	This	
is	the	rationale	behind	our	definition	of	HAI	risk	reduction:	(𝜆"@AB − 𝜆"CDE)/𝜆"CDE .	In	order	to	
compute	it,	we	need	to	compute	the	epidemic	threshold	before	and	after	intervention.	To	that	
end,	we	employ	the	infection	propagator	approach	(31–33),	which	can	compute	the	epidemic	
threshold	on	any	arbitrary	temporal	network,	for	the	spreading	model	used	here.	The	infection	
propagator	is	the	following	matrix:	

𝑃(𝜆, 𝜇) = ∏ (1 − 𝜇 + 𝜆𝐴4)4 .	

It	contains	both	the	time-evolving	structure	of	the	contact	network	(𝐴4),	and	the	parameters	of	
the	spreading	model	(𝜆, 𝜇),	and	measures	the	chains	of	infection	between	individuals	along	
which	the	pathogen	can	spread.	We	prove	in	(31–33)	that	the	epidemic	threshold	is	the	smallest	
value	of	𝜆	for	which	the	largest	eigenvalue	of	𝑃	equals	one.		

We	provide	a	Python	library	to	compute	the	epidemic	threshold	of	any	empirical	temporal	
network	in	the	following	repository:	https://github.com/eugenio-valdano/threshold	
	

	

	

2.	Implementation	of	switch	and	reassignment	of	nurses’	tasks	and	minimization	of	the	
potential	

We	minimize	the	potential	using	the	Metropolis	algorithm.	It	is	an	iterative	process	based	on	the	
following	steps.	

Version	for	𝑆?3, 𝑆=3:	

1) Choose	two	nurses	(𝑖 ≠ 𝑗),	and	one	time	step	(𝑡);	
2) If	neither	nurse	is	active	during	𝑡,	go	to	1);	
3) Swap	tasks	between	𝑖, 𝑗	during	𝑡;	
4) If	the	swap	breaks	the	𝑆	constraint,	go	to	1);	
5) Compute	the	potential;	
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6) If	the	swap	decreases	the	potential,	accept	the	swap.	If	the	swap	increases	the	potential,	
accept	it	with	probability	𝑒=∆R ,	where	∆𝑉	is	the	change	in	potential	due	to	the	swap;	

7) Only	if	the	swap	is	accepted,	update	nurses’	task	assignments,	and	potential;	
8) Go	to	1).	

Version	for	W𝑆?3,𝑊𝑆=3:	

1) Choose	two	nurses	(𝑖 ≠ 𝑗);	
2) Choose	two	time	steps	(𝑡, 𝑠),	so	that	𝑖	is	active	during	𝑡,	and	not	active	during	𝑠,	and	𝑗	is	

active	during	𝑠,	and	not	active	during	𝑡.	If	this	is	not	possible,	go	to	1);	
3) Swap	tasks	between	𝑖, 𝑗	during	both	𝑡, 𝑠;	
4) If	the	swap	breaks	the	𝑆	constraint,	go	to	1);	
5) Compute	the	potential;	
6) If	the	swap	decreases	the	potential,	accept	the	swap.	If	the	swap	increases	the	potential,	

accept	it	with	probability	𝑒=∆R ,	where	∆𝑉	is	the	change	in	potential	due	to	the	swap;	
7) Only	if	the	swap	is	accepted,	update	nurses’	task	assignments,	and	potential;	
8) Go	to	1).	
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